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ABSTRACT

In the classic Kuramoto system of coupled two-dimensional rotators, chimera states characterized by the coexistence of synchronous and
asynchronous groups of oscillators are long-lived because the average lifetime of these states increases exponentially with the system size.
Recently, it was discovered that, when the rotators in the Kuramoto model are three-dimensional, the chimera states become short-lived in
the sense that their lifetime scales with only the logarithm of the dimension-augmenting perturbation. We introduce transverse-stability
analysis to understand the short-lived chimera states. In particular, on the unit sphere representing three-dimensional (3D) rotations,
the long-lived chimera states in the classic Kuramoto system occur on the equator, to which latitudinal perturbations that make the
rotations 3D are transverse. We demonstrate that the largest transverse Lyapunov exponent calculated with respect to these long-lived
chimera states is typically positive, making them short-lived. The transverse-stability analysis turns the previous numerical scaling law of
the transient lifetime into an exact formula: the “free” proportional constant in the original scaling law can now be precisely determined
in terms of the largest transverse Lyapunov exponent. Our analysis reinforces the speculation that in physical systems, chimera states
can be short-lived as they are vulnerable to any perturbations that have a component transverse to the invariant subspace in which they
live.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0145573

In spatiotemporal nonlinear dynamical systems possessing a high
degree of symmetry, such as a system of coupled, completely
identical oscillators with translational symmetries, spontaneous
symmetry breaking can lead to a class of dynamical states char-
acterized by the simultaneous coexistence of ordered (coherent)
and disordered (incoherent or random) groups of oscillators.
Such states were first discovered by Umberger, Grebogi, Ott, and
Afeyan more than three decades ago in their numerical simula-
tions of the system of coupled Duffing oscillators. Approximately
a decade later, Kuramoto and Battogtokh found these states in the
celebrated Kuramoto model of globally coupled two-dimensional
(2D) rotators and was subsequently mathematically analyzed and
coined the name “chimera” by Abrams and Strogatz. An ana-
lytic theory for the dynamical behaviors associated with the two
interacting populations of oscillators (effectively a chimera state)
was developed by Montbrió, Kurths, and Blasius in 2004. Since
then, there has been extensive research on chimera states. By
its very nature, a chimera state must be transient as the mutual
interactions between the coherent and incoherent groups of oscil-
lators will eventually destroy their coexistence. In the classical

Kuramoto model of coupled, strictly 2D rotators, the lifetime
of the chimera states tends to increase exponentially with the
system size; therefore, for reasonably large systems, these states
can be regarded as sustained or long-lived in any practical sense.
Nevertheless, certain types of perturbations, such as noise or an
augmentation in the dimension of the oscillators (e.g., a pertur-
bation rendering the rotators in the Kuramoto model 3D), can
turn the long-lived chimera states into short-lived in the sense
that their lifetime scales only with the logarithm of the mag-
nitude of the perturbation. This article introduces transverse-
stability analysis to understand the dynamical mechanism leading
to the short-lived chimera states. Detailed analysis of the gener-
alized Kuramoto model of coupled 3D rotators reveals that the
long-lived chimera states in the classical Kuramoto model of 2D
rotators occur in an invariant subspace of the full phase space,
and they are typically unstable with respect to perturbations that
are transverse to the subspace. The analysis turns the previous
numerical scaling law governing the average transient lifetime
of the short-lived chimera states with respect to the perturba-
tion into an exact formula, with the previously undetermined
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proportional scaling constant precisely identified, thereby lead-
ing to a deep understanding of the dynamical origin of the
short-lived chimera states.

I. INTRODUCTION

Approximately 35 years ago, Umberger, Grebogi, Ott, and
Afeyan at the University of Maryland began to simulate a class of
spatiotemporal dynamical systems described by a chain of coupled
nonlinear Duffing oscillators.1 What they found was that, even when
all the oscillators are identical, they can exhibit characteristically
distinct collective behaviors. In particular, it was observed that the
collective motion of a group of oscillators can be quite coherent,
while the complementary group can exhibit incoherent collective
dynamics. A system of coupled identical nonlinear oscillators pos-
sesses a high degree of symmetry; therefore, in a general sense, the
emergence of the coexistence of a dynamically coherent group and
an incoherent group of oscillators is characteristic of spontaneous
symmetry breaking that is responsible for the occurrence of a vast
variety of observable phenomena in the physical world, most notably
in condensed matter physics. Thirteen years later, a similar phe-
nomenon was uncovered2 in the classical Kuramoto model of cou-
pled, completely identical two-dimensional rotators: the coexistence
of two groups of oscillators: one exhibiting synchronous (regular)
and another of asynchronous (irregular or random) motions. Sub-
sequently, in 2004, the phenomenon was mathematically analyzed
and given the name “chimera.”3,4 About the same time, the prob-
lem of synchronization of two interacting populations of oscillators
was studied by Montbrió, Kurths, and Blasius,5 where the setting is
precisely one producing chimera states and the authors developed
comprehensive analytic theory to uncover and understand various
dynamical behaviors, such as different types of bistability, higher-
order entrainment, and the existence of states with unconventional
stability properties. (A similar treatment was published four years
later6.) Since then, the subject of chimera states has become an active
area of research in nonlinear dynamics and complex systems.7–63

Intuitively, a chimera state cannot last forever due to the
mutual interactions among the oscillators. To see this, note that after
a chimera state has emerged, the groups of coherent and incoherent
oscillators continue to interact with each other due to the coupling
among the oscillators from the two groups. Two distinct scenarios
can arise. First, while the coupling originated from the oscillators
in the coherent group to those in the incoherent group is regular,
the coupling from the latter to the former has a random compo-
nent. Subject to continuous random perturbations, the oscillators in
the coherent group will gradually become incoherent, and there will
come a time after which all oscillators become incoherent, destroy-
ing the chimera state. The second scenario is somewhat opposite to
the first where, due to the regular coupling from the coherent oscilla-
tors, the incoherent oscillators will gradually become more coherent,
leading to full coherence among all the oscillators in the system and
making the chimera state disappear. In either scenario, a chimera
state cannot sustain indefinitely, implying the fundamentally tran-
sient nature of the chimera states. Indeed, it was demonstrated that
the chimera states in the Kuramoto model are typically transient.15

Of physical interest is then how long a chimera state can last. In the

same work,15 it was found that the average lifetime of the chimera
states follows an exponential scaling law with an exponent that
increases with the system size; therefore, for any reasonably large
systems, these states can sustain for such a long time that they can
be regarded as “permanent” in any practical sense. We note that
it had been known for a long time that transient behaviors char-
acterized by a combined exponential-algebraic scaling law occur in
other contexts of dynamical systems,64 e.g., “superpersistent” chaotic
transients.65–69

A physical issue, thus, concerns about the robustness of
chimera states against external perturbations. Depending on the
type of perturbations, two cases can arise: a chimera state can be
robust or fragile; for example, in the standard setting of the clas-
sic Kuramoto model of identical coupled 2D rotators where the
chimera states are practically permanent, it was found previously
that the states are robust against perturbations to the structure of
the underlying lattice or networks.26,56,70 In an all-to-all coupled net-
work, the chimera states can persist even when there is substantial
link removal.26 The phenomenon of self-organization and adapta-
tion of chimera states was also uncovered,60 providing a dynamical
mechanism for these states to survive in response to perturbations.
In contrast, perturbations of a different nature can make the chimera
states fragile. For example, noise can significantly reduce the aver-
age lifetime of the chimera states.71 More recently, it was found61

that disturbing the 2D nature of the individual Kuramoto rotators
can have a devastating effect on the chimera states. In particular,
note that in the classic Kuramoto model, each uncoupled oscillator
is described by a single dynamical variable: the rotational or phase
angle characterizing the rotation on a unit circle in the plane. Now,
imagine a 3D rotator characterized as a point moving on the sur-
face of a unit sphere, where two independent angle variables are
needed to describe the rotator and the unperturbed phase oscillators
correspond to 2D rotation confined to the equator. It was demon-
strated that arbitrarily weak dimension-augmenting perturbations
making the phase oscillators 3D can drastically reduce the aver-
age lifetime of the chimera states.61 In particular, a scaling law was
uncovered, where the lifetime scales only with the logarithm of the
magnitude of the perturbation, meaning that reducing the pertur-
bation strength by many orders of magnitude will only lead to an
incremental increase in the lifetime of the chimera states. The pre-
vious findings,61,71 thus, indicated that, when the classical Kuramoto
system is subject to certain noise or dimension-augmenting pertur-
bations, the originally long-lived chimera states effectively become
short-lived.

In this paper, we articulate a general framework to elucidate
the dynamical mechanism leading to short-lived chimera states.
To be concrete, we consider a networked system of N identical
phase-coupled oscillators, where each oscillator is described by two
independent dynamical variables so that the phase-space dimension
of the whole system is 2N. Assume that the system has a symme-
try, e.g., a reflection symmetry, which generates an N-dimensional
dynamically invariant subspace. That is, any initial condition taken
from this subspace leads to dynamical state evolution or trajecto-
ries confined to the same subspace. Now, assume that long-lived
chimera states can arise in the invariant subspace, which occur,
e.g., when the dynamics in the subspace are described by the
classical Kuramoto model of 2D rotators. Consider perturbations
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that are transverse to the invariant subspace. If a chimera state in
the invariant subspace is unstable in response to such a pertur-
bation so that the dynamical trajectory “escapes” away from the
subspace, the “chimera” nature of the state can be quickly destroyed
in the sense that its lifetime scales with the logarithm of the per-
turbation strength. The largest transverse Lyapunov exponent for
the chimera state can then be defined, and its positiveness makes
the state fragile and short-lived. As a concrete physical example, we
consider a generalized model of N coupled 3D rotators, demonstrate
the existence of an N-dimensional invariant subspace that hosts the
classical Kuramoto dynamics, and demonstrate the general positive-
ness of the transverse Lyapunov exponent. These results provide a
setting that allows the phenomenon of short-lived chimera states
and their lifetime to be understood in a more satisfactory manner.
In particular, the transverse stability analysis has turned the previ-
ous numerical scaling law for the average lifetime of the short-lived
chimera states into an exact formula, with the proportional scaling
constant determined by the largest transverse Lyapunov exponent.

II. EMERGENCE OF SHORT-LIVED CHIMERA STATES: A

GENERAL SETTING

The paradigmatic system exhibiting chimera states, the classi-
cal Kuramoto model of N identical 2D rotators coupled on a circle,
has a translational symmetry: the system is invariant upon any spa-
tial displacement that is the integer multiple of the distance between
two adjacent oscillators. Chimera states are the result of spontaneous
breaking of this translational symmetry. To study the transverse
stability of chimera states, it is necessary to augment the phase-
space dimension of the system. This can be done by designating an
invariant subspace that hosts the classical N-dimensional Kuramoto
system with chimera states and introducing a subspace transverse to
the invariant subspace. In particular, let θi (i = 1, . . . , N) be the set
of angle variables describing the 2D rotators in the Kuramoto sys-
tem. The dynamical state in the invariant subspace can be denoted
as an N-dimensional column vector,

X ≡ (θ1, θ2, . . . , θN)T, (1)

where X ∈ RN and ()T denotes the transpose. The system equation
governing the evolution of X is

dX/dt = F(X), (2)

where F(X) denotes the nonlinear vector field. A transverse sub-
space can be introduced into the system, e.g., by imposing a reflec-
tion symmetry with respect to the invariant subspace. In particular,
let Y ∈ RN be the set of dynamical variables in the transverse sub-
space, which can be, e.g., a set of N independent angle variables, and
the invariant subspace is defined as Y = 0. The dimension of the full
phase space is now 2N, and the system equations are

dX/dt = F(X) + high order terms of Y, (3)

dY/dt = G(X, Y), (4)

where G(X, Y) is a nonlinear vector function of both X and Y. Since
Y = 0 is the invariant subspace, G(X, Y) must satisfy

G(X, 0) = 0.

Assume X exhibits a chimera state. Its transverse stability can be
determined by solving the following linear variational equation
governing the evolution of the infinitesimal transverse vector δY,

dδY/dt = J (X, Y = 0) · δY, (5)

where J (X, Y = 0) is the Jacobian matrix defined as

J (X, Y = 0) ≡
∂G

∂Y
|Y=0. (6)

Note that the partial derivatives in Eq. (5) are evaluated at the
invariant subspace Y = 0. In addition, since the Jacobian matrix
J (X, Y = 0) contains X, it is necessary to integrate Eqs. (2) and (5)
together to obtain δY(t).

The exponential growth rate of the length of the vector δY(t)
is the largest transverse Lyapunov exponent, denoted as 3⊥. For
3⊥ < 0, the chimera state in the invariant subspace is transversely
stable, and it will be a permissible state of the whole system because
Y = 0 remains to be a solution of Eqs. (3) and (4). However, if
3⊥ is positive, the chimera state in the invariant subspace is trans-
versely unstable. In this case, Y = 0, and thus, the chimera state in
the invariant subspace is no longer a solution of the whole system.
The original chimera state is destroyed.

From a practical point of view, if a chimera state is transversely
unstable, it will become short-lived, which can be understood, as
follows. Suppose the system is initialized in the chimera state in
the invariant subspace, and an infinitesimally small perturbation of
magnitude δ0 is applied to the state in the transverse direction. The
perturbation will grow as δ(t) = δ0e

3⊥t, as schematically illustrated
in Fig. 1. If δ(t) is still infinitesimal, the observable state of the system
will remain approximately a chimera state. Let ε be a small threshold
in δ(t) beyond which the state of the system can no longer be con-
sidered being confined to the vicinity of the invariant subspace. The
time it takes for this to occur is proportional to | ln δ0|. On average
(with respect to an ensemble of initial conditions in the invariant
subspace), the lifetime of the chimera state is given by

〈τ 〉 =
C(ε) − ln δ0

3⊥

, (7)

where C(ε) is a constant determined by an empirical threshold ε to
distinguish between a chimera and a non-chimera state. The obser-
vation is that, even if the transverse perturbation δ0 is reduced by
many orders of magnitude, the average lifetime of the chimera state
will be prolonged only incrementally. In this sense, the chimera state
is short-lived.

It should be noted that the concept of transverse Lya-
punov exponents is fundamental to a number of phenomena in
nonlinear dynamics, such as riddling72,73 and bubbling74 bifurca-
tions, synchronization75 (where the largest transverse Lyapunov
exponent is called the master-stability function76,77), and on–off
intermittency.78–81

III. SHORT-LIVED CHIMERA STATES IN A 3D

KURAMOTO MODEL

A. Kuramoto network of coupled 3D rotators and

calculation of the transverse Lyapunov exponent

In Ref. 82, a high-dimensional Kuramoto model of N coupled
oscillators was introduced, with the differential equation governing
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FIG. 1. Dynamical mechanism making a chimera state short-lived. The phase
space of the system is the direct product between an invariant subspace X and a
transverse subspace Y, where any initial condition taken from the invariant sub-
space will result in a dynamical state confined to it. There is a chimera state in
the invariant subspace. Initially, the system is in the chimera state, and a small
perturbation of magnitude δ0 is applied in the transverse direction. If the largest
transverse Lyapunov exponent 3⊥ is positive, the perturbation will grow expo-
nentially in time, destroying the chimera state in a finite time and making the
original state short-lived. The average lifetime of the chimera state depends on
the logarithm of δ0.

the ith oscillator given by

dσ i

dt
=

K

N

N
∑

j=1

[

σ j −
(

σ j · σ i

)

σ i

]

+ Wi · σ i, (8)

where the N oscillators are arranged on a ring; the state of the ith
oscillator is described by the D-dimensional unit vector σ i; Wi is
a real D × D antisymmetric matrix whose elements are determined
by the natural frequency of the oscillator, which provides a constant
bias to the dynamics of σ i; and K is the coupling parameter. In 2D,
the unit vector is σ i = (cos θi, sin θi), and the matrix Wi is

Wi =

(

0 ωi

−ωi 0

)

;

therefore, Eq. (8) reduces to the classic Kuramoto model. In the
context of chimera states, the oscillators are identical; therefore, the
matrix does not depend on the oscillator: Wi ≡ W for i = 1, . . . , N.

We focus on the 3D Kuramoto model as it is relevant to phys-
ical phenomena, such as flocking and swarming. In 3D, the unit
vector is given by

σ i = (cos γi cos θi, cos γi sin θi, sin γi)
T , (9)

where −π/2 ≤ γi ≤ π/2 and 0 ≤ θi < 2π are the polar (latitudinal)
and azimuthal (longitudinal) angles of the ith rotator, respectively.
Unlike in 2D where a rotation can be described by a scalar quan-
tity—the frequency, in 3D, a rotation vector ωi is required. Again,
for chimera states, the oscillators are identical; therefore, ωi ≡ ω for
i = 1, . . . , N. In this case, the product W · σ i in Eq. (8) becomes82

W · σ i = ω × σ i. (10)

Equation (8) describes a system of globally (all-to-all) coupled oscil-
lators. A more realistic scenario is that the strength of coupling

between any two oscillators decreases with their distance. In Ref. 61,
the following generalized model was introduced:

dσ i

dt
=

1

N

N
∑

j=1

G
(

i − j
) [

T · σ j −
(

(T · σ j) · σ i

)

σ i

]

+ W · σ i, (11)

where G
(

i − j
)

is a distance-dependent coupling function and
Ti is a D × D isometric matrix with a phase lag. A simple form of
G

(

i − j
)

is61

G
(

i − j
)

= 1 + A cos
[

2π
(

i − j
)

/N
]

, (12)

with 0 ≤ A ≤ 1 being a coupling parameter.
As described in Sec. II, the general setting of our study of

chimera-state lifetime requires an invariant subspace in the full
phase space. From the 3D Kuramoto model [Eq. (8) for D = 3], a
convenient choice is to make the longitudinal angle at the equator of
each 3D rotator defined by zero latitudinal angle (γi = 0) as a coor-
dinate of the invariant subspace so that it hosts a chimera state from
the classical 2D Kuramoto model. This requirement can be met by
properly choosing the isometric matrix T as

T =





cos α sin α 0
− sin α cos α 0

0 0 −1



 , (13)

where the upper left two-by-two block represents a 2D rotation by
the angle α about the z axis and the choice of the element T33 = −1
introduces a reflection symmetry about the equator, thereby guar-
anteeing that γi = 0 for all i = 1, . . . , N constitutes an invariant sub-
space. (The parameter α was introduced in the original derivation of
the classical Kuramoto model—see Appendix A.)

To explicitly demonstrate the existence of the invariant sub-
space defined by γi = 0 (i = 1, . . . , N), we make use of the position-
dependent order parameter

ρ i = N−1

N
∑

j=1

G
(

i − j
)

σ j, (14)

based on which Eq. (11) can be written as61

dσ i/dt = Tρ i −
(

Tρ i · σ i

)

σ i + W · σ i. (15)

In the spherical coordinate, the order parameter ρ i can be written as

ρ i = Ri (cos 0i cos 2i, cos 0i sin 2i, sin 0i)
T , (16)

where Ri is the magnitude and 0i and 2i are the latitudinal and
longitudinal angles, respectively, of ρ i. By choosing a reference
frame according to the rotation vector ω, the natural-frequency term
W · σ i can be eliminated, leading to

dσ i/dt = Tρ i −
(

Tρ i · σ i

)

σ i. (17)

In the spherical coordinates, Eq. (17) can be explicitly expressed as
(Appendix B)

dθi

dt
= −Ri cos (0i) sin (θi − 2i + α)/ cos (γi), (18)
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FIG. 2. An example of a short-lived chimera state in the generalized Kuramoto
model of coupled 3D rotators. (a) Time evolution of g0, the relative size of the group
of coherent rotators for N = 256, A = 0.7, and α = π/2 − 0.04, where g0 ≈

constant between 0 and 1 signifies the occurrence of a chimera state. The lifetime
of this chimera state is τ ≈ 500. (b) Exponential growth of the latitudinal compo-
nents σ z of the rotators from a random set of infinitesimal initial values. The aver-
age absolute value of the z-components 〈|σ z|〉 reaching the order of magnitude
of unity marks the complete destruction of the chimera state. (c) The final “quasi-
coherent” state of the system in the spherical representation after the destruction
of the chimera state, where all rotators are relatively coherent. Each dot repre-
sents the state σ = (σ x , σ y , σ z) of one rotator. Since |σ | = 1, all the rotators
are on the spherical surface S

2. The colors of the dots are assigned according to
their spatial locations in the ring structure defined in Eq. (12), which determines
their relative distances in the coupling term. Dots with similar colors are closer to
each other and have stronger coupling among them. At a specific time point, most
rotators cluster in a small region on the spherical surface, while other rotators form
several rings surrounding the sphere. Each rotator does not always belong to the
cluster or the rings but travels between them repeatedly. Another possible final
state in this system is a globally synchronized state.

dγi

dt
= −Ri [sin (γi) cos (0i) cos (θi − 2i + α) + cos (γi) sin (0i)] .

(19)

For γi = 0 (i = 1, . . . , N), we have 0i = 0; therefore, the right-hand
side of Eq. (19) is zero and γi(t) = 0 is a solution of the system. As
a result, γi = 0 (i = 1, . . . , N) is an invariant subspace in which the

FIG. 3. Dependence of the average lifetime of the transient chimera states on the
magnitude of the transverse perturbation. (a)–(d) The relation between ∠τ 〉 and
ln δ0 for A = 0.5, 0.6, 0.7, and 0.8, respectively. N = 400 and α = π/2 − 0.05.
The plot is robustly linear in all cases.

dynamics are governed by

dθi

dt
= −Ri sin (θi − 2i + α), (20)

which is the classical 2D Kuramoto model in terms of the order
parameter and permits long-lived chimera states.

Suppose a chimera state has arisen in the invariant subspace,
the corresponding transverse Lyapunov exponents can be calculated
from the following set of variational equations (Appendix C):

dδγi

dt
= −Ri cos(θi − 2i + α)δγi −

1

N

N
∑

k=1

G(i − k)δγk (21)

for i = 1, . . . , N, where the dynamical variables θi and 2i are
obtained by integrating Eq. (20). The exponential growth rate of
the magnitude of the perturbation vector gives the largest transverse
Lyapunov exponent 3⊥.

B. Demonstration of short-lived chimera states

We use the relative size g0 of the coherence region in the
space to determine if a chimera state has occurred.49 When the sys-
tem exhibits a chimera state, the value of g0 will be approximately
constant with time. Emergence of fluctuations in the time evolu-
tion of g0 signifies deterioration and destruction of the chimera
state. Figure 2(a) presents one example for N = 256, A = 0.7, and
α = π/2 − 0.04, where the system is initiated from a 2D equatorial
chimera state defined by γi = 0 (i = 1, . . . , N). A small random per-
turbation δ0 = 10−10 is then applied. To apply this perturbation to
γi, we first generate δγi (i = 1, . . . , N) by i.i.d. standard Gaussian
distribution. We then renormalize these rotator-wise perturbations
δγi following

δ0 =

√

√

√

√

N
∑

i=1

(δγi)2. (22)
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FIG. 4. Validation of the exact formula for the average lifetime of the transient
chimera states. Equation (7) stipulates that the proportional coefficient between
∠τ 〉 and − ln δ0 is the inverse of the largest transverse Lyapunov exponent 3⊥,
providing a way to calculate3⊥ from the linear plots in Fig. 3 (red crosses). Alter-
natively, 3⊥ can be calculated from the variational equation [Eq. (21)] together
with the equation governing the chimera state in the invariant subspace (blue filled
circles). The values of3⊥ obtained from the two approaches agree well with each
other.

It can be seen from Fig. 2(a) that g0 remains to be approximately
constant for t . 500 before exhibiting significant fluctuations. The
lifetime of this chimera state is then estimated to be about 500.
The gradual destruction of the chimera state can also be seen from
Fig. 2(b), where the latitudinal angles of the rotators grow to their
full range in t ≈ 500. After the disappearance of the chimera state,
the system can evolve into two different types of states. One is a com-
pletely synchronized state of all the rotators. Another is a relatively
coherent yet not completely synchronized state, as exemplified in
Fig. 2(c), where many rotators concentrate in a small region on the
S

2 spherical surface of σ , while other rotators form rings around the
sphere. Rotators are not fixed to a cluster or a ring. Alternatively,
they travel between these two types of regions in time.

To verify the main result [Eq. (7)], we carry out direct numer-
ical simulations to calculate the relation between the average tran-
sient lifetime of the chimera state and the logarithm of the magni-
tude of the transverse perturbation ln δ0 for a set of parameter values.
Four representative examples are shown in Figs. 3(a)–3(d), for A
= 0.5, 0.6, 0.7, and 0.8, respectively, and α = π/2 − 0.05. In all four
cases, the relation between 〈τ 〉 and ln δ0 is linear, as predicted. The
slope of the linear fit determines the transverse Lyapunov exponent
3⊥. Alternatively, the exponent can be calculated by integrating
Eqs. (20) and (21). Figure 4 shows the values of 3⊥ calculated from
the two different ways for a number of parameter values, which agree
with each other quite well.

IV. DISCUSSION

Research on chimera states in the past two decades revealed
the ubiquity of these dynamical states in systems of coupled iden-
tical nonlinear oscillators. A vast majority of these works were
done using the classical Kuramoto model of 2D rotators, where

it was established that the chimera states are “long-lived” in the
sense that their lifetime increases exponentially with the system size.
Short-lived chimera states do arise by the two known scenarios:
(1) there is noise71 and (2) the dimension of the individual rotators
is more than two.61 In both cases, a scaling law was found, where the
average lifetime of the transient chimera states is proportional to
the logarithm of the perturbation strength (noise amplitude71 or the
magnitude of the dimension-augmenting perturbation61). The scal-
ing relation indicates that even when the perturbation is weakened
by many orders of magnitude, the transient lifetime will increase
only incrementally. While the scaling law provides a quantitative
understanding of the short-lived transient nature of the chimera
states, it is what it is—a scaling law with a free proportional constant.

We have reexamined the short-lived chimera states using a gen-
eralized Kuramoto model of 3D rotators. The system possesses an
invariant subspace in which the dynamics are those of the classi-
cal Kuramoto model of 2D rotators in the longitudinal angles so
that long-lived chimera states can arise. The realization that any
dimension-augmenting perturbation in the latitudinal angles, in
fact, transverse to the invariant subspace, renders appropriate an
understanding of the short-lived chimera states in terms of their
transverse stability characterized by the largest transverse Lyapunov
exponent. For the generalized 3D Kuramoto model, we have derived
a set of variational equations for calculating this Lyapunov expo-
nent. This transverse-stability analysis has straightforwardly turned
the previous numerical scaling law of the average transient lifetime
into an exact formula. In particular, the “free” proportional con-
stant in the scaling law can now be determined exactly by the largest
transverse Lyapunov exponent.
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APPENDIX A: ORIGIN OF PHASE LAG α IN EQ. (13)

The classical Kuramoto model was derived from the system of
coupled one-dimensional complex Ginzburg–Landau equation. In
particular, in continuous space and time, the spatiotemporal phase
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variable φ(x, t) obeys the following equation:2

∂

∂t
φ(x, t) = ω −

∫

G(x − x′) sin
[

φ(x, t) − φ(x′, t) + α
]

dx′, (A1)

where the time scale has been set to normalize the coupling, ω is
the rescaled natural frequency, G(x − x′) is the coupling function,
and the phase constant α is related to the parameters a and b in the
complex Ginzburg–Landau equation as

tan α =
b − a

1 + ab
(A2)

for α(b − a) > 0.

APPENDIX B: DERIVATION OF EQS. (18) AND (19)

The left-hand side of Eq. (17) is

dσ/dt =





− sin (γi) cos (θi)dγ /dt − cos (γi) sin (θi)dθ/dt
cos (γi) cos (θi)dθ/dt − sin (γi) sin (θi)dγ /dt

cos (γi)dγ /dt





≡





dσi1/dt
dσi2/dt
dσi3/dt



 . (B1)

The right-hand side of Eq. (17) is a vector v with the following
components:

v1/Ri = cos(0i)
[

cos(α − 2i) − cos2(γi) cos(θi) cos(α + θi − 2i)
]

+ sin(γ ) cos(γ ) sin(0) cos(θ), (B2)

v2/Ri = sin(γi) cos(γi) sin(0i) sin(θi)

− cos(0i)
[

cos2(γi) sin(θi) cos(α + θi − 2i)

+ sin(α) cos(2i) − cos(α) sin(2i)]

+ sin(θi)(cos(α − 0i + γi) sin(θi) sin(2i)

− cos(θi) cos(2i)) sin(γi), (B3)

v3/Ri = − cos(γi)(sin(γi) cos(0i) cos(θi − 2i + α)

+ cos(γi) sin(0i)). (B4)

Using

sin (θi)
dσi1

dt
− cos (θi)

dσi2

dt
= − cos (γi)

dθi

dt
, (B5)

we get Eq. (18). Equating dσi3/dt to v3 gives Eq. (19).

APPENDIX C: DERIVATION OF EQ. (21)

Consider an infinitesimal variation of the set of transverse
dynamical variables: (δγ1, . . . , δγN)T from the invariant subspace.
The differential equation governing the evolution of δγi evaluated
at (γ1, . . . , γN) = (0, . . . , 0) is

dδγi

dt
= −Ri[cos(θi − 2i + α)δγi + δ0i], (C1)

where

δ0i =

N
∑

j=1

∂0i

∂γj

δγj.

From the definition of the order parameter [Eq. (14)], we have

tan 0i =

1
N

∑N
j=1 G(i − j) cos γi

( 1
N

∑N
j=1 G(i − j) cos θj)

2
+ ( 1

N

∑N
j=1 G(i − j) sin θj)

2
.

(C2)
We get

∂0i

∂γk

=
G(i − k)

N
√

Q2
1 + Q2

2

, (C3)

where

Q1 ≡
1

N

N
∑

j=1

G(i − j) cos θj and Q2 ≡
1

N

N
∑

j=1

G(i − j) sin θj.

In the invariant subspace, we have

R2
i =





1

N

N
∑

j=1

G(i − j) cos γj cos θj





2

+





1

N

N
∑

j=1

G(i − j) cos γj sin θj





2

+





1

N

N
∑

j=1

G(i − j) sin γj





2

=





1

N

N
∑

j=1

G(i − j) cos θj





2

+





1

N

N
∑

j=1

G(i − j) sin θj





2

= Q2
1 + Q2

2;

therefore,

∂0i

∂γk

=
G(i − k)

NRi

. (C4)

Substituting this into Eq. (C1) leads to Eq. (21).
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