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ABSTRACT

Symmetries, due to their fundamental importance to dynamical processes on networks, have attracted a great deal of current research. Finding
all symmetric nodes in large complex networks typically relies on automorphism groups from algebraic-group theory, which are solvable in
quasipolynomial time. We articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing
all symmetric nodes by introducing a structural position vector (SPV) for each node in networks. We establish the mathematical result that
symmetric nodes must have the same SPV value and demonstrate, using six representative complex networks from the real world, that all
symmetric nodes in these networks can be found in linear time. Furthermore, the SPVs not only characterize the similarity of nodes but
also quantify the nodal influences in propagation dynamics. A caveat is that the proved mathematical result relating the SPV values to nodal
symmetries is not sufficient; i.e., nodes having the same SPV values may not be symmetric, which arises in regular networks or networks with
a dominant regular component. We point out with an analysis that this caveat is, in fact, shared by the known existing approaches to finding
symmetric nodes in the literature. We further argue, with the aid of a mathematical analysis, that our SPV method is generally effective for
finding the symmetric nodes in real-world networks that typically do not have a dominant regular component. Our SPV-based framework,
therefore, provides a physically intuitive and computationally efficient way to uncover, understand, and exploit symmetric structures in
complex networks arising from real-world applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0107583

Symmetric nodes play an important role not only in the structural
characterization of complex networks but also in the dynamical
processes on the network. For example, the extensively studied
phenomenon of cluster synchronization relies on network sym-
metries. From a computational point of view, the traditional
methods based on the algebraic-group theory are NP-hard. To
find all the symmetric nodes in large, real-world complex net-
works in a computationally efficient manner and to characterize
the structural similarity of nodes constitute an active area of
current research. This article introduces a concept, the nodal
structural position vector (SPV), to address the two problems.
The intuitive meaning of SPV is that, for nodes that are com-
pletely symmetric to each other in the network, their structural
“positions” should be identical. This result is established
rigorously. In particular, based on the algebraic-group theory,

it can be mathematically proved that a set of symmetric nodes
must have the same SPV values—a necessary condition. Exten-
sive simulations of six large complex networks from the real world
demonstrate that their known symmetric structures can be accu-
rately found based on the nodal SPV values in linear time. An
SPV-based index is introduced to describe the structural sim-
ilarity among the nodes, leading to an effective algorithm for
coarse-graining the network. An SPV-based centrality measure is
further defined to quantify the role played by nodes in epidemic
spreading dynamics. A caveat of the SPV method is that it will
give the wrong result for asymmetric regular networks or net-
works containing a dominant regular component but without any
symmetry, as the SPV values are necessarily equal among all the
regular nodes. It is argued that this caveat is, in fact, commonly
shared by the existing methods to find the symmetric nodes.
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However, it is argued with the aid of a mathematical analysis that
the SPV method is generally effective for finding the symmetric
nodes in real-world networks that typically do not have a domi-
nant regular component. Taken together, not only does the SPV
framework provide a computationally extremely efficient way to
find all symmetric nodes in typical complex networks, the SPVs
can also be exploited to characterize the structural similarity of
nodes and as an effective and physically meaningful measure to
quantify the role played by nodes in dynamical processes on the
network.

I. INTRODUCTION

Symmetries are ubiquitous in natural systems. In physics, the
existence of a continuous symmetry implies the conservation of a
physical quantity and, as such, a great deal can be learned about
the system without the need for analyzing the system details. For
example, if a physical system is invariant with respect to trans-
lation in time, the energy of the system is conserved. The same
principle has been applied to complex networks for identifying
and understanding intricate dynamical phenomena, such as cluster
synchronization,1–7 which otherwise would be difficult to analyze.
Given a complex network, a symmetry implies the existence of a
group or a cluster of structurally completely equivalent nodes. For
example, in a star network, all leaf nodes are symmetric to each
other. Mathematically, that two nodes u and v are symmetric with
respect to each other requires the existence of a permutation π such
that {u, v} is an edge in the network if and only if {π(u),π(v)} is
also an edge. When a dynamical process occurs on the network,
the nodes in a symmetric cluster, due to their complete equiva-
lence, tend to be more readily synchronized among themselves than
with nodes outside the cluster. A purely random network, such
as the Erdös–Rényi network,8 typically has zero symmetry in the
sense that the probability is zero for any two nodes to be equiva-
lent in terms of their connection structure in the network. However,
networks in the real world are not purely random, but in fact,
they often can possess a large number of symmetric nodes2,9–11 that
affect not only properties of the network, such as spectrum, redun-
dancy, and robustness, but also the various dynamical processes
on the network. For example, in the brain network, symmetries
play an important role in the network dynamics, such as remote
synchronization12 and cluster synchronization.3 For network com-
putations, symmetries can be exploited to coarse-grain and reduce
the dimensionality of the network, merge symmetric nodes, and
generate the so-called entropy graph of the original network13 with
reduced computational complexity.14,15 In complex networks, the
mechanisms by which symmetries arise include replicative growth,
such as duplication,16 evolution from basic principles,11 and func-
tional optimization.17

To take advantage of the network symmetries, an essential task
is to find all the symmetric nodes. Finding the symmetric struc-
tures of networks is a classical mathematical problem that is NP
hard.12 Previously, a number of methods were proposed for find-
ing the symmetric nodes in networks. For example, the properties
of the eigenvectors associated with the degenerate eigenvalues of the
network adjacency matrix were exploited to pinpoint the structural

symmetries in a network.18,19 However, it is not straightforward to
determine the symmetric nodes according to the degenerate eigen-
vectors, especially those associated with the complex symmetric
motifs. Another difficulty is the high computational cost for large
networks because of the need to calculate all the eigenvalues and
eigenvectors of the adjacency matrix. A method based on cluster
synchronization was articulated,2,12 but the ability to yield the sym-
metric nodes depends sensitively on the coupling strength among
the nodes. A combinatorial algorithm incorporating the concept of
minimally balanced coloring was proposed to locate the symmet-
ric nodes.20 Due to the iterative nature of the algorithm, not only
is it necessary to find the classes to which all nodes belong, but
the amount of the information provided to the nodes during the
iteration process would increase continuously, rendering high the
associated computational complexity. In fact, there were traditional
methods in this area based on the algebraic-group theory, such as
dividing the equivalence class by backtracking search guided by the
coloring theory.21,22 For those methods, NAUTY stood out as the
most efficient algorithm—it can identify all the symmetric structures
of a network in polynomial time.23 In another line of work, sym-
metries were exploited to eliminate the redundancy of the network
through a compression algorithm,15 where the software saucy3 based
on the NAUTY algorithm was used to find the symmetric structure
of the network.21,23

In this paper, we introduce the concept of a nodal struc-
tural position vector (SPV) and establish a mathematical theory to
demonstrate: (1) SPVs provide a computationally extremely effi-
cient way to find all symmetric nodes in typical complex networks
and (2) SPVs can characterize the structural similarity of nodes and
serve as an effective and physically meaningful measure to quantify
the effects of the nodes in dynamical processes on complex net-
works. Utilizing the algebraic-group theory, we prove that having
the same SPV values for a set of nodes is the necessary condition
that they are symmetric with respect to each other. That is, if a
set of nodes are symmetric, then their SPV values must be equal.
We demonstrate, using six large complex networks from the real
world, that the known symmetric structures can be accurately found
based on the nodal SPV values. In fact, since the computations
required involve only a small number of multiplications between
the adjacency matrix (sparse matrix) and a vector, all the sym-
metric nodes can be found in linear time. We then articulate an
SPV-based index to describe the structural similarity among the
nodes, which provides an effective algorithm for coarse-graining
the network. We further introduce a centrality measure to quan-
tify the nodal spreading influence—the role played by nodes in
epidemic spreading dynamics, which is validated using real-world
networks. Because our mathematical result relating nodal symme-
tries to SPV values is not sufficient, there are situations where nodes
having the same SPV values are not symmetric, which arises in
regular networks or in networks with a dominant regular compo-
nent. We argue that this caveat is, in fact, shared by the known
existing approaches to finding symmetric nodes. With the aid of
a mathematical result that we prove as a prerequisite (i.e., if there
is a permutation containing two nodes such that all the eigenvec-
tors before and after the permutation are equal or opposite, then
the two nodes are symmetric), we argue that our SPV method is
generally effective for finding the symmetric nodes in real-world
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networks that typically do not have a dominant regular compo-
nent.

II. THEORY OF STRUCTURAL POSITION VECTORS AND

THEIR RELATIONS TO SYMMETRIES

A. Definition of SPVs

Mathematically, the existence of a symmetry or symmetric
nodes in the network requires a permutation π such that {u, v} is
an edge in the network if and only if {π(u),π(v)} is also an edge,
where u and v denote a pair of nodes. Given a network, finding the
identical nodes is the goal of our SPV algorithm because, for nodes
that are completely symmetric to each other in the network, their
structural positions are identical. However, it is not known a priori
which nodes are identical. The steps for finding the SPVs for each
and every node in the network are as follows. First, we set an initial
or the zeroth-order structural position l0i = 1 for each node in the
network, where i is the nodal index. For all nodes in the network,
their zeroth-order structural positions can be represented by a vec-
tor: L0 = [1, 1, . . . , 1]T. That is, initially, we disregard the edges and
assume that all nodes have the same structural positions. To take
into account the edges, we note that the structural position of a node
is related to the structural positions of its nth-order neighbors, which
is determined by the nth power of the network adjacency matrix An.
Multiplying L0 from the left by An, we get

Ln = An · L0,

where Ln (n = 1, . . . , ∞) is a vector containing information about
the nth-order structural positions of all nodes in the network, whose
ith component is given by

Ln
i =

N
∑

j=1

[An]ijL
0
j ,

which is the sum of the number of paths of length n to node i from all
nodes in the network. Specifically, the first-order structural position
of node i is its degree and the ∞th order is nothing but its eigenvec-
tor centrality, the ith component of the eigenvector associated with
the largest eigenvalue of the network adjacency matrix.

It is worth emphasizing that the vectors Ln (n = 1, . . . , ∞) con-
tain information about the structural positions of all nodes, but it
is not the SPV that is node-specific. To define the SPV for node
i, we use the ith component in Ln (for n = 1, . . . , ∞) to obtain
Si ≡ (L1

i , L
2
i , . . . , L

∞
i ). For a finite network of size N, the longest path

from any node to node i through non-repeated nodes must not be
greater than N, and the dimensionality of the adjacency relationship
between a node and the other nodes in the adjacency matrix fully
characterizing the network structure is also N. These considerations
lead us to set the dimensionality of vector Si to be N (see below for a
proof). We, therefore, have Si ≡ (L1

i , L
2
i , . . . , L

N
i ).

Making use of the algebraic-group theory, we can prove that
equal SPV values of nodes i and j,

(

L1
i , L

2
i , . . . , L

N
i

)

=
(

L1
j , L

2
j , . . . , L

N
j

)

,

is a necessary condition for nodes i and j to be symmetric. That
is, if nodes i and j are symmetric, then their SPV values must be

equal. Before we present a sketch of the proof in Sec. II C, we
present a physical and intuitive explanation of this mathematical
result through toy network models, which suggests that it offers
the possibility of finding all the symmetric nodes in a network in
a computationally efficient way.

B. Physical understanding of SPVs and its potential

use in finding symmetric nodes

Figure 1 presents a simple example to illustrate how the sym-
metric nodes can be found using the SPVs. The toy network has
eight symmetric motifs Mi (i = 1, 2, . . . , 8), as shown in Fig. 1(a).
In motif M1, there are two sets of nodes that are symmetric to each
other: {28, 29, 30, 31} and {26, 27}. A set of symmetric nodes form
an orbit, e.g., nodes 26 and 27. Motif M1, therefore, consists of two
orbits with two and four symmetric nodes, respectively, motif M3

has one orbit of three symmetric nodes, and so on. We say that M1

and M3 are represented by the orbits O2
2

−→ O4 and O∗
3 , respectively

(Appendix A). The orbital representations of the eight symmetric
motifs in Fig. 1(a) and their corresponding geometric factors are
listed in Table II in Appendix A. The leftmost column in Fig. 1(b)
is a diagram of five blocks determined according to the vector L1,
where all the nodes in a block have identical component values in
L1. Similarly, the columns under C2 and C3 have 9 and 11 blocks,
respectively. The middle column represents the set of intersection
between the sets under C1 and C2, which is done according to the
criterion that all nodes in a block must have identical component
values in both L1 and L2, although the common value in L1 may
not equal that in L2. The rightmost column in Fig. 1(b) consists
of distinct blocks obtained through the intersection among the sets
corresponding to C1, C2, and C3, which already contain all the sym-
metric nodes of the network as specified in Fig. 1(a). This means
that, for this toy network of 36 nodes, three iterations of the ini-
tial vector L0 already suffice to yield all the symmetric nodes. Note
that, while some symmetric nodes have identical row vectors in the
adjacency matrix, such as {6,7,8}, {18,19}, there are also symmetric
nodes with non-identical row vectors, such as {26,27}, {33,34}. Our
SPV algorithm can find both types of symmetric nodes accurately
and efficiently.

The workings of our SPV algorithm can be explicitly illustrated
using an even simpler toy network of ten nodes, as shown in Fig. 2.
Let

L0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

We have

L1 = A · L0 = [4, 3, 3, 1, 1, 1, 1, 2, 2, 2],

based on which we divide the nodes into four categories,

{1}, {2, 3}, {4, 5, 6, 7}, {8, 9, 10}.

We next obtain

L2 = A · L1 = [10, 6, 6, 3, 3, 3, 3, 6, 6, 4],

based on which the nodes in the network can be divided into four
different categories,

{1}, {2, 3, 8, 9}, {4, 5, 6, 7}, {10}.
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FIG. 1. Schematic representation of finding the symmetric nodes using the SPVs. (a) A network containing eight symmetric motifs. (b) Cn represents the sets of nodal
classification by the single nth-order vector Ln, for n = 1, 2, 3, for each node in (a). The intersections of the nodal classification yield the symmetric nodes.

Taking the intersection of the two sets of nodes, we get the symmet-
ric nodes,

{2, 3}, {4, 5, 6, 7}, {8, 9}.

It can be seen that not only can the symmetric nodes with equal
row vectors in the adjacency matrix be identified (i.e., {4,5}, {8,9},
{6,7}), but the symmetric nodes with unequal row vectors can also
be found: {2,3}, {4,6}, {5,7} or {4,7}, {5,6}.

C. Sketch of the proof of main mathematical results

The main mathematical results of this paper are two: (1) Nodes
x and y are symmetric if there is a permutation containing the two
nodes such that all eigenvectors before and after the permutation
are equal or opposite. (2) Nodes having equal SPV values consti-
tute stronger necessary conditions for them being symmetric to
each other than redundant eigenvectors; i.e., if they are symmetric
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FIG. 2. A toy network of ten nodes, which contains three sets of symmetric nodes.

nodes, then their SPV values must be equal. Also, if their SPV values
are equal, there will be redundant eigenvectors about them in the
eigenvectors of the adjacency matrix corresponding to the network.

Mathematically, the existence of symmetric nodes in the net-
work stipulates an automorphism π satisfying the property that
{u, v} is an edge in the network if and only if {π(u),π(v)} is
also an edge. All the automorphisms of a network constitute an
automorphism group G(π).

First, we prove two lemmas.
Lemma 1. Permutation π is an automorphism if and only if

P · A = A · P , where A, π , and P = (pij) are the adjacency matrix,
permutation, and permutation matrix of the network, respectively.
When nodes i and j have a permutation relation with each other:
vi = π(vj), the corresponding elements in the permutation matrix
are pij = pji = 1, and all other elements are zero.

Proof. Assume vh = π(vi), vk = π(vj), then

{

(P · A)hj =
∑

phlalj = aij,

(A · P)hj =
∑

ahlplj = ahk;
(1)

i.e., P · A = A · P if and only if aij = ahk. That is, permutation π is
an automorphism. �

Lemma 2. (A sufficient condition for nodal symmetry): If
there is a permutation matrix P such that P · x = ±x, where x is
an eigenvector of the adjacency matrix of the network, then the
permutation corresponding to P is an automorphism.

Proof. Let A · x = λx, where λ and x are the eigenvalue and
the associated eigenvector of the network adjacency matrix A,

respectively. Assume P · x = ±x. Since the permutation matrix P

is derived from the identity matrix through a series of elementary
transformations, P is invertible. Left multiplying both sides of the
characteristic equation A · x = λx by P , we get P · A · x = λP · x.
With P · x = ±x, we get

P · A · x = ±λx = ±A · x = A · P · x, (2)

which gives (P · A − A · P) · x = 0. Because A is an N × N sym-
metric matrix, there must be N linearly independent eigenvectors,
denoted as x1, x2, · · · , xN. The matrix X ≡ (x1, x2, . . . , xN) has a full
rank. We, therefore, have (P · A − A · P) · X = 0. Expressing the
matrix (P · A − A · P) in a row form, we get

(P · A − A · P) · X =











φ1

φ2

...
φN











X =











0
0
...
0











. (3)

Since matrix X has a full rank, the equations φiX = 0 have trivial
solutions only: φi = 0. We, therefore, have P · A = A · P . Accord-
ing to Lemma 1, the permutation corresponding to the permutation
matrix P is an automorphism. �

We now sketch the steps involved in the proof of the stronger
necessary condition for nodal symmetry than redundant eigenvec-
tors: if two nodes are symmetric, their SPV values must be equal.
Also, if SPVs of two nodes are equal, there will be redundant eigen-
vectors about them in the eigenvectors of the adjacency matrix
corresponding to the network. (A detailed proof can be found in
Appendix B.)

We first prove that the SPV equality is a necessary condition for
node symmetry. Assuming that nodes x and y are symmetrical, it can
be known from Lemma 1 that the number of neighbors of nodes x
and y is equal (i.e., the degrees of nodes x and y are equal), and there
must be one-to-one neighbors symmetrical to each other. Suppose
the neighbors of nodes x and y are xi, yi (i = 1, 2, . . . , r), respectively.
Without loss of generality, let xi, yi (i = 1, 2, . . . , r) be symmetrical
to each other. We use mathematical induction to prove that if nodes
x and y are symmetrical, then Ln

x = Ln
y , n = 1, 2, . . . , N. By definition

of SPV, we have

Ln
x =

N
∑

j=1

[An]x,jL
0
j =

N
∑

j=1

Ax,jL
n−1
j . (4)

Obviously, when n = 1, Ln
x and Ln

y represent the degrees of nodes x

and y, respectively, then Ln
x = Ln

y . Similarly, Ln
xi

= Ln
yi

, i = 1, 2, . . . , r.

Assuming that when n = N − 1, the (N − 1)th-order struc-
tural positions of symmetric nodes are equal; i.e., LN−1

x = LN−1
y and

LN−1
xi

= LN−1
yi

, i = 1, 2, . . . , r. When n = N, by Eq. (4),

LN
x =

r
∑

i=1

Ax,xi
LN−1

xi
(5)

and

LN
y =

r
∑

i=1

Ay,yi
LN−1

yi
, (6)
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where Ax,xi
= Ay,yi

= 1 and LN−1
xi

= LN−1
yi

. Then, LN
x = LN

y . It can be

known from mathematical induction that if nodes x and y are sym-
metrical, then Ln

x = Ln
y , n = 1, 2, . . . , N. That is, the SPV equality is a

necessary condition for node symmetry.
Now, we prove if the SPVs of two nodes are equal, there will

be redundant eigenvectors about them in the eigenvectors of the
adjacency matrix corresponding to the network.

Assume that the SPVs of the nodes x and y are equal:
Ln

x = Ln
y for n = 1, 2, . . . , N. Because A is a symmetric matrix, it

must have N linearly independent eigenvectors. The initial vector
L0 = (1, 1, . . . , 1)T can then be linearly represented by the eigen-

vectors ηi for i = 1, 2, . . . , N: L0 =
∑N

i=1 tiηi. From Ln = An · L0, we
get



























L1 = A · L0 = A(
∑N

i=1 tiηi) =
∑N

i=1 tiλiηi,

L2 = A2 · L0 = A2(
∑N

i=1 tiηi) =
∑N

i=1 tiλ
2
i ηi,

...

LN = AN · L0 = AN(
∑N

i=1 tiηi) =
∑N

i=1 tiλ
N
i ηi.

(7)

The equality Ln
x = Ln

y for n = 1, 2, . . . , N gives



























∑N
i=1 tiλiηi,x =

∑N
i=1 tiλiηi,y,

∑N
i=1 tiλ

2
i ηi,x =

∑N
i=1 tiλ

2
i ηi,y,

...
∑N

i=1 tiλ
N
i ηi,x =

∑N
i=1 tiλ

N
i ηi,y

(8)

or






















∑N
i=1 tiλi(ηi,x − ηi,y) = 0,

∑N
i=1 tiλ

2
i (ηi,x − ηi,y) = 0,

...
∑N

i=1 tiλ
N
i (ηi,x − ηi,y) = 0.

(9)

The determinant of this set of linear equations in (ηi,x − ηi,y) is

C =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1λ1 t2λ2 · · · tNλN

t1λ
2
1 t2λ

2
2 · · · tNλ

2
N

t1λ
3
1 t2λ

3
2 · · · tNλ

3
N

...
...

. . .
...

t1λ
N
1 t2λ

N
2 · · · tNλ

N
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= t1t2 . . . tNλ1λ2 . . . λN

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

, (10)

which is the Vandermonde determinant. We have C = t1t2 . . . tNλ1

λ2 . . . λN

∏

1≤j<i≤N(λi − λj). If all eigenvalues ofA are simple, zero is

not its eigenvalue and ti 6= 0 for i = 1, 2, . . . , N, then we have C 6= 0.
The only solution of (ηi,x − ηi,y) is zero; therefore, ηi,x = ηi,y. The
permutation of nodes x and y implies that all eigenvalues of A must
satisfy P · η = η. By Lemma 2, the permutation corresponding to
the permutation matrix P is an automorphism; therefore, the nodes
x and y are symmetric to each other.

However, when the adjacency matrix A has zero or repeated
eigenvalues or there is k (k ∈ {1, 2, . . . , N}) such that tk = 0, the
nodes x and y cannot be deduced to be symmetric to each other.
However, the adjacency matrix A has redundant eigenvector com-
ponents about nodes x and y in that the sum of their eigencom-
ponents is zero and the eigencomponents of remaining nodes are
all zero (Appendix B). A redundant eigenvector is a necessary con-
dition for node symmetry18,19 and is often used to find symmetric
nodes in the network.19 We conclude that SPV equality is a stronger
necessary condition for nodal symmetry than redundant eigenvec-
tors. In addition, the computational complexity of an SPV method
is lower than that of a redundant eigenvector method.

III. APPLICATIONS OF AN SPV METHOD TO

REAL-WORLD NETWORKS

We apply the SPV theory to finding the symmetric motifs in
real-world networks. Since the SPV method is only a necessary but
not sufficient condition for nodal symmetries, some additional cri-
terion should be used to guarantee that the SPV solutions do indeed
give the symmetric nodes in the network. For example, if the under-
lying network contains a large regular component, then the SPV
algorithm would stipulate that the nodes in this component are
symmetric nodes, which can be untrue. We use Lemma 2 proven
in Sec. II C as the additional criterion to deal with such regular
components provided that they exist. However, real-world networks
typically do not contain any sizable regular components, render-
ing unnecessary to involve the use of Lemma 2. That is, for many
real-world networks, the computationally efficient SPV alone is suf-
ficient to determine the symmetric nodes. We remark that the need
to use an additional criterion to deal with networks containing a
large regular component is shared by the existing methods in the lit-
erature, such as those based redundant eigenvectors18,19 and cluster
synchronization2,12 as well as the combinatorial algorithm incor-
porating the concept of minimally balanced coloring.20 (A detailed
analysis of the common caveat among three existing approaches to
finding network symmetries can be found in Appendix C.)

To demonstrate the general applicability of our SPV method
to a variety of real-world networks, we test six such networks: two
information networks (Odlis.net24 and p2p-Gnutella25), the social
network Facebook,26 a cooperative network CA-GrQc,27 the bio-
logical network Yeast,28 and a voting network Wiki-Vote,29 whose
structural properties are listed in Table III in Appendix D. By cal-
culating the SPVs of the nodes, we have succeeded in finding all the
symmetric motifs in those networks in linear time. The results are
presented in Table IV in Appendix D and in Fig. 3.

A. Identification of symmetric nodes using SPVs

Theoretically, when calculating the SPVs of a network of size
N, it is necessary to obtain all Ln vectors for n = 1, . . . , N. How-
ever, if the network has a small diameter (as in many real-world
networks30), Ln tends to converge fast, typically requiring only a
few iterations of (An · L0). This means that, computationally, our
method for finding the symmetric nodes can be extremely efficient.
To quantify the computational efficiency, we define the following
accuracy measure ρ to find the smallest n value, denoted as n∗, for
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FIG. 3. All symmetric motifs in six real-world networks. In each panel, the abscissa On is the number of nodes contained in the symmetric motifs and “CX” denotes the
complex symmetric motifs. The ordinate is the number of symmetric motifs.

which all symmetric structures in the network can be completely
identified through the first nth-order SPVs,

ρ =
min{U, Q}

max{U, Q}

1

U

U
∑

k=1

nk

Nk

, (11)

where U is the number of non-trivial orbits in the symmetric struc-
ture of the network (see Appendix A for a definition of “orbits”) and
Q is the number of nontrivial classes obtained through

C1 ∩ C2 ∩ . . . ∩ Cn,

where “nontrivial” means that there are at least two elements in the
class [e.g., the distinct blocks in the rightmost column in Fig. 1(b)].
The quantity nk (k = 1, . . . , U) is the number of nodes in the kth
orbit of the network, and Nk is the number of nodes in the class
(block) containing the kth orbit. By definition, we have ρ ≤ 1. The
larger the value of ρ is, the higher is the accuracy of the identified
symmetric nodes. The perfect case ρ = 1 means that all symmetric
nodes can be identified using the first n orders SPVs.

Figure 4 shows the accuracy measure ρ vs n for the six real-
world networks listed in Table III. It can be seen that 100% accuracy
as characterized by ρ = 1 is achieved for n ≥ 5 for all six networks.
For Facebook and a Wiki-Vote network, this is achieved even for
n ≥ 3. The value of n∗ is, therefore, exceedingly small for all cases
tested, indicating that in actual calculations, it is only necessary to
use the vectors Ln = An · L0, including the order-n∗ structural posi-
tions of all nodes to identify the symmetric nodes. The main com-
putational cost comes from iterative multiplications of the network
adjacency matrix AN×N with the vector Ln for n = (1, . . . , n∗). Since
the computational complexity of each iteration is O(N〈k〉), where
〈k〉 is the average degree of the network, the computational cost of
finding all the symmetric structures of the network is O(n∗N〈k〉).
Networks in the real world often have sparse structure properties:

〈k〉 � N; therefore, the computational complexity of the algorithm
is only proportional to the size of the network (in linear time).

B. Quantifying nodal structure similarity based on

SPVs

The similarity measure between two nodes based on their com-
mon neighbors has been widely used in problems, such as link
prediction and recommendation systems.31 The use of a single cen-
trality measure is usually not sufficient to describe the structural
similarity between different nodes, as two nodes can have iden-
tical values for certain centrality but differ dramatically in other
measures. [For example, nodes 10 and 12 in Fig. 1(a) have the
same degree but their betweenness centrality values are quite differ-
ent.] Symmetrical nodes are expected to have exactly the same SPV
and centrality measures,14 such as H-index,32 PageRank,33 k-core,34

eigenvector centrality,35 and betweenness centrality.36 Intuitively,
two nodes with similar (not equal) SPVs are structurally similar;
therefore, we define the following similarity index r, the Euclidean
distance between the structural position vectors of nodes i and j:

r =

√

√

√

√

N
∑

n=1

(L̃n
i − L̃n

j )
2
, (12)

where L̃n
i (n = 1, 2, . . . , N) is the nth component of the SPV of node

i, normalized by the largest nth component value among all the
nodes: L̃n

i = Ln
i /max(Ln

1 , Ln
2 , . . . , Ln

N). A small value of r indicates a
relatively high degree of similarity between the structures of nodes i
and j. The results in Fig. 4 indicate that SPVs of size at most about
five are needed to accurately identify all symmetric nodes in the six
real-world networks. It, therefore, suffices to use the following trun-

cated SPV with six components, S̃∗
i ≡ (L̃1

i , L̃
2
i , . . . , L̃

6
i )

T
, to calculate

the similarity measure r.
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FIG. 4. Accuracy measure ρ of identifying all symmetric nodes vs the order-n SPVs for the six real-world networks in Table III. For Facebook and Wiki-Vote, the values
of n∗, the minimum order required to have all symmetric nodes in the network correctly identified, are three. For Odlis.net and Yeast network, n∗ = 4. For CA-GrQc and
p2p-Gnutella networks, n∗ = 5. The very small values of n∗ across all the networks is a strong indication that the SPV-based framework is computationally extremely efficient
for finding all the symmetric nodes in large complex networks.

As an application, we consider the problem of clustering nodes
with similar structures. Our point is that the method based on the
similarity index r defined in Eq. (12) performs better than many
previously known methods. To demonstrate this, we use the k-
mean algorithm to cluster the nodes in a complex network into
Ñ classes. To verify the effect of clustering, we coarse-grain the
network and use the properties of the center of each class to approx-
imate the properties of nodes in this class. For comparative analysis,
five clustering methods, respectively, based on degree, betweenness,
eigenvector centrality, closeness centrality, and clustering coefficient
are considered. We define the coarse-grained error value E as

E =

Ñ
∑

c=1

nc
∑

j=1

√

(zcj − Zc)
2, (13)

where Ñ is the number of clusters, nc is the number of nodes in
the cth cluster, zcj is a conventional statistical measure (e.g., degree,

betweenness, closeness centrality, etc.) of node j in the cth cluster,
and Zc is the statistical measure of the center of the cth cluster. Given
a network, we cluster all the nodes using each of the six cluster-
ing methods. Each clustering method produces errors for the five
conventional statistical measures. Except for the clustering method
based on similarity index r, only the errors of the four statistical
measures are calculated in the other five clustering methods. For
example, if we coarse-grain the network using the nodal degree, we
calculate the errors from betweenness, eigenvector centrality, close-
ness centrality, and clustering coefficient. (In this case, the error
from the nodal degree must be minimum by definition; therefore,
including this error in the comparison is not meaningful.) We then
normalize these coarse-grained error values to obtain the relative
errors. Figure 5 shows, for the six real-world networks in Table III,
the relative errors for the coarse-grained networks obtained from
each of the six clustering methods, where the coarse-grained scale

is Ñ = N(k), with N(k) being the scale of a coarse-grained network
based on the nodal degree. It can be seen that the relative node-
clustering errors associated with three or four statistical measures
are minimized when clustering nodes are based on similarity index
r. In particular, the relative errors from degree, eigenvector cen-
trality, and clustering coefficient are the smallest for all networks.
In addition, the relative error of closeness centrality is the smallest
for Odlis.net, p2p-Gnutella, Yeast, and Wiki-Vote for the similar-
ity index r based coarse-grained networks. For the remaining two
networks, the relative error from closeness centrality can reach the
second smallest. No conventional clustering method can generate
node clustering as accurate as our similarity measure r, indicating
that the SPVs can better describe the structural similarity of nodes
than many existing conventional methods.

C. Quantifying role of nodes in propagation dynamics

based on SPVs

Propagation is a fundamental type of dynamical processes
in real-world networks, with examples ranging from epidemic
spreading in social networks37,38 and diffusion of crisis in financial
networks39,40 to cascading failures in complex networks41–45 and sig-
nal transmission in neural networks.46,47 Measuring/quantifying the
influence of nodes in propagation and identifying the nodes that
play a critical role in the processes are issues with significant basic
and applied values in network science. Conventionally, nodal cen-
tralities, such as the degree, the H-index, and the k-core, are used
for these purposes. The principle of coarse-graining stipulates that
nodes with the same degree, the H-index, or the k-core have iden-
tical influences. Our result is that the SPVs provide an alternative
and potentially more powerful way to measure the nodal influences
in the propagation dynamics. This is based on the intuition that the
more similar the structures of nodes, the closer are their influences.
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FIG. 5. Relative errors of node clustering by different clusteringmethods. (a)–(f) Respective results from six real-world networks: Facebook, Odlis.net, CA-GrQc, p2p-Gnutella,
Yeast, and Wiki-Vote. Black squares, pink diamonds, light green hexagon stars, cyan triangles, blue pentagrams, and red circles represent the relative errors associated with
the abscissa when clustering nodes based on degree (DE), betweenness (BS), eigenvector (ER), closeness centrality (CS), clustering centrality (CG), and structural position
vector (SPV), respectively.

Following our approach to quantifying nodal structure similar-
ity, we cluster the network using the similarity index r and calculate

the two-norm value bi of the truncated SPVs S̃∗
i of the center of each

class. This leads to the cluster centrality bi based on the SPVs, which
can be used to quantify the influence of nodes in this class. When
the network is not clustered, bi is the SPV centrality.

To demonstrate the SPV-based quantification of nodal influ-
ences in propagation dynamics, we use the classic SIR (suscepti-
ble–infected–refractory) model. In the simulations, we set each node
i as the origin of the spreading dynamics and calculate the frac-
tion Ri of the recovered nodes. We average over 5000 independent
runs to obtain the mean Ri value that characterizes the propaga-
tion influence of node i. We, therefore, have two sequences for all
nodes in the network: the cluster centrality sequence (b1, b2, . . . , bN)

and the propagation influence sequence (R1, R2, . . . , RN); therefore,
their correlation can be calculated using, e.g., Kendall’s correlation
coefficient τ , where −1 ≤ τ ≤ 1 (see Appendix E for a definition).

A large value of τ indicates a higher accuracy of the centrality in
ranking the nodal influences. Figure 6 shows, for the six real-world
networks, Kendall’s correlation coefficient between different clus-
ter centralities and the propagation influence as Ñ, the number of
clusters increases. It can be seen that the cluster centralities are
generally suitable for ranking the nodal influences. For example, for
the network Odlis.net, Fig. 6(b) gives τ ≥ 0.85, and, for the Yeast
network in Fig. 6(e), we have τ ≥ 0.8. Within a certain range, as
the number of clusters increases, the correlation increases corre-
spondingly. When the number of clusters is sufficiently large (e.g.,
Ñ ≥ 50), the correlation value plateaus. For comparison, we also cal-
culate the correlation coefficient between the propagation influence
sequence and each of the three conventional coarse-graining meth-
ods: degree, H-index, and k-core, where each method gives only a
single value for each network. As shown in Fig. 6, for all six real-
world networks, the ranking performance of the SPV-based cluster
centrality is consistently and significantly better than those of the
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FIG. 6. Kendall’s τ correlation coefficient for the six real-world networks. Shown is the τ value between the SPV-based cluster centrality and the nodal influence R vs

Ñ, the number of clusters in the SPV-based coarse-grained network for 0.001N ≤ Ñ ≤ 0.1N, with N being the size of the whole network. The light yellow triangles, light
green squares, and red circles, respectively, represent the correlation coefficient τ between the SPV-based cluster centrality and the node influence R for infection rate
β = 1.2βc, 1.5βc, and 2βc in the SIR dynamics. For comparison, τ values between three conventional centralities (degree, H-index, and k-core) and R are shown. (For each

conventional centrality, the corresponding coarse-grained network has a single value of Ñ.) The light yellow six-pointed star, the light green diamond, and the red five-pointed
star, respectively, represent the τ value between the three conventional centralities and R for β = 1.2βc, 1.5βc, and 2βc.

three conventional methods in characterizing the nodal influences
in epidemic spreading.

As the number of clusters exceeds about 50 (Ñ ≥ 50), the
cluster centrality achieves a high accuracy in ranking the nodal
influence. Note that, for Ñ = N, the cluster centrality becomes
the actual SPV centrality. Let SPV(Ñ) denote the cluster central-
ity for the coarse-grained network of Ñ clusters, where SPV ≡ SPV
(Ñ = N). To systematically compare the nodal ranking perfor-
mances of SPV and SPV(Ñ)with those of the six conventional nodal
ranking methods (i.e., those based on the degree, H-index, k-core,
closeness, betweenness, and eigenvector centrality), we choose Ñ to

be the number of clusters obtained from the degree. The results for
the six real-world networks are listed in Table I, where the basic
parameter β (the infection rate) associated with SIR dynamics is
set to be β = 1.2βc with βc being the propagation threshold value
(Appendix E). We see that SPV and SPV(Ñ) have approximately
the same accuracy that is generally higher than the accuracies of
the conventional nodal ranking methods. There are a small num-
ber of exceptions. For example, in the p2p-Gnutella network, the
eigenvector and closeness centralities have a higher correlation with
the propagation influence than that with the SPV-based methods.
This is due to the fact that the network has no apparent local
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TABLE I. Kendall’s τ correlation coefficient between node influence R and eight indices for β = 1.2βc. Boldface denotes the largest T value in each row.

Networks Degree H-index k-core Closeness Betweenness Eigenvector SPV SPV(Ñ)

Facebook 0.6434 0.6729 0.6846 0.4286 0.4331 0.6511 0.7869 0.7834
Odlis.net 0.6939 0.7178 0.7309 0.7801 0.5406 0.8307 0.8514 0.8577
CA-GrQc 0.6307 0.6413 0.6318 0.5806 0.3587 0.5965 0.6856 0.6847
p2p-Gnutella 0.7148 0.7516 0.7480 0.8309 0.6533 0.8452 0.7825 0.7939
Yeast 0.6734 0.7151 0.7197 0.8216 0.5646 0.8272 0.8476 0.8556
Wiki-Vote 0.8126 0.8188 0.8207 0.8257 0.7431 0.8508 0.8509 0.8498

structures. Additional results for β = 1.5βc and β = 2βc can be
found in Tables V and VI in Appendix E, respectively. We find
that, except for the two networks p2p-Gnutella and CA-GrQc, the
SPV-based cluster centralities have the best ranking performance.
[In the CA-GrQc network, there is a high clustering coefficient
c and assortativity r, indicating a core–periphery structure.48 As a
result, indices that reflect the importance of the core nodes (such as
k-core, closeness centrality, eigenvector centrality) can better predict
the spreading influence of nodes.]

In general, the influence of a node depends on the adjacency of
different orders, corresponding to the components of each order in
the SPV. The contribution of each order of adjacency is different.49

Motivated by this, we further study the relative importance of each
order component in the SPV to the influence of the node. Specif-
ically, when clustering the nodes, we adjust the dimension of the
truncated SPV and the weight of each order component. As shown
in Figs. 10 and 11 in Appendix F, within a certain range, the
more dimensions that the truncated SPV possesses, the better is the
achieved ranking performance. Figures 12 and 13 in Appendix F
show that, in a network with a small average path length, the impor-
tance of L2 is larger than that of L3. In networks with a larger average
path length, the conclusion is the opposite (Appendix F).

IV. GENERAL APPLICABILITY OF AN SPV METHOD TO

FIND SYMMETRIC NODES IN REAL-WORLD

NETWORKS

We have proved that the SPVs provide a necessary but not suf-
ficient criterion for finding the symmetric nodes. This limitation is
particularly pronounced for networks having a large regular com-
ponent. One example is the classic Frucht network50 as shown in
Fig. 7(a). It is a regular network of 12 nodes and 18 edges, where
each node has the same degree three, but the network has no sym-
metry. A slight modification can be considered, where two nodes are
added with one having a link to each and every node in the Frucht
network, leading to an irregular network but with a large regular
component, which still has no symmetry, as shown in Fig. 7(b). For
these two networks, all nodes in the original Frucht network will
have the same SPV values, but this does not mean that the nodes
are symmetric with respect to each other, as the SPV criterion is not
sufficient. In spite of this deficiency, a key point worth emphasizing is
that our SPV method is generally applicable for finding the symmetric
nodes in real-world networks, as they typically do not contain large
regular components.

To gain insights into developing a mathematical argument for
this point, we first consider the modified Frucht network shown
in Fig. 7(b) and prove that all eigenvalues except the largest one
are the same as those from the original Frucht network, and
the associated eigenvectors are, therefore, redundant eigenvectors
(see Appendix C for a discussion of the concept of redundant
eigenvectors).

Proof. Let λi (i = 1, 2, . . . , 11) be the eigenvalues (excluding
the largest one) in the Frucht network and ηi = [xi,1, xi,2, . . . , xi,12]
be the corresponding eigenvectors. Let
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We can argue that the modified Frucht network in Fig. 7(b) has
eigenvalues λi with the corresponding eigenvectors
ηi = [xi,1, xi,2, . . . , xi,12, 0, 0]. The starting point is the following
equation:
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Separating Eq. (15) into two equations as
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FIG. 7. Examples of regular networks to which our SPV
method and previous some methods for finding symmetric
nodes are not applicable. (a) The classic Frucht network—a
regular network but with no symmetry. (b) A modified network
that contains the Frucht network as a large regular component.

we see that Eq. (16) is equivalent to Eq. (14), indicating that Eq. (16)
holds. Equation (17) is equivalent to

{

λi · 0 =
∑12

j=1 xi,j + 0,

λi · 0 = 0.
(18)

In the Frucht network, because of the identity
∑12

j=1 xi,j = 0,

Eqs. (15), (17), and (18) successively hold, indicating that λi and
[xi,1, xi,2, . . . , xi,12, 0, 0] are indeed the eigenvalues and eigenvectors
of the network in Fig. 7(b), respectively. This means that the net-
work containing a large regular component inherits all the eigenval-
ues and eigenvectors of the regular subnetwork except the largest
eigenvalue and its corresponding eigenvector. All the “inherited”

eigenvectors satisfy the same property
∑14

j=1 xi,j = 0. Following the

argument in Appendix C, we have that using the redundant eigen-
vector to find the symmetric nodes fails for the modified Frucht
network. �

In fact, Lemma 2 in the main text stipulates that the nodes in
the modified Frucht network are asymmetric. In general, for a net-
work that contains a relatively large regular component, application
of our SPV method would give the wrong result that the nodes in
the regular component are symmetric. The reason is similar to that
of the redundant eigenvector method. Specifically, the SPV method
can ensure that the sum of the eigencomponents corresponding to
nodes with an equal SPV value is zero and the rest of the eigencom-
ponents are all zero. While symmetric nodes have this property, the
nodes of a regular subnetwork possesses this property, too, in spite
of lack of any symmetry. Our point is that large regular compo-
nents, such as the one in the modified Frucht network, are rare in
real-world networks.

To ensure that the candidate symmetric nodes identified by
the SPV method do not include the asymmetric nodes in some spe-
cial structures, such as a regular subnetwork, we exclude two classes
of candidate symmetric structures found by the SPV method that
contain only one orbit: all nodes that are fully connected or not
connected in the candidate symmetric structure because the nodes
are naturally symmetric in these two cases. These two structures are

called basic symmetric motifs. If the remaining candidate symmet-
ric nodes found are symmetric nodes, the structure formed by them
belongs to some complex symmetric motifs.

In real networks, often, there are only a few complex symmetric
motifs.11 Such complex symmetric motifs are composed of a small
number of nodes, and nodes in the small regular subnetwork are all
symmetric with respect to each other. Thus, when the SPV method
is used to find the candidate symmetric nodes, only an exceedingly
small number of special subnetwork structures need to be retested
using Lemma 2, which hardly affects the computational complex-
ity of the SPV method when being applied to real-world networks.
While nodes with equal SPVs may not be symmetric, often, they
have quite similar local topologies; therefore, the use of SPVs for
coarse-grained networks is not affected.

We now prove that the nodes in the two basic symmetric motifs
found by the SPV method must be symmetric.

Proof. By the SPV method, we can obtain two types of eigen-
vectors. In the first type, nodes with equal SPVs have equal eigen-
components. Applying an arbitrary permutation between the nodes,
we have that the eigenvectors satisfy Pη = η. The second type of
eigenvectors is, in fact, redundant eigenvectors, for which the eigen-
components corresponding to the nodes in the two basic symmetric

motifs have no restrictions except the constraint
∑K

i=1 xi = 0, where
K is the number of nodes in the motif. �

For K = 2n, where n is a positive integer greater than one,
this gives 2n − 1 linearly independent eigenvectors. From the nodal
set {q1, q2, . . . , qK}, we pair the nodes arbitrarily. Without loss of
generality, we write the pairing sequence as

(q1, q2), (q3, q4), . . . , (q2j−1, q2j), . . . , (q2n−1, q2n).

We then permute these paired nodes. We can prove that, with
permutation under the above rule, all the eigenvectors of matrix
A satisfy Pη = ±η. It is, therefore, necessary to construct 2n − 1
eigenvectors that satisfy Pη = ±η.

For the jth eigenvector (j = 1, 2, . . . , n), let (ηj,q2j−1
, ηj,q2j

)

= (1, −1) and the eigencomponents of the remaining K − 2 nodes
in nodal set V1 be zero. We obtain n K-dimensional vectors. Since,
for the second type of eigenvectors, except for nodal set V1, the
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eigencomponents of the rest of the nodes are zero, we can simply expand them into |V|-dimensional eigenvectors as
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The n eigenvectors obtained by this method are linearly indepen-
dent, which can be proved, as follows.

Proof. Denote each row of the matrix on the right side of
Eq. (19), from top to bottom, as η1, η2, . . . , ηn, respectively. There
exist k1, k2, . . . , kn such that k1η1 + k2η2 + · · · + knηn = 0. We then
have

(k1, −k1, k2, −k2, . . . , kn, −kn, 0, 0, . . . , 0, 0)

= (0, 0, 0, 0, . . . , 0, 0, 0, 0, . . . , 0, 0). (20)

We have k1 = k2 = · · · = kn = 0, indicating that the group of vec-
tors η1, η2, . . . , ηn are linearly independent, which are n linearly
independent eigenvectors that satisfy Pη = −η. �

We search for n − 1 linearly independent eigenvectors that
satisfy Pη = η, which are also linearly independent of the n eigen-
vectors found above. For the jth eigenvector (j = 1, 2, . . . , n), let
(ηj,q1 , ηj,q2) = (1, 1), (ηj,q2j−1

, ηj,q2j
) = (−1, −1) and the eigencompo-

nents of the remaining K − 4 nodes in nodal set V1 be zero. This
leads to n − 1 K-dimensional vectors. Similarly, we expand them
into |V|-dimensional eigenvectors, as in formula (19). Apparently,
the eigenvectors so constructed satisfy Pη = η. Here, we prove that
the newly constructed n − 1 eigenvectors are linearly independent
of each other and are also linearly independent of the n eigenvectors
found above.

Proof. The matrix composed of the newly constructed n − 1
vectors is
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(21)
Denote each row of the matrix as ηn+1, ηn+2, . . . , η2n−1, respectively,
from top to bottom. There exist k1, k2, . . . , k2n−1 such that k1η1

+ k2η2 + · · · + k2n−1η2n−1 = 0. We have

{

k1 +
∑2n−1

l=n+1 kl = 0,

−k1 +
∑2n−1

l=n+1 kl = 0
(22)

and

{

kj+1 − kn+j = 0,

−kj+1 − kn+j = 0,
j = 1, 2, . . . , n − 1. (23)

From Eqs. (22) and (23), we have k1 = k2 = · · · = k2n−1 = 0, which
means that the group of vectors η1, η2, . . . , η2n−1 are linearly inde-
pendent of each other, leading to 2n − 1 linearly independent eigen-
vectors. Among them, n eigenvectors satisfy Pη = −η and n − 1
eigenvectors satisfy Pη = η.

For K = 2n + 1, where n is a positive integer, there are 2n lin-
early independent eigenvectors. Similarly, we perform node pairing
and permutation to construct the 2n eigenvectors. The first 2n − 1
eigenvectors are constructed in the same way as for K = 2n, and
the last eigenvector is η2n = (1, 1, . . . , 1, 1, −2n, 0, 0, . . . , 0, 0). The
eigenvector η2n is then linearly independent of the above 2n − 1
eigenvectors, and we have Pη = η.

According to the permutation method explained, all eigenvec-
tors of the network satisfy Pη = ±η. Since we pair nodes arbitrar-
ily, permuting any two nodes can make all the eigenvalues satisfy
Pη = ±η. According to Lemma 2 in the main text, the permutation
corresponding to the permutation matrix P is an automorphism;
that is, nodes in the two basic symmetric motifs found by the SPV
method must be symmetric. �

V. DISCUSSION

Symmetric structures are fundamental to dynamical processes
on complex networks, rendering important accurately identifying
these structures. While the algebraic-group theory based methods
can find all the symmetric nodes in the network in quasipolyno-
mial time, these methods do not provide a statistical measure to
describe whether the two nodes are symmetrical. To articulate a
statistical measure that can lead to an efficient method to find all
the symmetric nodes in linear time and can characterize the struc-
tural similarity of nodes and serve to quantify the roles of nodes is
the goal of the present work. In particular, we have introduced the
nodal SPVs, which are defined through the adjacency relationships
in the network. Mathematically, by employing the algebraic-group
theory, we transform the interplay between SPVs and network sym-
metries into an eigenvector problem and prove that having equal
SPV values is a necessary condition for the underlying nodes to be
symmetric: if the nodes are symmetric, then their SPV values must
be equal. This is a stronger necessary condition for nodal symmetry
than that based on, e.g., the redundant eigenvectors as reported in
the literature. Utilizing real-world networks, we have demonstrated
that our SPV-based method allows all symmetric structures to be
found with a small number of iterations of the SPV in computa-
tion time that is proportional to the network size. More importantly,
our SPV-based framework enables the role of the nodal influence in
dynamical processes to be quantified and differentiated.
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A caveat of our SPV method is that it provides a necessary but
not a sufficient condition for the symmetric nodes. There are regu-
lar networks, such as the Frucht network, or networks that contain
a dominant regular component, which have no symmetries, but the
SPV values are equal among the nodes. The SPV method is, there-
fore, not applicable to such networks. We argue that this deficiency
is, in fact, shared by some existing methods for finding the network
symmetries. In the real world, networks that contain a dominant
component are rare. We present strong numerical evidence and a
mathematical argument that our SPV method is generally applicable
to finding symmetric nodes in real-world networks.

The similarity between two nodes based on common neighbors
has been widely used in link prediction and recommendation sys-
tems. Since the symmetric nodes have exactly the same structural
characteristics, our SPV framework provides a natural way to define
the structural similarity. In particular, defining a structural simi-
larity index or centrality, we cluster the nodes in the network and
find that the SPV-based clustering method is remarkably effective
in coarse-graining the network in that it outperforms the previ-
ous clustering methods based on the traditional centralities, such
as the degree, eigenvector centrality, H-index, and closeness and
betweenness centralities. More importantly, from the standpoint of
dynamical processes, our SPV-based clustering centrality can be
used to measure and quantify the roles of nodes in propagation
dynamics. A detailed calculation using six real-world networks indi-
cates that, in most cases, the SPV-based centrality outperforms the
conventional centralities by a large margin in predicting the nodal
influences on propagation dynamics.

Taken together, our work provides a conceptually appealing
and computationally extremely efficient framework to find symmet-
ric nodes in large complex networks, totally bypassing the sophis-
ticated steps in the conventional methods based on automorphism
groups. The method also leads to statistical characterization of nodal
symmetries, with direct applications to coarse-graining of complex
networks and cluster synchronization that may occur among remote
nodes. While large regular components are rare in real networks, the
isomorphism and automorphism of regular networks have always
been the focus and a difficult aspect of graph theory.51,52 From a theo-
retical point of view, to characterize the structural position vectors in
networks that contain a dominant regular component to distinguish
the asymmetric nodes is worth studying.
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APPENDIX A: SYMMETRY AND AUTOMORPHISM

GROUPS

A network is a graph G(V, E) with vertex set V and edge set E,
where a pair of nodes are adjacent if there is an edge between them.
An automorphism is a permutation of the vertices of the network,
which preserves the adjacency. The combinations of a set of auto-
morphisms form a group G = Aut(G) that describes the symmetries
of the network.53 A network with a nontrivial automorphism group
is symmetric.

Consider the permutations of a set of N nodes
Y = v1, v2, . . . , vN. The support of a permutation p is the set of
points that p moves: supp(p) = {vi ∈ V(G)|p(vi) 6= vi}. Two sets
of automorphisms, P and Q, are support-disjoint if every pair of
automorphisms p ∈ P and q ∈ Q has disjoint support. Similarly,
the automorphism subgroups Gp and GQ generated by P and Q
are support-disjoint if P and Q are support-disjoint. The indepen-
dent action of automorphism subgroups provides a way to factorize
the automorphism groups of complex networks into “irreducible
building blocks.”10 In particular, let S be a set of generators of the

TABLE II. Orbital representation for the symmetric motifs and the corresponding geo-

metric factors. The meanings of the symbols are as follows: O∗
α specifies that the

orbit contains α nodes that are connected with each other; Oα means that the orbit

contains α nodes, and there is no connection between them; Oµα signifies that the

orbit contains α nodes with µ edges between them; and Oα
γ

−→ Oα′ means that

the symmetric motifs contain two orbits, and each node in the first orbit is connected

to γ nodes in the second orbit. If γ =α′, the symmetric motif is decomposed into

two independent symmetric motifs, e.g., M7 and M8 in Fig. 3(a). The group of all per-

mutations of n objects is denoted as Sn and o is the wreath product.54 Table IV lists

that there are mainly two symmetric motifs in the six real-world networks: O∗
α and Oα ,

which are the basic symmetric motifs. There are a few symmetric motifs, such as Oµα

and Oα
γ

−→ Oα′ , which are the complex symmetric motifs.

Symmetric motif Orbital representation Geometric factor

M1 O2
2

−→ O4 S2 o S2

M2 O2
1

−→ O2 S2 o S1 orS2

M3 O∗
3 S3

M4, M7, M8 O2 S2

M5 O3 S3

M6 O2
4 S2 o S2
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automorphism groups Aut(G). Suppose that we partition S into n
support-disjoint subsets: S = S1 ∪ S2 · · · Sn such that each Si can-
not itself be decomposed into smaller support-disjoint subsets. Hi is
called the subgroup generated by Si, and every Hi commutes with
all others. A direct product decomposition of the automorphism
groups Aut(G) is

Aut(G) = H1 × H2 × · · · × Hn. (A1)

The decomposition of an automorphism group in Eq. (A1) is
unique and irreducible.10 The direct product factorization given in
Eq. (A1) is the geometric decomposition of Aut(G) and each factor
Hi a geometric component. The induced subgraph on a set of ver-
tices X ⊂ V is the graph obtained by taking X and any edges whose
end points are in X. The induced subgraph on the support of a geo-
metric factor Hi is called the symmetric motif, denoted as MH. A
number of common symmetric motifs in the real-world networks
are shown in Fig. 3. The orbital representation of the symmetric
motifs therein and how the geometric factors of the automorphism
group are related to different symmetric motifs are described in
Table II. For every vertex v ∈ V, the set of vertices to which v
maps under the action of the automorphism group G = Aut(G) is
called a G-orbit of v, denoted as1(v). More formally, we have1(v)
= {g · v ∈ V : g ∈ Aut(G)}. A symmetric motif generally consists of
single or multiple orbits.

APPENDIX B: THE SPV EQUALITY IS A SUFFICIENT

CONDITION FOR THE ADJACENCY MATRIX

CORRESPONDING TO A NETWORK TO HAVE

REDUNDANT EIGENVECTORS

We proceed to prove the theorem in Sec. II C: if the SPV of two
nodes is equal, there will be redundant eigenvectors about them in
the eigenvectors of the adjacency matrix corresponding to the net-
work. If the SPVs of nodes x and y are equal, their corresponding

eigencomponents satisfy the following equations:























∑N
i=1 ciλi(ηi,x − ηi,y) = 0,

∑N
i=1 ciλ

2
i (ηi,x − ηi,y) = 0,

...
∑N

i=1 ciλ
N
i (ηi,x − ηi,y) = 0,

(B1)

where some of the eigenvalues of the network adjacency matrix can
be zero. Without loss of generality, we arbitrarily assume λ1 = 0,
c2 = 0. In general, a large network has repeated eigenvalues. If the
kth and the (k + 1)th eigenvalues are equal: λk = λk+1, Eq. (B1)
becomes



























































∑k−1
i=3 ciλi(ηi,x − ηi,y)+ λk(ck(ηk,x − ηk,y)+ ck+1(ηk+1,x − ηk+1,y)

+
∑N

i=k+2 ciλi(ηi,x − ηi,y) = 0,
∑k−1

i=3 ciλ
2
i (ηi,x − ηi,y)+ λ2

k(ck(ηk,x − ηk,y)+ ck+1(ηk+1,x − ηk+1,y)

+
∑N

i=k+2 ciλ
2
i (ηi,x − ηi,y) = 0,

...
∑k−1

i=3 ciλ
N
i (ηi,x − ηi,y)+ λN

k (ck(ηk,x − ηk,y)+ ck+1(ηk+1,x − ηk+1,y)

+
∑N

i=k+2 ciλ
N
i (ηi,x − ηi,y) = 0.

(B2)

We take the first (N − 3) equations from Eq. (B2) to form a new
set of equations. Regarding ηi,x − ηi,y for i = 3, 4, . . . , k − 1, k + 2,
k + 3, . . . , N and ck(ηk,x − ηk,y)+ ck+1(ηk+1,x − ηk+1,y) for i = k, k
+ 1 as unknown quantities, we have that the determinant of the
coefficient of the new set of equations is

FIG. 8. Schematic illustration of determining nodal sets V1 and S. (1) Take nodes 4 and 5 as an example. Let V1 = {4, 5}. The characteristic equations of the two nodes
are λiηi,4 = ηi,2 + ηi,6 (e1) and λiηi,5 = ηi,3 + ηi,6 (e2), respectively. (2) S = {6}. Substitute the characteristic equations of nodes 2 and 3 into (e1) and (e2), respectively,
to get (λ2

i
− 1)ηi,4 = ηi,1 + λiηi,6, (λ

2
i
− 1)ηi,5 = ηi,1 + λiηi,6, and V1 = {2, 3, 4, 5}. (3) S = {1, 6}. The characteristic components of nodes 4 and 5 can be represented

by the characteristic components of node set S, where V1 = {2, 3, 4, 5} and S = {1, 6}.
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Because the multiplicity of eigenvalues has been eliminated,
we have λ3 6= λ4 6= · · · 6= λk 6= λk+2 6= · · · 6= λN and ci 6= 0 for
i = 3, 4, . . . , k − 1, k + 2, k + 3, . . . , N; therefore, C′ 6= 0. The only
solution of Eq. (B2) is trivial. In the eigenvectors representing L0,
insofar as the corresponding eigenvalues are not zero, the eigencom-
ponents corresponding to nodes x and y are equal.

For nodes x and y with equal SPVs, we further analyze the
relationship between their eigencomponents in the remaining eigen-
vectors. In particular, by transforming and simplifying the charac-
teristic equations A · η = λη, the eigencomponents corresponding
to nodes x and y can be represented by the eigencomponents of any
identical nodal set S. We assume that the eigencomponents corre-
sponding to nodes x and y are represented by the eigencomponents
of node sc and write

ϕ0(λi)ηi,x = ϕ1(λi)ηi,sc, (B3)

ψ0(λi)ηi,y = ψ1(λi)ηi,sc, (B4)

or

ϕ0(λi)

ψ0(λi

)ηi,x =
ϕ1(λi)

ψ1(λi)
ηi,y. (B5)

Since ϕ0(λi)/ψ0(λi) and ϕ1(λi)/ψ1(λi) are polynomials in λi, we let
T0(λi) ≡ ϕ0(λi)/ψ0(λi) and T1(λi) ≡ ϕ1(λi)/ψ1(λi). Equation (B5)
becomes

T0(λi)ηi,x = T1(λi)ηi,y. (B6)

If the eigenvalue λi associated with the eigenvector used to represent
L0 is non-zero, we have ηi,x = ηi,y and

T0(λi) = T1(λi). (B7)

It is worth noting that the condition for Eq. (B7) to hold does
not limit the value of λi (except zero), indicating that the equality
T0(λi) = T1(λi) does not depend on the value of λi. That is, the
polynomials T0(λi) and T1(λi) are exactly the same. Substituting
ϕ0(λi) = T0(λi)ψ0(λi) and ϕ1(λi) = T1(λi)ψ1(λi) into Eq. (B3) gives

T0(λi)ψ0(λi)ηi,x = T1(λi)ψ1(λi)ηi,sc (B8)

or

ψ0(λi)ηi,x = ψ1(λi)ηi,sc . (B9)

From Eqs. (B3) and (B9), we see that the eigencomponents corre-
sponding to nodes x and y can be represented by the eigencompo-
nents of any identical nodal set S, and the form of representation is
exactly the same.

To find the identical node set S, we define the characteristic
equation of node j as λiηi,j =

∑

l∈3j
ηi,l, where i = 1, 2, . . . , N and

3j is the set of neighboring nodes of j. That is, the eigencomponent
of node j can be expressed by the eigencomponents of all its neigh-
boring nodes. The process, as illustrated in Fig. 8, consists of the
following four steps.

1. Analyze the characteristic equation λiηi,x =
∑kx

j=1 ηi,xj
of node

x with degree kx, where xj is a neighboring node of x. If all
neighbors of x are removed, node x will be separated from the
network. Denote V1 = {x}.

2. Substitute the characteristic equation of a neighboring node x1

of x into the characteristic equation of x so that the eigencompo-
nents of node x are represented by the eigencomponents of its
neighbors (excluding x1) and the neighbors of x1. If the nodes
used to represent the eigencomponents of x are removed, the
local structure formed by nodes x and x1 must be separated from
the network. Denote V1 = {x, x1}.

3. Continue the iterative process in step 2 until the eigencom-
ponents of node x are represented by the eigencomponents of
nodal set S. If the characteristic equation of node m is used for
iteration, then m is added to V1 and V1 = {x, xi, . . .}. Remove
nodal set S. The local structure localG(V1, E1) formed by V1 is
separated from the network, where E1 is the set of internal edges
of the node set V1.

4. Two possible situations can arise in determining nodal set S:
two nodes may or may not have common neighboring nodes of
different orders. The first case is where nodes x and y have com-
mon neighboring nodes. In this case, simplify the characteristic
equations of nodes x and y according to step 2. If x and y have
a common neighboring set s1,xy, then S = {s1,xy}. In this case,
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simplify the characteristic equations of x and y with the charac-
teristic equations of non-common neighboring nodes and add
these nodes to the set V1. If there is a second-order common
neighboring set s2,xy between nodes x and y, add them to the set S
to get S = {s1,xy, s2,xy}. Continue the process until the eigencom-
ponents of x and y can be represented by the eigencomponents
of S. The second case is where nodes x and y have no nth-order
common neighbors. In this case, all neighbors of x constitute
nodal set S.

Let the identical nodal set be S = {s1, s2, . . . , sk}. Nodes of the
network can then be divided into three sets: V1, S, and the remaining
nodal set V/{V1, S}. We perform elementary row transformation on
matrix A and divide it into blocks by row to get

A · η =





A1

A2

A3



 · η = λη, (B10)

where A1, A2, and A3 are, respectively, |V1| × N, |S| × N, and
|V/{V1, S}| × N adjacency matrices of the local structures formed
by nodal sets V1, S, V/{V1, S} together with their neighbors. This
analysis indicates that the eigencomponents of nodes x and y can be
represented by the eigencomponents of nodal set S = {s1, s2, . . . , sk}

through the characteristic equations A1η = λη. Since we have
proved that the eigencomponents corresponding to x and y can be
represented by the eigencomponents of any identical nodal set S, the
representation is exactly the same. We, therefore, have

f0(λi)ηi,x = f1(λi)ηi,s1 + f2(λi)ηi,s2 + · · · + fk(λi)ηi,sk
, (B11)

f0(λi)ηi,y = f1(λi)ηi,s1 + f2(λi)ηi,s2 + · · · + fk(λi)ηi,sk
. (B12)

If f0(λi) 6= 0, then ηi,x = ηi,y. Permuting nodes x and y, we have that
the eigenvectors associated with such eigenvalues satisfy Pη = η.

We now discuss the case f0(λi) = 0. It can be seen from
Eqs. (B11) and (B12) that the eigencomponents of nodes x and
y are free variables. In order to find the relationship between the
eigencomponents of x and y, we further analyze the characteristic
equation A · η = λη. To do this, we move x and y out of nodal set
V1 and divide all nodes in the network into two sets: V1/{x, y} and
{V/V1, x, y}. The characteristic equation can be written as

A · η =

[

A′
1

A′
2

]

· η = λη, (B13)

whereA′
1 andA′

2 are, respectively, |V1/{x, y}| × N- and |{V/V1, x, y}|
× N-dimensional adjacency matrices of the local structures formed
by nodal sets V1/{x, y} and {V/V1, x, y} as well as their neighbors.
The eigencomponents of V1/{x, y} can be represented by the eigen-
components of the set {x, y, S} through the characteristic equation
A′

1η = λη. From Eqs. (B11) and (B12), the eigencomponents of x
and y are related to the eigencomponents of nodal set S.

We are, therefore, led to analyze the characteristic equation of
any node sl ∈ S: λiηi,sl

=
∑

j∈3sl
ηi,j, where i = 1, 2, . . . , N and 3sl

is

the set of neighbors of node sl. We divide the neighbors of sl into
three parts: the first part is a subset of nodal set V1, the second
part belongs to the set S, and the third part is contained in the set
V/{V1, S}. Since the eigencomponents of the nodes belonging to the

set V1 can be represented by the eigencomponents of the set {x, y, S},
the characteristic equation of node sl can be written as

F0(λi)ηi,sl
= G0(λi)ηi,x + G1(λi)ηi,y +

∑

sj∈S/sl
Fj(λi)ηi,sj

+
∑m

j=1
Hj(λi)ηi,rj , (B14)

where nodal set R(r1, r2, . . . , rm) are the neighbors of node sl in the
set V/{V1, S}. Rearranging the terms, we get

G0(λi)ηi,x + G1(λi)ηi,y = F0(λi)ηi,sl
−

∑

sj∈S/sl
Fj(λi)ηi,sj

−
∑m

j=1
Hj(λi)ηi,rj . (B15)

Let E ≡ F0(λi)ηi,sl
−

∑

sj∈S/sl
Fj(λi)ηi,sj −

∑m
j=1 Hj(λi)ηi,rj . Equation

(B15) leads to

G0(λi)ηi,x = E − G1(λi)ηi,y, (B16)

G1(λi)ηi,y = E − G0(λi)ηi,x. (B17)

Multiplying both sides of Eqs. (B11) and (B12) by G0(λi) and G1(λi),
respectively, and substituting Eqs. (B16) and (B17) into the resulting
equations, we get

f0(λi)G1(λi)ηi,y = f0(λi)E − (f1(λi)ηi,s1 + f2(λi)ηi,s2 + · · ·

+ fk(λi)ηi,sk
)G0(λi), (B18)

f0(λi)G0(λi)ηi,x = f0(λi)E − (f1(λi)ηi,s1 + f2(λi)ηi,s2 + · · ·

+ fk(λi)ηi,sk
)G1(λi). (B19)

Since we have proved that the eigencomponents corresponding to
nodes x and y can be represented by the eigencomponents of any
identical nodal set and the way of representation is exactly the same,
we have G0(λi) = G1(λi). Equation (B14) can be further simplified
to

F0(λi)ηi,sl
= G0(λi)(ηi,x + ηi,y)+

∑

sj∈S/sl
Fj(λi)ηi,sj

+
∑m

j=1
Hj(λi)ηi,rj . (B20)

The above analysis indicates that Eqs. (B11) and (B12) are actu-
ally the consequence of the characteristic equations A1η = λη. As a
result, the eigenvalue satisfying f0(λi) = 0 is determined by the local
structure localG(V1, E1) of nodal set V1 only. Likewise, the eigenvec-
tor associated with this eigenvalue is related to the local structure
localG(V1, E1) formed by V1 only; therefore, the eigencomponents
of nodal set V/V1 can be directly set to zero. Substituting the values
of these components into Eq. (B20), we have that the left side of this
equation is zero, so are the second and third terms on the right side.
We, therefore, have

G0(λi)(ηi,x + ηi,y) = 0 or ηi,x + ηi,y = 0.

Apparently, for f0(λi) 6= 0, the local structure localG(V1, E1) is not
sufficient to determine this eigenvalue; therefore, it must be related
to the structure outside nodal set V1. The eigenvectors of matrix A

can be classified into two categories. The first category is f0(λi) 6= 0,
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and the eigenvectors are determined by the eigencomponents not
only of nodal set V1 but also of the set V/V1. The eigencomponents
of nodes x and y satisfy ηi,x = ηi,y. In the second category defined
by f0(λi) = 0, the eigenvectors are related to the eigencomponents
of nodal set V1 only, and the eigencomponents of nodal set V/V1

are all zero. In this case, the eigencomponents of x and y satisfy
ηi,x + ηi,y = 0.

If there are nodes x′ and y′ with the same SPV in nodal set
V1/{x, y}, their characteristic components have similar properties
to those of nodes x and y. In particular, for the first type of eigen-
vectors, the eigencomponents of x′ and y′ satisfy ηi,x′ = ηi,y′ . For the
second type, we have ηi,x′ + ηi,y′ = 0. If there is a node x′′ in nodal
set V1/{x, y}, whose SPV is not equal to that of any other node in
the set, then using the characteristic equations A1η = λη, the eigen-
components of x′′ are represented by those of nodal set S. Similarly,
consider the eigencomponents of node x′′ for the two types of eigen-
vectors. In the first type, the value of the eigencomponent of x′′ can
be arbitrary. In the second type, according to Eq. (B14) or (B20), we
have ηi,x′′ = 0.

Since the SPVs of nodes x and y are equal, we can know that
the eigencomponents of nodes x and y satisfy two types of relation-
ships: when the eigencomponents are not determined by the local
structure, the components of node x and y are equal; when the eigen-
vectors are determined by the local structure where nodes x and y are
located, the sum of eigencomponents of nodes x and y is 0 and the
eigencomponents of nodes outside the local structure are all 0. The
second type of eigenvectors is called redundant eigenvectors, which
is a necessary condition for node symmetry.18 Also, some scholars
used the redundant eigenvectors to find symmetric structures in the
network.18,19 SPV equality is a stronger necessary condition for node
symmetry than redundant eigenvectors.

However, there may be some special structures in networks
whose eigenvectors also satisfy the property of redundant eigenvec-
tors, but nodes in the structures are asymmetric, such as regular
graphs (see Appendix C). Therefore, when we use the SPV method
to find the symmetric structure, we need to discriminate the special
network structures. Lemma 2 in the main text provides a rigorous
way to identify symmetric nodes, and we can use it to re-identify
the special structures. Almost all algorithms for finding symmet-
ric structures in networks lack rigorous theoretical proofs.2,12,18,20,23

However, it does not affect the practicality of the algorithm.

APPENDIX C: A COMMON CAVEAT AMONG SOME

EXISTING APPROACHES TO FINDING NETWORK

SYMMETRIES

We have emphasized in the main text that our SPV method
represents a necessary but not sufficient criterion for finding the
symmetric nodes. Here, using the Frucht network50 in Fig. 7(a),
we argue that the same deficiency arises in three previous meth-
ods on finding symmetric nodes, namely, the redundant eigenvector
method,18,19 the combinatorial algorithm incorporating the concept
of minimally balanced coloring,20 and the cluster synchronization
method.2,12

We consider the classic Frucht graph in Fig. 7(a) in the main
text. To see if the redundant eigenvector method18,19 can find the
symmetric nodes, we note that the degrees of all nodes in a regular

FIG. 9. Emergence of cluster and global synchronization in the Kuramoto model
with synchronous frustration implemented on the Frucht network. Shown are the
phase evolution of nodes 2, 4, 6, and 8 for (a) λ = 0.2, (b) λ = 0.3, and (c)
λ = 0.5.

graph of size N are equal and the eigenvector corresponding to the
largest eigenvalue is ηN = [1, 1, . . . , 1]N. The rest of the eigenvectors

satisfy the equality
∑N

j=1 ηi,j = 0 (i = 1, 2, . . . , N − 1), where ηi,j is

the jth component of the ith eigenvector. For a small regular graph,
such as a 2-regular graph with three nodes (a triangle), a 2-regular
graph with 4 nodes (a quadrilateral), etc., each node is a symmetric
node. However, for a larger regular graph, nodes are often asym-
metric, as exemplified by the Frucht network in Fig. 7(a) where
no nodes are symmetric. By the redundant eigenvector method,
the eigencomponents of the redundant eigenvectors correspond-
ing to the symmetric nodes are those whose sum is zero, while the
remaining eigencomponents are all zero. Except for the eigenvector
corresponding to the largest eigenvalue, all eigenvectors of a regular
graph satisfy this property. The method would then give the wrong
result that all the nodes in the Frucht network are symmetric nodes.

For the combinatorial algorithm incorporating the concept
of minimally balanced coloring,20 we note that all nodes are first
assigned the same color, and the colors are then reassigned accord-
ing to the adjacency. In particular, if the neighbors of two nodes have
the same color and the numbers of their neighbors with the same
color are identical, then the two nodes are regarded as belonging to
the same class and are assigned the same color. The process contin-
ues until color changes no longer occur. Nodes with the same color
are regarded as symmetric to each other. However, for the Frucht
network, regardless of the number of iterations, all nodes would be
deemed to belong to the same class. The method would then lead to
the incorrect result that all nodes are symmetric to each other.

For the Frucht network, the method based on cluster synchro-
nization to determine node symmetry fails too. To demonstrate this,
we use the Kuramoto model with synchronous frustration,12

θ̇ = ωi + λ

N
∑

j=1

aij sin(θj − θi − α), (C1)
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where (aij) are the elements of the network adjacency matrix, ωi

and θi are the frequency and phase of node i, respectively, λ is the
coupling strength, and α is the phase frustration parameter. We
set α = 0.02, ωi ∈ (0, 1), i = 1, 2, . . . , 12, and the initial phases θi ∈

(−π ,π), i = 1, 2, . . . , 12. Figure 9 presents the phase-time plots of
randomly selected nodes (2,4,6,8) for different values of the coupling
strength. For λ = 0.2, there is no synchronization among the nodes,
as shown in Fig. 9(a). For λ = 0.3, phase synchronization among the
nodes occurs, where the phases between nodes 2 and 4 are closer, as
shown in Fig. 9(b). According to this cluster synchronization behav-
ior, nodes 2 and 4 would be deemed symmetric, which is wrong.
For ω = 0.5, global synchronization among all nodes is achieved,
implying that all nodes in the Frucht network are symmetric, which
is wrong too.

APPENDIX D: STRUCTURAL PROPERTIES OF SIX

REAL-WORLD NETWORKS AND THEIR MOTIFS

Table III lists the structural properties of the six real-world net-
works studied. Table IV lists all the symmetric motifs identified by
the SPV algorithm.

APPENDIX E: SIR MODEL AND KENDALL’S τ

CORRELATION COEFFICIENT

1. SIR model

The standard SIR (susceptible–infected–recovered) model55

has been widely used in simulating epidemic spreading and informa-
tion propagation/diffusion dynamics. At each time step, an infected
node makes contact with its neighbors and each susceptible neigh-
bor is infected with the probability β . The infected node enters
into the state of recovery or removal with the probability λ. It is
convenient to set λ = 1.

To quantify the spreading influence of node i, we initiate the
spreading process with i being the infected seed and all other nodes
being susceptible. The spreading process stops when there are no
infected nodes. We record the fraction of recovered nodes Ri as
the spreading influence of the seed node. According to the hetero-
geneous mean-field theory,56,57 the epidemic threshold in the SIR
model is given by βc = 〈k〉/(〈k2〉 − 〈k〉), where 〈k〉 is the average
degree and 〈k2〉 is the second moment of the random degree vari-
able. In our simulations, we set β = 1.2βc, 1.5βc, 2βc. To eliminate

TABLE III. Structural properties of six real-world networks.

Networks |V| |E| 〈k〉 〈d〉 c r

Facebook 4039 88 234 43.69 3.69 0.606 0.064
Odlis.net 2909 16 388 11.27 3.17 0.296 −0.173
CA-GrQc 4158 13 422 6.46 6.05 0.557 0.639
p2p-Gnutella 6301 20 779 6.60 4.64 0.011 0.035
Yeast 2224 6 609 5.94 4.38 0.138 −0.105
Wiki-Vote 7066 100 736 28.51 3.25 0.142 0.083

the fluctuations of Ri, we average the results over 5000 independent
runs.

2. Kendall’s τ correlation coefficient

The Kendall’s τ correlation coefficient is a widely used
statistical measure for ranking the correlation. Consider two
sequences associated with |V| samples: x = (xi, x2, . . . , x|V|) and
y = (y1, y2, . . . , y|V|). A pair of orders (xi, xj) and (yi, yj) are concor-
dant if both xi > xj and yi > yj or if both xi < xj and yi < yj are
discordant if xi > xj and yi < yj or if both xi < xj and yi > yj. If
xi = xj or yi = yj, the pair is neither concordant nor discordant. As
there are |V|(|V| − 1)/2 pairs of samples in total, the Kendall’s τ
correlation coefficient is defined as

τ = 2(δ+−δ−)/[|V|(|V| − 1)], (E1)

where δ+ and δ− are the numbers of concordant and discordant
pairs, respectively.

Tables V and VI present the Kendall’s τ correlation coeffi-
cient between node influence R and eight indices for β = 1.5βc and
β = 2βc, respectively.

APPENDIX F: IMPACT OF DIMENSION OF TRUNCATED

SPV AND ITS COMPONENT WEIGHTS ON NODAL

PROPAGATION INFLUENCE

In general, the influence of a node depends on the adjacency of
different orders, corresponding to the components of each order in
the SPV. The contribution of each order of adjacency is different.49

Motivated by this, we further study the relative importance of each
order component in the SPV to the nodal propagation influence.

We first set the dimension of S̃∗
i to be n: S̃∗

i = (L1
i , L

2
i , . . . , L

n
i ) for

TABLE IV. Symmetric motifs of the six real networks found through SPVs.

Network Symmetric motif

Facebook (O∗
2)

33 + (O2)
18 + (O∗

3)
9 + O3 + (O∗

4)
4 + O4 + (O∗

5)
2 + O5 + (O7)

2 + O9 + O11 + O13 + O14 + (O2
4)

2
+ O3

6

Odlis.net (O∗
2)

14 + (O2)
30 + (O3)

7 + (O4)
2 + O8 + O15 + (O2

1
−→ O∗

2)

CA-GrQc (O∗
2)

279 + (O2)
128 + (O∗

3)
57 + (O3)

26 + (O∗
4)

17 + (O4)
10 + (O∗

5)
7 + (O5)

2 + (O∗
6)

5 + (O6)
3 + O∗

7 + O∗
8 + O∗

9 + O∗
10

+ O∗
12 + O∗

13 + O∗
14 + O∗

15 + O∗
16 + O∗

17 + O∗
18 + O∗

23 + O∗
32 + (O2

4)
7
+ O6

6

p2p-Gnutella O∗
2 + (O2)

277 + (O3)
77 + (O4)

28 + (O5)
9 + O6 + (O7)

3 + O8 + O9 + (O10)
4 + O26 + O32

Yeast (O∗
2)

2 + (O2)
87 + (O3)

34 + (O4)
22 + (O5)

9 + (O6)
9 + (O7)

5 + (O8)
3 + O9 + (O10)

2

Wiki-Vote (O2)
235 + (O3)

111 + (O4)
68 + (O5)

37 + (O6)
15 + (O7)

13 + (O8)
5 + (O9)

4 + (O10)
2 + (O12)

2 + (O13)
2 + O14 + O15 + O17

+ O19 + O20 + O24 + O26 + O29 + O32
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TABLE V. Kendall’s τ correlation coefficient between node influence R and eight indices for β = 1.5βc. Boldface denotes the largest T value in each row.

Networks Degree H-index k-core Closeness Betweenness Eigenvector SPV SPV(Ñ = N(k))

Facebook 0.6187 0.6501 0.6645 0.4633 0.4219 0.6715 0.7633 0.7602
Odlis.net 0.6729 0.7004 0.7160 0.7915 0.5203 0.8505 0.8640 0.8693
CA-GrQc 0.5620 0.5810 0.5762 0.6284 0.3273 0.6477 0.6184 0.6168
p2p-Gnutella 0.7561 0.7957 0.7862 0.8813 0.6910 0.8228 0.8286 0.8330
Yeast 0.6932 0.7390 0.7424 0.8345 0.5762 0.8121 0.8599 0.8657
Wiki-Vote 0.8392 0.8465 0.8476 0.8543 0.7624 0.8853 0.8888 0.8874

TABLE VI. Kendall’s τ correlation coefficient between the nodal influence R and eight indices for β = 2βc. Boldface denotes the largest T value in each row.

Networks Degree H-index k-core Closeness Betweenness Eigenvector SPV SPV(Ñ = N(k))

Facebook 0.6293 0.6635 0.6786 0.4955 0.4262 0.6579 0.7712 0.7685
Odlis.net 0.6651 0.6966 0.7160 0.7864 0.5101 0.8626 0.8632 0.8678
CA-GrQc 0.5146 0.5372 0.5358 0.6919 0.3172 0.6624 0.5718 0.5695
p2p-Gnutella 0.8099 0.8537 0.8309 0.9183 0.7385 0.7608 0.8794 0.8712
Yeast 0.7416 0.7900 0.7888 0.8152 0.6022 0.7689 0.8666 0.8669
Wiki-Vote 0.8680 0.8753 0.8744 0.8568 0.7789 0.8900 0.9038 0.9051

FIG. 10. Kendall’s τ correlation coefficient between the SPV-based cluster centrality and nodal influence R as a function of the dimension n of the SPV for β = 1.2βc.
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FIG. 11. Kendall’s τ correlation coefficient between the SPV-based cluster centrality and nodal influence R as a function of the dimension n of the SPV for β = 1.5βc.

FIG. 12. Effect of SPV component weights on nodal propagation influence. Shown is Kendall’s τ correlation coefficient between the SPV-based cluster centrality and nodal
influence R vs the weights of the second and third components of the truncated SPV (i.e., the second- and third-order structural positions), denoted as w2 and w3, respectively,
forβ = 1.2βc. From left to right, the networks in each column are Facebook, Odlis.net, CA-GrQc, p2p-Gnutella, Yeast, andWiki-Vote. The scale of the coarse-grained network

in each row from top to bottom is Ñ = N(k-core), N(H-index), and N(k).
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FIG. 13. Effect of SPV component weights on nodal propagation influence. The legends are the same as those in supplementary Fig. 12 except that the value of parameter
β is different: β = 1.5βc.

n = 1, 2, . . . , 10. The scale of the coarse-grained network is set to be
Ñ = N(k), N(H-index), and N(k-core), respectively. To be represen-
tative, we consider two cases where the propagation rate is above the
threshold: β = 1.2βc and 1.5βc. We then assign weights to different

order components of S̃∗
i : S̃∗

i = (w1L
1
i , w2L

2
i , . . . , wnLn

i ).
Figures 10 and 11 show that, when using the SPV-based cluster

centrality index to measure the influence of a node, the perfor-
mance improves with the dimension of the SPV and then saturates.
For example, if the SPV is one-dimensional, the only information
it contains is the nodal degree; therefore, the performance is rela-
tively poor. However, a three-dimensional SPV can already predict
the nodal influence well, but a higher-dimensional SPV only leads
to incremental improvement in the performance. In Figs. 10(d)
and 11(d), for Ñ = N(k − core), the performance curve is irregu-
lar due mainly to the reason that the scale of the coarse-grained
network is too small; therefore, the performance of the SPV-based
cluster centrality is not stable. In this case, increasing the dimension
of the SPV does not improve the performance significantly. When
the scale of the coarse-grained network is large, as the dimension-
ality increases, the level of classification becomes more detailed. In
this case, the performance of cluster centrality tends to improve with
the dimension before reaching a plateau.

We also study the relative importance of each component of
the SPV to nodal propagation influence. Typically, the first three
components of the SPV suffice to quantify the nodal influence. Gen-
erally, the nodal degree (the first-order component of SPV) to some
extent reflects the propagation influence of nodes. However, the
extent to which the two-, three-, and a higher-dimensional struc-
ture of the SPV reflect the influence of nodes is worth elucidating.
For this purpose, we study the relative importance of the two- and
three-dimensional SPVs to nodal influence. In particular, we fix
w1 = 1 and adjust (w2, w3) in the range 0.1 ≤ (w2, w3) ≤ 10. Sup-

plementary Figs. 12 and 13 show that, except for the CA-GrQc
network, when the SPV-based cluster centrality is used to quantify
the nodal influence, the optimal region is w2 > 1, w3 < 1. We also
find that increasing the weight of the second-order structural posi-
tion has a larger impact on the nodal influence than increasing the
weight of the third-order structural position. In the CA-GrQc net-
work, the optimal area is in w3 > 1, and increasing the weight of
the third-order structural position has a larger impact on the rank-
ing performance of cluster centrality. These results indicate that,
when the average path length of the network is small, the contribu-
tion of the second-order adjacency relationship to the nodal influ-
ence is greater than that of the third-order relationship. When the
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average path length of the network is large (e.g., the CA-GrQc net-
work whose average path length is 〈d〉 = 6.05), the contribution of
the node’s third-order adjacency relationship to the nodal influence
is greater than that of the second-order relationship. (The average
path lengths of the six real-world networks are listed in Table III.)
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