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ABSTRACT

Boolean networks introduced by Kauffman, originally intended as a prototypical model for gaining insights into gene regulatory dynam-
ics, have become a paradigm for understanding a variety of complex systems described by binary state variables. However, there are
situations, e.g., in biology, where a binary state description of the underlying dynamical system is inadequate. We propose random
ternary networks and investigate the general dynamical properties associated with the ternary discretization of the variables. We find
that the ternary dynamics can be either ordered or disordered with a positive Lyapunov exponent, and the boundary between them in
the parameter space can be determined analytically. A dynamical event that is key to determining the boundary is the emergence of an
additional fixed point for which we provide numerical verification. We also find that the nodes playing a pivotal role in shaping the
system dynamics have characteristically distinct behaviors in different regions of the parameter space, and, remarkably, the boundary
between these regions coincides with that separating the ordered and disordered dynamics. Overall, our framework of ternary networks
significantly broadens the classical Boolean paradigm by enabling a quantitative description of richer and more complex dynamical
behaviors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097874

A celebrated paradigm in biological science is Boolean networks
first articulated by Kauffman in 1969 as models of genetic regula-
tory networks. A Boolean network is a discrete-time dynamical
system with a set of discrete state variables, where each vari-
able is associated with a node in the network and a node takes
inputs from a subset of nodes in the network to generate an out-
put through a nonlinear Boolean function of the subset of input
variables. The Boolean functions are node-dependent, and they
determine the connectivity or the topology of the network. Given
the state of the network at the present time, the Boolean func-
tions determine the network state at the next time step, which
can be done synchronously or asynchronously. Since their intro-
duction more than 50 years ago, Boolean networks have become
a paradigm not only in biology for gaining deep quantitative
insights into the workings of gene regulatory networks and eco-
logical systems, but also in a broad range of fields for under-
standing a variety of complex dynamical behaviors. Yet, in spite

of the great success of the Boolean network paradigm, there are
situations, e.g., in biology, where a binary description is fun-
damentally inadequate, calling for the study of discrete-valued
networked dynamical systems beyond the Boolean paradigm.
Ternary networks, dynamical systems with three possible state
values, have attracted some recent attention, but a general anal-
ysis of the dynamical properties of those networks is lacking. This
article introduces a random ternary-network model and inves-
tigates issues, such as the emergence of ordered and disordered
states, critical transitions, Lyapunov exponent, the nodes engaged
in the dynamical processes, the associated scaling laws, and scal-
ability. The phenomena are understood analytically and veri-
fied numerically. The ternary-network framework goes beyond
the classical Boolean networks with significantly richer dynam-
ical behaviors and represents a new “playground” to explore,
understand, and exploit complex biological, physical, and social
phenomena.
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I. INTRODUCTION

A paradigm enabling a quantitative description of many com-
plex biological phenomena is random Boolean networks intro-
duced by Kauffman1,2 in 1969. Since then, these networks have
been extended to other fields to investigate diverse dynamical
behaviors, such as percolation,3 evolution,4 and even certain social
phenomena.5,6 A random Kauffman Boolean network consists of N
nodes, where each node can be in one of two possible states: zero
and one. The state of an individual node is determined by the sig-
nals from K randomly selected nodes in the network, which are
fixed during the dynamical evolution. The mapping functions from
these nodes are chosen randomly according to a global bias param-
eter p—the probability of a node in the state one. The statistical and
dynamical behaviors of a Boolean network are thus determined by
three parameters: (N, K, p). In the past few decades, random Boolean
networks have been studied to understand a variety of dynamical
behaviors in complex systems, such as patterns, criticality, phase
transitions, and stability.7–14

The core of Boolean dynamics is the updating rule; i.e.,
how the values of the nodes are updated at the next time step
from the inputs at the current time step. In Kauffman’s original
formulation,1,2 all nodes update their values synchronously, leading
to synchronous Boolean networks. To accommodate more realistic
circumstances, modified updating rules have been introduced, such
as asynchronous, probabilistic, or threshold based strategies.15–17 In
spite of the astounding success of the classical Kauffman Boolean
networks in describing and understanding a large variety of com-
plex systems, there are situations where to adequately describe the
dynamics requires modifications beyond improving the updating
rules, such as making the network weighted or designating a new
state to the system.18–20 In fact, introducing additional dynamical
states into the classical Boolean paradigm becomes necessary. In
this regard, even the presence of a third state can potentially greatly
expand the range of applicability of discrete-state dynamical sys-
tems as the resulting ternary network would naturally generate a
much richer variety of dynamical behaviors beyond those enabled
by the Boolean networks. Yet, in spite of some relevant works, such
as the ternarization of musical rhythms,21 sparse and ternary deep
neural networks for efficient computation and memory,22–27 there
is little work in the current literature on the nonlinear dynam-
ics of ternary networks, calling for a systematic study of these
discrete-state dynamical networks.

In this paper, we generalize the classical Boolean networks
to articulate a random network model with discrete ternary state
variables and investigate the general dynamical properties of the
resulting networks. Depending on the parameter values, a ternary
network can deliver ordered stable dynamical behaviors, such as
those corresponding to a fixed point or a short periodic orbit, or it
can generate chaotic disordered states. We introduce a Hamming-
distance based Lyapunov exponent to characterize the evolution
between two nearby network state vectors, where a positive (nega-
tive) value of the exponent signifies disordered (ordered) dynamics.
Another focus of our study is to identify the regions in the param-
eter space, which generate the ordered or disordered dynamics.
Our main approach is to develop an analytic theory to quantita-
tively describe the boundaries separating the ordered and disordered
regions. From the point of view of control and scalability, we find

that, when a disordered state emerges, the number of responsible
nodes engaged in this process can be on the same order of magnitude
as the system size, but a small fraction of nodes are already sufficient
to generate a globally ordered state. An apparently abrupt increase
in the number of nodes engaged in generating the global dynami-
cal state in the network is thus a strong signature of the transition
from an ordered to a disordered state, and this provides another cri-
terion for determining the boundary between the two distinct types
of states in the parameter space. Remarkably, at the critical transi-
tion point, the number of engaged nodes follows a scaling relation
with the system size. Taken together, our ternary networks pro-
vide a framework that makes possible a quantitative description of
richer and more complex dynamical behaviors beyond the classical
Boolean paradigm.

II. CLASSICAL KAUFFMAN BOOLEAN NETWORKS AND

PROPOSED TERNARY GENERALIZATION

A. Classical Kauffman Boolean networks

A classical Kauffman Boolean network is a directed network
of N nodes, where each node receives inputs from K nodes selected
randomly from the remaining N − 1 nodes. There are thus two basic
structural parameters: N and K; therefore, the classical Kauffman
model is also named as the N-K model. In general, the set of K
nodes that provide the signals to a node is fixed during the dynami-
cal evolution of the network. The distribution of the in-degree kin,
i.e., the number of inputs for a node, can be written as Pin(kin)

= δkin ,K, where δ is the Kronecker symbol that returns one if kin = K
and zero otherwise. The distribution of the out-degree kout, i.e., the
number of outputs from a node, is Poisson,

Pout(kout) = e−KKkout

kout!
,

with mean and variance K. The state of node i at time t + 1, denoted
as si(t + 1), is completely determined by its K inputs at time t,

si(t + 1) = fi(si1(t), si2(t), . . . , siK(t)), (1)

where f is the so-called Boolean mapping function, which acts as a
mapping table {0, 1}K 7→ {0, 1}. The K input variables form 2K input

patterns; therefore, 22K
possible mapping functions can be assigned

to the nodes, among which half will output a one and another half
will yield a zero.

The third parameter in the Kauffman model is the bias p. Out

of the 22K
available mapping functions, half will yield one and the

other half will yield zero. The bias p is the probability that a map-
ping function yielding one will be chosen. Thus, for p 6= 1/2, the

22K
possible functions are not uniformly assigned to the nodes. The

bias parameter p, the two basic structural parameters N and K, and
the corresponding updating rules completely determine the dynam-
ical evolution of the classical Kauffman Boolean network. In general,
the statistical properties of the updating rules are controlled by the
bias p, and all the nodes update their values simultaneously.1,2 In
the absence of noise or stochastic disturbances, the Kauffman net-
work is a purely deterministic dynamical system. For any given
initial state in the {0, 1}N state space of size 2N, the trajectory is
deterministic. Due to the finite size of the state space, a dynamical
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trajectory approaches either a fixed point (a steady state) or a limit
cycle exhibiting periodic oscillations. In the latter case, if the period
is long, in any time interval that is much less than the period, the tra-
jectory behaves as if it were disordered or chaotic—a situation that
is common in the infinite system limit N → ∞.

An issue concerning the two distinct dynamical states is their
stability against random perturbations. For example, consider a
binary vector of size N and its slightly perturbed version in which a
few bits are different. Under the same updating rules, the difference
can decay rapidly to zero or spread throughout the whole system,
corresponding, respectively, to the state being stable or unstable. A
convenient way to characterize the difference between two binary
states is the normalized Hamming distance between the two states,
which is the number of bits with different values normalized by the
length N of the states,

d(s1, s2) = 1 − 1

N

N
∑

i

δs1i
,s2i

, (2)

where s1 and s2 are two states of length N and δs1i
,s2i

= 1 for s1i
= s2i

and zero otherwise. Note that the δ-operation corresponds to the
Not Exclusive OR (XNOR, �) operator in the Boolean context. Typi-
cally, an initially nonzero distance d will either decay to zero or reach
a finite value, where the former situation is an ordered/frozen phase
while the latter corresponds to a disordered/chaotic phase.28,29

It is worth emphasizing that, because the state space is finite, a
classical Kauffman network has no true chaos. Nonetheless, a short-
term chaotic-like behavior can arise for a sufficiently long periodic
orbit, especially for large systems. In fact, for both ordered and dis-
ordered states, the evolution of the separation between two nearby
trajectories can be calculated in a finite time interval, leading to a
quantity similar to the largest Lyapunov exponent for characterizing
the nature of the trajectory, i.e., ordered or disordered.10 Numer-
ous previous studies7,9,10,12,28,30 have established the critical condition
under which a disordered phase can emerge: 2p(1 − p)K > 1 in the
large N limit. This provides a convenient criterion to determine if the
dynamical state of a Kauffman network is ordered or disordered.

B. Proposed ternary-network model

For a multi-valued discrete system, the state space is dramati-
cally expanded from that of the classical two-state Boolean network.
For example, if each node can have three distinct states, the total
number of states will be 3N. An appealing feature of the Boolean
networks, because of the binary states, is their natural correspon-
dence to logic systems. For a ternary system, this correspondence
no longer exists. As a result, the arithmetical operations in a con-
ventional logic do not apply to a ternary system. For this reason,
we denote the ternary values as {α, β , γ } instead of {1, 2, 3}. For a
ternary network of N nodes with K inputs to each node, the states
can still be updated synchronously for all the nodes. The number of

mapping functions for given K is now 33K
. To characterize the prob-

ability for each ternary value to be generated, in general, requires two
independent parameters. In particular, a bias parameter set (p, q, r)
is required, where p (q, r) is the probability that the chosen mapping
functions generate the value α (β , γ ), where p + q + r = 1. Con-
cepts in the classical Boolean systems, such as trajectory, Hamming

distance, fixed points, and limit cycles, can naturally be carried over
into our ternary-network framework.

Simulation steps of the ternary-network dynamics are listed in
Appendix A.

III. RESULTS

A. Phase diagram and transition between ordered

and disordered dynamics for constrained biases

We first consider the special case of a constrained bias set given
by (p, q, q) with q = (1 − p)/2. In this case, the network dynamics
are controlled by a single parameter, p, the probability that the value
α will be generated by choosing properly the mapping functions of
the nodes. Similar to the classical Boolean model, the ternary sys-
tem in this case has three parameters: (N, K, p). Using the annealed
approximation,7 we derive the following iterative formula for the
normalized Hamming distance d(t) between the two states:

d(t + 1) = (1 − p)(3p + 1)

2
{1 − [1 − d(t)]K}. (3)

(A detailed derivation is presented in Appendix B.)
Figure 1 shows some representative mapping functions of

d(t + 1) vs d(t) for K = 2 and a number of p values—the so-called
Derrida curves.7 These distance maps allow the dynamics of the
Hamming distance to be analyzed. For example, the fixed point for
the normalized Hamming distance, defined as d(t + 1) = d(t), can
be determined by the intersection point of the Derrida curves with
the line d(t + 1) = d(t). A fixed point will be stable if the absolute
value of the slope is less than one; otherwise, it is unstable. Figure 1
indicates that, depending on the value of p, there can be either one or
two fixed points. In particular, from Eq. (3), there is only one fixed
point at 0 if dd(t + 1)/dd(t)|d(t)=0 < 1, which yields

(1 − p)(3p + 1)K/2 < 1. (4)

For K = 2, the condition becomes p > 2/3. In this case, zero is the
only fixed point, and it is stable. As a result, a random initial per-
turbation will decay with time, leading to d(t) = 0 [in which the two
states s1(t) and s2(t) are identical]. As p decreases through pc = 2/3,
a tangent bifurcation occurs, after which two crossing points exist:
zero and d∗. In this case, as shown by the curves of p = 1/3 and
p = 1/2 in Fig. 1, the fixed point d(t) = 0 is unstable, but d∗ is sta-
ble. In the s space, the two states s1(t) and s2(t) evolve with their
mean distance being d∗.

The emergence of the nonzero stable fixed point d∗ is strongly
indicative of the chaotic nature of the transient dynamics in the
ternary network. In particular, when d(t) = 0 is the only stable fixed
point in the Derrida plot in Fig. 1, a perturbation to a typical ini-
tial state, say, s1(0) and s2(0), will lead to identical state evolutions
of the ternary network: s1(t) = s2(t) for large t. Two distinct cases
can arise. The first is when the two initial states evolve to the same
fixed point attractor s∗. The basin of this attractor can be large in
the sense that, for any two states chosen from this basin as the ini-
tial states, their distance will go to zero as they both approach s∗. An
example of this case is shown in Fig. 2(a), where the upper panel dis-
plays the evolution of the normalized Hamming distance d(t) and
the lower panel presents the evolution of the network states. The
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FIG. 1. Representative mapping functions of the normalized Hamming distance
d(t + 1) vs d(t) for a number of p values as determined by Eq. (3) for K = 2.
The gray dashed diagonal line is d(t + 1) = d(t).

initial distance is d(0) = 0.5 in which half of the nodes have differ-
ent initial values. This is not a small perturbation, but the distance
decreases quickly to zero. This case is quite common. The second
case is when the attractor is a periodic orbit in that both s1(t) and
s2(t) fall on this orbit and evolve synchronously with s1(t) = s2(t),
as shown in Fig. 2(b). Note that here, the period is typically short.
For example, when s1(0) and s2(0) yield the same s1(t) = s2(t) on a
periodic orbit of period T, then s1(0) and s2(ti) for ti = 1, . . . , T − 1
will lead to asynchronous evolution of s1(t) and s2(t) on the same
orbit but with a nonzero distance d(t). When T is small, the prob-
ability of synchronous evolution yielding d(t) = 0 is high, but for
large T, the asynchronous evolution dominates, yielding a nonzero
distance d(t). In fact, this is what happens about the transition point
pc = 2/3. Figure 2(c) shows an example with a nonzero d∗, e.g.,
the corresponding network state vectors s1 and s2 of length N fall
onto the same periodic orbit of T = 21 but with the lag of one time
step, and their distance d(t) is not a constant but oscillates about
d∗. It can also occur that s1 and s2 fall onto different attractors,
with their mean normalized Hamming distance about d∗, as shown
in Fig. 2(d). Note that in Figs. 2(c) and 2(d), short periodic orbits
are chosen deliberately for visualization, whereas typical periods are
much longer.

The key observation is that, for a finite distance d∗, in the
N → ∞ limit, given an initial state s(0), a small initial perturbation
d(0) ∼ 0 will grow exponentially, mimicking the exponential diver-
gence of nearby orbits in chaotic systems. This leads to disordered
dynamics of the ternary network. Note that “disordered” dynam-
ics can be inferred from two facts in the N → ∞ limit: one is that
the transient time is infinitely long and the other is that even in the
steady state, the periods of most periodic orbits diverge. In a finite
system, the transient behavior of an exponential increase in d(t) can

FIG. 2. Evolution of the normalized Hamming distance and the correspond-
ing dynamical patterns of the steady periodic orbit structure. The ternary-net-
work parameters are N = 100 and K = 2. From (a) to (d), the parameters are
p = 5/6, 3/4, 3/5, 1/2 and d(0) = 0.5, 0.5, 0.1, 0.1, respectively. The values
of the two state vectors s1(t) and s2(t) of 15 nodes (ordinate) are plotted in a
time window of the same length as that in the corresponding upper panel, and
the three state values are distinguished by the grayness. The colors in the lower
panel of (b)–(d) mark the period T of the state evolution. Note that in (c) and (d),
a transient time of 2000 steps has been disregarded, and short periodic orbits are
chosen deliberately for visualization, although much longer periods are dominant.

be short, resulting in bounded oscillatory dynamics of the ternary
network.

The possible occurrence of disordered dynamics in the ternary
network for K = 2 is surprising because this behavior is in sharp
contrast to the Boolean logic dynamics where the system will remain
in the ordered state with limt→∞ d(t) = 0 for K = 2. (Recall that for
the Boolean system, the condition under which a disordered state
can arise is 2p(1 − p)K > 1, but for K = 2, no possible value of
0 ≤ p ≤ 1 can be found to satisfy this inequality.) To further ver-
ify this, we specify pairs of random states s1 and s2 with fixed initial
distance d(0) = 0.1 and calculate their final distance vs p after evolv-
ing the ternary-network dynamics for time t, as shown in Fig. 3(a),
where the network size is N = 500. The solid black curve is the solu-
tion d∗ by setting d(t + 1) = d(t) in Eq. (3). The data points are
the simulation results under three different simulation times t, and
each point is an ensemble average of 500 runs. It can be seen that,
as t increases, the agreement between the simulation and theoret-
ical results becomes better. In fact, the data points at t = 100 and
t = 1000 almost overlap on each other, indicating that t = 100 is
sufficient for the system to reach the final state. Figure 3(a) shows
that the transition from disordered to ordered dynamics occurs at
the predicted critical point pc = 2/3, beyond which d∗ becomes
essentially zero. Figure 3(b) shows the average period 〈T〉 laying

Chaos 32, 083117 (2022); doi: 10.1063/5.0097874 32, 083117-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) Asymptotic normalized Hamming distance vs p. The black solid curve
is the nonzero solution d∗ of d(t + 1) = d(t). The initial distance is d(0) = 0.1.
Three simulation times are used: t = 10, 100, and 1000, as marked by circles,
triangles, and squares, respectively. (b) Scattered plot of the period of the net-
work state s(t) and the corresponding mean value. The scattered data points
are broadened in the p direction for better visualization. A maximal value of
Tcut = 50 000 is set, and if the period T is larger than Tcut, it is set to Tcut. The
colors encode the fractions of the data points larger than Tcut. The gray shaded
region specifies the p interval in which disordered dynamics arise. The network
size is N = 500, and 500 random realizations are used for statistics.

over the scattered plot of the periods T of the ternary system in the
steady state vs bias p. It is clear that in the ordered region p > 2/3,
〈T〉 is in the order of 1, which is mainly the fixed point attrac-
tor. Across the transition point pc = 2/3 to the disordered region,
〈T〉 increases rapidly for several orders. Here, for networks of size
N = 500, a Tcut = 50 000 is set. It can be seen that in the disordered
region, a typical period of the periodic orbits is already larger than
Tcut. As the period 〈T〉 becomes so large, the dynamics is practically
disordered.

To understand the emergence of disordered dynamics from a
global point of view, we investigate the structure of the parame-
ter plane (p, K), or the phase diagram, for fixed network size N.
Figure 4 depicts the parameter regions for disordered and ordered
dynamics, where the solid black curve as determined by Eq. (4)
specifies the boundary separating the two regions. To demonstrate
that a characteristic change in the network dynamics will occur
crossing the boundary, we fix K = 2 and choose four values of p
across the boundary: two on the left and two on the right side of

FIG. 4. Phase diagram in the parameter plane (p, K) and distinct spatiotempo-
ral patterns of dynamical evolution. The critical curve in the parameter plane as
determined by Eq. (4) separates a parameter plane into two distinct regions with
ordered and disordered dynamics, respectively. The four illustrative patterns of
spatiotemporal dynamical evolution in the insets are generated for N = 100 and
K = 2, where the value of the bias parameter p for each case is indicated at
the top of the corresponding inset. In each inset, the horizontal and vertical axes
denote time t in the range 0 ≤ t ≤ 100 and the index of the nodes in the ternary
network in the range from 1 to N, respectively. The three possible values of the
nodal dynamical state are distinguished by the depth of the color in each inset.

the boundary. The respective spatiotemporal patterns of dynami-
cal evolution are shown in the insets, with the corresponding value
of p specified at the top of each inset. In each case, the spatiotem-
poral evolution pattern starts from a random initial state, and the
values of the ternary nodal states are distinguished by the color
depth. For the two p values in the ordered region (the blue and
green dots), the corresponding patterns become regular after an
initial transient phase of disordered dynamics, where the transient
is longer the closer the parameter value is to the boundary (the
green dot and green evolution pattern). For the two p values to
the left of the boundary (the yellow and red dots), the associated
dynamical evolution patterns are persistently irregular. In prin-
ciple, the nonlinear map [Eq. (3)] is valid only in the N → ∞
limit; therefore, for a finite system, the dynamical behavior near
the boundary in the ordered region (e.g., the green dot) is not
strictly the fixed point solution of Eq. (3), especially in a finite time.
However, the overall behavior of transition between the ordered
and disordered dynamics as predicted by Eqs. (3) and (4) agrees
well with that calculated from the direct simulation of the ternary
network.

Note that the boundary or the critical curve in the (p, K) plane
reaches the minimal value in K (3/2) for p = 1/3. As a result, for
K < 3/2, disordered dynamics are ruled out. For large values of K,
the critical transition point in p can be approximately determined by
the relation pc = [1 + √

4 − 6/K]/3, where ordered and disordered
dynamics arise for p > pc and p < pc, respectively. For K � 1, the
value of pc is close to one; therefore, disordered dynamics prevail for
almost all values of p.
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B. Phase diagram and spatiotemporal dynamics for

general biases

We consider the general case with the bias set (p, q, r) with
the normalization p + q + r = 1. To study the parameter space, it is
convenient to use the triangular ternary representation, as shown in
Fig. 5 and explained in its caption, where all allowed combinations of
(p, q, r) are confined within the equilateral triangle. Specifically, for
each point in the triangle, the values of (p, q, r) can be found from
the cross points following the gray thick dashed lines to the bound-
ary. We are able to derive a similar equation to Eq. (3) to describe
the dynamical evolution of the normalized Hamming distance,

d(t + 1) = 2(1 − p2 − q2 − r2 − pq − qr − rp){1 − [1 − d(t)]K}.
(5)

The boundary separating the disordered and ordered regions in the
triangular parameter space in Fig. 5 is determined by

p2 + q2 + r2 + pq + qr + rp = 1 − 1

2K
, (6)

which, for any given K value, generates a circle in the triangular
ternary parameter space, as shown in Fig. 5 by a series of circu-
lar boundaries for different K values. For any circular boundary,
the inner and outer regions are for disordered and ordered states,
respectively. A larger value of K leads to a larger circle. The red cir-
cle for K = 2 is exactly tangent to the triangular sides. Along each
side of the triangle, one of the bias parameters is zero, e.g., r = 0 and
p + q = 1; therefore, it represents the degenerate case of the classical
Boolean model. For example, with p + q = 1, Eq. (6) can be fur-
ther simplified as p(1 − p) = 1/(2K), which is exactly the formula
determining the boundary between disordered and ordered dynam-
ics in a classical Boolean network. Consequently, for K = 2, since
the circle is tangent with the three sides, for the Boolean network,
disordered states are ruled out, in accordance with our analysis in
Sec. III A. The fractional values of K in Fig. 5 are the average num-
bers of inputs for a node in the network. For example, K = 3/2, half
of the nodes in the network have one input, while the other half have
two inputs. In this case, the circular boundary degenerates to a sin-
gle critical point at the center of the triangle with parameter values
(p, q, r) = (1/3, 1/3, 1/3), indicating that no disordered states are
possible. This corresponds to the minimum point of the boundary
curve in Fig. 4, which is given by K = 3/2 and p = q = 1/3.

C. Lyapunov exponent of ternary networks

In a classical Boolean network, the evolution of the distance
between two infinitesimally close vectors, e.g., two N-bit Boolean
trajectories Ex(t) and Ey(t), can be conveniently characterized by the
Lyapunov exponent.10 In Boolean dynamics, the concept of a partial
Boolean derivative31 is essential,

∂Fi/∂xj ≡ Fi(x1, x2, . . . , xj, . . .) ⊕ Fi(x1, x2, . . . , ¬xj, . . .), (7)

where ⊕ and ¬ represent Exclusive OR (XOR) and logical NOT

operations, respectively. The value of the partial Boolean derivative
evaluated at Ex(t) is one if a change in the jth component xj(t) of Ex(t)
causes a change in Fi or xi(t + 1); otherwise, the derivative is zero.
The Jacobin matrix J (Ex(t)) is formed by all the partial Boolean
derivatives, where (∂Fi/∂xj) is the ijth element of the matrix. For two

FIG. 5. Ternary phase diagram for general biases. Because of the constraint
p + q + r = 1, the allowed values of these probabilities can be conveniently rep-
resented by the region inside the triangle, whose three sides correspond to p, q,
and r , respectively. Each point inside the triangle represents a unique bias set
{p, q, r} for the three states {α,β , γ }, whose values can be read out from the
cross points following the gray thick dashed lines to the boundary, where each
dashed line is parallel to a side of the triangle. For example, the black circles “1”
and “2” correspond to the bias set {1/4, 1/4, 1/2} and {1/2, 1/3, 1/6}, respec-
tively. The theoretical boundaries as determined by Eq. (6) separating the ordered
and disordered regions for different K are indicated by the circles of different
colors. From the circles inside out, the values of K are 3/2, 2, 5/2, and 3. For
K = 3/2, the circle shrinks to a single point at the center of the triangle. The
vertical line indicates the constrained case of (p, q, q).

N-bit Boolean vectors Ex(t) and Ey(t), the difference in their bits can

be described by Eδ(t) = Ex(t) ⊕ Ey(t), where δi(t) = 1 if xi(t) 6= yi(t)
and zero otherwise. From the characteristics of XOR for Boolean
variables, we have Ey(t) = Ex(t) ⊕ Eδ(t). The evolution of the differ-
ence/perturbation of two Boolean vectors Ex(t) and Ey(t) can then be
described as10

Eδ(t + 1) = Ex(t + 1) ⊕ Ey(t + 1)

= F(Ex(t)) ⊕ F(Ey(t))
= F(Ex(t)) ⊕ F(Ex(t) ⊕ Eδ(t)). (8)

Making a linear approximation of the Boolean operations, we
have32,33

F(Ex(t) ⊕ Eδ(t)) ≈ F(Ex(t)) ⊕ J (Ex(t)) � Eδ(t),

which leads to

Eδ(t + 1) ≈ J (Ex(t)) � Eδ(t),
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where the operator � is defined as sign(J (Ex(t)) · Eδ(t)) with the sign
function sign(0) = 0 and sign(x > 0) = 1. Note that the sign func-
tion is used to normalize the output in the case where a bit is affected
by two or more other bits. The probability of bits with two or more
inputs goes to zero in the large N limit for fixed n, or when n/N → 0,
where

Eδ(t + 1) ≈ J (Ex(t)) · Eδ(t).

The derivatives can be extended to our ternary system to define
the Lyapunov exponent. In particular, a similar exclusive OR (XOR)
operator ⊕T can be defined to account for the differences between
two vectors Ex and Ey; i.e.,

Eδ(t) = Ex ⊕T Ey = 1 − {δx1 ,y1 , δx2 ,y2 , . . . , δxN ,yN
}. (9)

However, unlike the Boolean case, here, for a given Ex, there can be

different Eys yielding the same Eδ(t). Nevertheless, the evolution of the

difference Eδ(t) can be characterized in a similar way. Specifically,
considering the large N limit and assuming initially that Ex and Ey only
have a few bits that are different, we define a perturbation spread
matrix D , whose elements Dij equal p̃ if bit i has an input from bit j,
where p̃ is the probability that bit i is different at the next time step.
We thus have

Eδ(t + 1) = 〈D · Eδ(t)〉, (10)

where 〈·〉 denotes the expectation value; i.e., if for one bit the value is
p̃, then this bit is filled with one with the probability p̃ and zero with

probability 1 − p̃. Defining the norm |Eδ(t)| = ∑

i δi(t), we have the
Lyapunov exponent as10

λ = lim
T→∞

1/T ln |EδT|/|Eδ0|

= ln

〈

|Eδ(t + 1)|
|Eδ(t)|

〉

= ln
|〈D(Ex(t)) · Eδ(t)〉|

|Eδ(t)|
. (11)

Since the mapping functions are chosen randomly according only
to the bias set (p, q, r), when bit j is different, the probability for its
successor, e.g., bit i, to take different values can be estimated as

p̃ = p(1 − p) + q(1 − q) + r(1 − r)

= 2(1 − p2 − q2 − r2 − pq − qr − rp), (12)

where the constraint p + q + r = 1 has been used. As each node has
K inputs chosen randomly from the other N − 1 nodes, the average
number of the outgoing connections for each node is also K. As a
result, when there are n bits that are different between Ex(t) and Ey(t),
there will be on average nKp̃ bits with one for Eδ(t + 1) for N � n.
These considerations lead to the following analytic expression for
the Lyapunov exponent:

λ = ln (Kp̃) = ln[2K(1 − p2 − q2 − r2 − pq − qr − rp)]. (13)

The condition under which the ternary dynamics are unstable is thus

2K(1 − p2 − q2 − r2 − pq − qr − rp) > 1,

which is consistent with Eq. (6).

FIG. 6. Scaling laws governing the number of nodes engaged in the network
dynamics. Shown is the average number 〈NEN〉 of engaged nodes vs the net-
work size N for K = 2 and different values of p in the constrained ternary model
(p, q, q). For 0 < p < 2/3, the system is in a disordered state, leading to the
scaling relation 〈NEN〉 ∼ N. For p > 2/3, the system is in an ordered state and
〈NEN〉 approaches a constant value. At the critical point p = 2/3, the scaling law
is 〈NEN〉 ∼ N1/3 for large N. The two thick line segments indicate the scaling
exponents of 1 and 1/3, respectively. Each data point is the result of averaging
over 1000 independent dynamical realizations.

D. Number of nodes engaged in dynamics: Scaling

laws

A useful concept to identify disordered dynamics in discrete
logic systems is the “engaged nodes,” which are those that are
involved or engaged in determining the final state of the system.9,11,12

These nodes can be identified as follows. One first identifies the
“fixed” or “frozen” nodes whose outputs are entirely independent of
their inputs. The nodes whose outputs depend only on the inputs
from other frozen nodes will also be frozen nodes, which can be
identified using an iterative procedure. Note that there can be higher
order effects, leading to the frozen nodes due to the correlation
between the inputs from different engaged nodes.11 The frozen
nodes and other nodes with no relevant outputs are removed, and
the remaining nodes are those engaged in the system dynamics,
whose number is denoted as NEN.

If NEN is a constant or increase slowly with the system size, the
system is scalable in the sense of controllability.12 We first consider
a constrained ternary network where there is only one bias parame-
ter p (q = (1 − p)/2) for K = 2. Figure 6 shows the average number
of the engaged nodes vs the network size. It can be seen that, in
the disordered region p < 2/3, the number of the engaged nodes
is comparable and proportional to the system size. However, at the
critical point of pc = 2/3 or pc = 0, we have 〈NEN〉 ∼ N1/3 in the
large N limit (see Appendix C for details). In the ordered region
p > 2/3, 〈NEN〉 is approximately a constant, regardless of the net-
work size. There is, therefore, a characteristic change in the scaling
of 〈NEN〉 with the system size upon a transition between ordered
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FIG. 7. Fraction 〈NEN〉 /N of engaged nodes in the ternary
network for K = 2 (a) and K = 3 (b) in the (p, q, r) parame-
ter space. The dashed curves indicate the domain boundary
from Eq. (6). System size N is fixed at 10 000. Each point in the
diagram is the result of averaging 1000 realizations for reliable
statistics.

and disordered dynamics. Thus, for our ternary network, the sys-
tem is scalable only in the ordered state; e.g., p > 2/3 for K = 2.
This should be contrasted to the classical Boolean network where
for K = 2, the disordered parameter region shrinks to a single point
and therefore, the network always scalable.12

If the fraction of the engaged nodes is large, the dynamics are
more likely to be disordered. For each point in the ternary param-
eter space (a given combination of {p, q, r}) in Fig. 5, we carry out
an ensemble of 1000 simulations. In each run, the engaged nodes
are identified, and the average fraction of these nodes is calculated.
The results for K = 2 and K = 3 are shown in Figs. 7(a) and 7(b),
respectively. In each case, a sharp circular boundary emerges in the
ternary parameter space, separating the whole parameter space into
disordered and ordered regions, which is consistent with the results
in Fig. 6.

IV. DISCUSSION

Boolean networks are a paradigm not only in biology for
gaining quantitative insights into systems, such as gene regula-
tory networks, but also in other fields for understanding a vari-
ety of complex dynamical behaviors. A Boolean network of size
N is a deterministic and self-evolving dynamical system with N
binary state variables that can be represented by an N-bit binary
vector, where the total number of possible states is 2N. Starting
from a random initial condition, the system typically evolves into
a final state that can be a fixed point attractor or a periodic attrac-
tor. In many biological contexts, e.g., gene regulatory networks,
such a description is natural and adequate. While the paradigm of
Boolean networks has enjoyed remarkable success in characteriz-
ing and understanding a variety of phenomena, there are situations
in biology where a binary Boolean description is fundamentally
inadequate. For example, to understand the gene product concen-
tration gradient effect requires distinct response thresholds,34–36 a
situation that cannot be accommodated by a binary network model.
Biosystems can have multiple stable states with distinct concen-
tration levels, which correspond to multi cell fates37–39 or system
marks, such as p53-induced oscillations40–42 or EMT processes.43–46

For these systems, a description beyond the Boolean paradigm is
needed.

We have articulated a random ternary-network model as a gen-
eralization of classical Kauffman Boolean networks and analyzed
its dynamical behaviors. In a random ternary network of N nodes,

each node has K inputs chosen randomly from the other N − 1
nodes. However, the state of each node can now be in one of the
three states, and there are in total 33K

possible mapping functions.
The outputs of these mapping functions have equal probabilities to
take on the three discrete values. To enable parameter variations as
in realistic biological situations, a set of bias parameters is neces-
sary, which specify the probabilities of the three states appearing
in the system output. In model implementation, this is equiva-
lent to choosing the mapping functions that yield different outputs
with the specific bias probabilities. Due to the random and prob-
abilistic nature of the underlying system, its dynamics should be
analyzed through the mean field approach with measures, such as
the Derrida plot7—a kind of return map in nonlinear dynamics,
which captures the evolution of the distance between two states in a
geometrically intuitive way. The geometric approach makes it con-
venient to analyze the conditions under which the system will evolve
into an ordered or a disordered state and to determine the stabil-
ity of the final state. The approach also allows a Hamming-distance
based Lyapunov exponent to be defined and calculated for large sys-
tems, where a positive (negative) exponent signifies a disordered
(ordered) state. We have also studied the engaged nodes,9,11,12 and
their role in determining the dynamical scalability of the systems
with the finding that a ternary network is generally scalable in the
ordered phase but unscalable in the disordered phase. In particu-
lar, when the final state is disordered, the number of nodes engaged
in the dynamical process grows algebraically with the system size.
At the critical point where a ternary network effectively reduces to
the classical Boolean network, the scaling behaviors also agree with
each other exactly. In addition, the boundary separating the scal-
able and unscalable phase in the parameter space coincides with
the boundary between the ordered and disordered states, as they
both correspond to the critical point determined by the mean field
theory.

Our ternary networks provide a framework that enables much
richer dynamical behaviors than allowed by the classical Boolean
networks. From the point of view of nonlinear dynamics, the ternary
networks represent a new “playground” to explore, understand, and
exploit a rich variety of behaviors. For example, to identify natu-
ral phenomena that defy the classical Boolean description but can
be faithfully modeled by ternary-network dynamics is an urgent
topic warranting further efforts. To devise a self-consistent scheme
to enable logic operations in ternary networks is another problem
worth investigating with potential applications in computing.
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APPENDIX A: SIMULATION DETAILS

1. Random ternary network

The network has N nodes, and each node has K input links that
are chosen randomly from the other N − 1 nodes. As a node has K
input variables and each variable can take on three possible values,
there are in total 3K possible input vectors. For each node i, its output
is determined from the K inputs by

si(t + 1) = fi(si1(t), si2(t), . . . , siK(t)), (A1)

where fi(·) is the mapping function that is typically represented by a
discrete mapping table with 3K rows. Each of the 3K possible input
vectors is mapped to a specific value of α, β , or γ . There are in total

33K
possible mapping functions. For the random N-K ternary net-

work with the bias set (p, q, r), a feasible procedure to determine all
the N mapping functions is to first list all the possible 3KN input
vectors sequentially for all the nodes and then fill the 3KN rows
of the mapping table with α, β , and γ according to the specific
probabilities p, q, and r, respectively, where p + q + r = 1.

The ternary system is, in fact, deterministic because once the
mapping functions are chosen, they are fixed. For a given initial
state, the nodes update their values in a parallel manner following
their respective mapping functions (synchronous updating rules).

2. Dynamical evolution of the Hamming distance

To calculate the dynamical evolution of the normalized Ham-
ming distance, we first set one random ternary vector s1 of length N
as the initial state. We then choose d(0) · N nodes randomly and,
for each node, replace its value by the other two different values
with equal probability, e.g., α → β or γ , generating another initial
state s2. From both states, the random ternary network evolves fol-
lowing the same mapping function set. Specifically, for each node
i, with the K inputs, its output is uniquely determined by Eq. (A1).
All the nodes update their states (outputs) simultaneously. At each

time step, the normalized Hamming distance between the two states
is given by Eq. (2).

3. Identification of frozen nodes and engaged nodes

For a given random ternary network, we first examine the
mapping functions and identify the nodes with constant outputs
regardless of their inputs. For these nodes, the mapping tables always
yield a constant value, e.g., either α, β , or γ for all possible inputs.
This case will become more prevalent when the system is more
biased, e.g., closer to the corners in the ternary (p, q, r) parameter
space. These are the frozen nodes as their outputs never change.
For the remaining nodes, those whose inputs are all from the frozen
nodes are also identified as frozen nodes as their inputs are constant
so that their outputs will be frozen, too. This procedure is carried out
recursively until no new frozen nodes can be found. The remaining
nodes have changing state variables, but they are not always engaged
nodes. There are two cases where the outputs of those nodes do not
lead to changes of the states of the other nodes: (1) the node has zero
out-links and (2) the out-links are all connected to frozen nodes.
Except for these two cases, all the remaining nodes are identified as
the engaged nodes as they are involved in determining the final state
of the system.

APPENDIX B: DERIVATION OF EQ. (3)

Equation (3) is for the case of the special bias set: {p, q, q}
= {p, (1 − p)/2, (1 − p)/2} with 0 < p < 1 being the control
parameter. Following Derrida’s work,7 we employ the normal Ham-
ming distance and the annealed approximation to quantify the
system’s degree of order. The three states {α, β , γ } are on an equal
footing, and the distance between two ternary-type vectors measures
the number of differing bits. Let n be the initial number of differing
bits between the two vectors (so that they possess N − n identical
bits). We aim to calculate an asymptotic distance as a result of the
dynamical iteration of the ternary N-K model.

One node is a stable inheritance if its inputs are all from the set
of the N − n identical bits, and this node will take the same value in
the next step. Let N0 be the number of such inheritance nodes, and
the corresponding probability is

PN0 = C
N0
N [(1 − n/N)K]

N0 [1 − (1 − n/N)K]
N−N0 , (B1)

where 1 − n/N is the probability of choosing one node as an
input and the inputs are the same for the two initial vectors and
(1 − n/N)K is the probability that all the K inputs for a node are
the same. For all the N0 bits, each has the same inputs for the two
vectors, and they will be the same at the next step.

The N − N0 remaining bits have different inputs. Nevertheless,
the mapping function may still return the same output, e.g., with
probability ps, and pu = 1 − ps is the probability to have a different
output. The number m of the bits with different values follows the
distribution,

Pn→m =
N−m
∑

N0=0

PN0 · Cm
N−N0

pu
mps

N−N0−m, (B2)
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where the summation is over all possible N0s yielding the same m.
Substituting Eq. (B1) for PN0 into the above equation, we have

Pn→m = N!

m!(N − m)!
pm

u

[

1 −
(

1 − n

N

)K
]m

×
{

(

1 − n

N

)K

+ ps

[

1 −
(

1 − n

N

)K
]}N−m

. (B3)

Equation (B3) is the general form of the probability Pn→m. In a
Boolean system, the following relations hold:7–9 ps = p2 + (1 − p)2

and pu = 2p(1 − p). In our ternary system, the biases (p, q, q) are the
respective probabilities for the three states α, β , and γ to arise. When
the inputs are different, the output is determined uniquely by prob-
abilities (p, q, q) and is independent of its previous state, even with
a fixed mapping function for this bit. As a result, the probabilities
that the two bits are the same and different are ps = p2 + 2q2 and
pu = p(1 − p) + 2q(1 − q) = (1 − p)(3p + 1)/2, respectively. The
final form of the transition probability from the n differing bits at
the previous step to m distinct bits at the current step is given by

Pn→m = N!

m!(N − m)!

[

(1 − p)(3p + 1)

2

]m [

1 −
(

1 − n

N

)K
]m

×
{

(

1 − n

N

)K

+
[

1 − (1 − p)(3p + 1)

2

]

×
[

1 −
(

1 − n

N

)K
]}N−m

. (B4)

For large N but n � N and m � N, we define x = n/N and
y = 〈m〉/N to obtain

y = (1 − p)(3p + 1)/2 · [1 − (1 − x)K]. (B5)

Noting that x is actually d(t) and y is d(t + 1), we have

d(t + 1) = (1 − p)(3p + 1)/2 · [1 − (1 − d(t))K], (B6)

which is Eq. (3) in the main text.
An assumption employed in the above derivation is that the

updating rules are completely random and are determined solely
by the bias set.7 This annealed approximation ignores the correla-
tion between the dynamical variables at different iterations, which
effectively treats the ternary dynamics as a Markovian process.

APPENDIX C: STABLE CORE AND SCALING LAW OF

THE NUMBER OF ENGAGED NODES AT THE CRITICAL

POINT

We adopt the concept of frozen core and derive the scaling law
for the engaged nodes at the critical point of the ternary network.
In particular, the frozen core is the set of nodes with time-invariant
outputs,9 which are stable nodes. Let s(t) be the fraction of the nodes
in the frozen core relative to the system size N. Initially, s(0) is then
the probability of choosing constant mapping functions whose out-
put does not depend on the inputs after an initial configuration. The

time evolution of s(t) is given by

s(t + 1) =
K
∑

k=0

Ck
Ks(t)K−k(1 − s(t))kpk ≡ f(s(t)), (C1)

where K is the number of inputs of each node and pk is the prob-
ability when a node has K − k inputs from the frozen core and its
output is independent of the k other inputs. In this case, this node is
solely determined by the frozen core and will be part of it thereafter,
leading to p0 = 1. Once the series {pk, k = 0, . . . , K} is obtained for
a given K value, the evolution of s(t) is determined.

Note that s∞ = f(s∞) gives the fixed points of the fraction of the
frozen core, and s = 1 is the trivial solution that the whole system
becomes frozen. A Derrida curve representing the iterative relation
s(t + 1) = f(s(t)) is a non-decreasing function because of the growth
of s(t) with time. Especially, for any K, we have f′(1) = K(1 − p1).
For f′(1) > 1, the fixed point s = 1 loses its stability, while another
stable point s∞ emerges; therefore, f′(1) = K(1 − p1) = 1 gives the
critical condition that the whole system belongs to the frozen core.9

However, the k inputs are not necessarily independent; therefore, the
condition K(1 − p1) = 1 is appropriate only for the case of N → ∞.

For ternary networks, it suffices to focus on the quantity p1.

Recall that the number of possible mapping functions is 33K
. For the

k inputs that are not from the frozen core, there are two cases. The
first is that the input and, therefore, the output of the other nodes
can be any of the {α, β , γ } values, signifying a totally uncertain
case. The second case is that the output can take on two values, e.g.,
{α, β}, giving rise to a partially uncertain case. Note that if the out-
put of a node can take on only one value, the node will belong to the
frozen core. The quantity p1 can then be expressed as

p1 = w · (p3 + q3 + r3) + u · (p2 + q2 + r2),

where w and u are the respective fractions of the totally and partially
uncertain nodes in the network. To simplify the expression, we set

p̃k,(1) =
nu+nw=k
∑

0<nu ,nw

f(nu, nw)p(1)
nu ,nw

as the probability of k unstable inputs leaving a constant output,
where f(nu, nw) is the number of possibilities of exactly nu partially
and nw totally uncertain signals with the corresponding probabil-
ity p(1)

nu ,nw
. The superscript (1) means that the output is a constant,

and superscripts (2) and (3) are for the cases of partial and total
uncertainty, respectively.

To obtain the relative fractions of u and w, it is necessary to
analyze the feature of the remaining network outside the frozen core,
which is composed of unstable nodes. For K = 2, after identification
of the stable frozen core nodes, the average in-degree of the unstable
nodes is between one and two,

〈kin〉 = C1
2(N − U − W)(U + W)q̃1,(1) + 2(U + W)2q̃2,(1)

C1
2(N − U − W)(U + W)q̃1,(1) + (U + W)2q̃2,(1)

' 1 + q̃2,(1)

2q̃1,(1)

U + W

N
+
(

q̃2,(1)

2q̃1,(1)

−
q̃2

2,(1)

4q̃2
1,(1)

)

(U + W)2

N2
,
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FIG. 8. Scaling relations at the critical point. Shown are 〈U〉, 〈W〉, and 〈W〉/〈U〉
vs the system size N for K = 2 at critical point p = 2/3, represented by the red
squares, the gray triangles, and the blue circles, respectively. Each data point is
the result of averaging over max(1000, 0.01N) realizations.

where q̃k,(1) = 1 − p̃k,(1) and U and W stand for the numbers of par-
tially and totally uncertain nodes (U = uN and W = wN), respec-
tively. In the ordered regime and at the criticality, the number of
unstable nodes is much smaller than the system size.12 In the limit
N → ∞, both U/N and W/N go to zero, as illustrated in Fig. 8. We,
therefore, have 〈kin〉 → 1. Furthermore, the zero out-degree nodes
are removed; therefore, most of the engaged nodes form many loops
with single inputs. Defining u′ = u/(u + w) and w′ = w/(u + w),
we obtain the update functions of u′ and w′ as

{

u′(t + 1) ' u′(t) + p(2)
0,1/(p

(2)
0,1 + p(3)

0,1) · w′(t),

w′(t + 1) ' p(3)
0,1/(p

(2)
0,1 + p(3)

0,1) · w′(t).
(C2)

Since both p(3)
0,1 and p(2)

0,1 for the total and partial uncertainty are
positive, we have w′ → 0 and u′ → 1. Consequently, the partially
uncertain nodes occupy most of the components of the engaged
nodes. We have

p̃1,(1) = f(1, 0)p(1)
1,0 + f(0, 1)p(1)

0,1 ≈ p(1)
1,0 ,

where p(1)
1,0 is the probability that the output is a constant when there

is only one input with partial uncertainty,

p(1)
1,0 = p2 + q2 + r2.

Assuming q = r = (1 − p)/2, we obtain the critical condition from
K(1 − p̃1,(1)) = 1 as 2p − 3p2 = 0 or pc = 2/3 and zero, where the
former is for the ternary network while the latter pc = 0 and conse-
quently q = r = 0.5 degenerates into the Boolean case. The remain-
ing system of unstable or engaged nodes is analogous to the critical
Boolean network,12,47 for which the relative component size scales
with the system size as 〈NEN〉 ∼ N1/3.

FIG. 9. Scaling of the size of the network component engaged in ternary dynam-
ics. Shown is 〈RRN〉 vs N for K = 2 at the critical points p = 2/3 and p = 0 for
the bias set is (p, q, q). The short line segment has a slope of 1/3. Each data
point is the result of averaging over max(1000, 0.01N) simulation realizations.

Alternatively, at the critical point, the network component of
engaged nodes can be viewed as a maximum percolation cluster. It is
equivalent to constructing a random network that each newly added
unstable node outputs an uncertain signal. In the limit N → ∞,
the condition under which the component of engaged nodes grows
is that the average uncertain output of a node receiving uncertain
inputs is one, i.e., K(1 − p1) = 1, which is exactly the critical condi-
tion. Figure 9 shows the average size of the component of engaged
nodes 〈NEN〉 vs the system size N at the critical points pc = 0 and
2/3. Note that the curve for pc = 2/3 is slightly higher than the one
for pc = 0, which can be attributed to the complexity of the multi-
valued dynamical process. Nevertheless, the scaling exponents for
large N for the two critical points are the same.
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