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ABSTRACT

We uncover a phenomenon in coupled nonlinear networks with a symmetry: as a bifurcation parameter changes through a critical value,
synchronization among a subset of nodes can deteriorate abruptly, and, simultaneously, perfect synchronization emerges suddenly among
a different subset of nodes that are not directly connected. This is a synchronization metamorphosis leading to an explosive transition to
remote synchronization. The finding demonstrates that an explosive onset of synchrony and remote synchronization, two phenomena that
have been studied separately, can arise in the same system due to symmetry, providing another proof that the interplay between nonlinear
dynamics and symmetry can lead to a surprising phenomenon in physical systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088989

Synchronization has been an active research area in nonlinear
dynamics and network science. The effects of network topology
on synchronization have been studied for more than two decades.
Recent years have witnessed a growing interest in understanding
how various symmetries of the network affect synchronization.
There are two actively studied phenomena: explosive synchro-
nization and remote synchronization. In explosive synchroniza-
tion, as a system parameter changes through a critical point,
synchronization emerges suddenly and discontinuously, where
some measure of the synchronization abruptly increases from
zero to a finite value—the generic feature of a first-order phase
transition. In remote synchronization, certain non-directly cou-
pled dynamical units are synchronized but those that are directly
coupled are not. Previously, the two phenomena were regarded
as unrelated and studied separately. This paper reports the find-
ing that the two phenomena can occur simultaneously in the
same network system. In particular, in nonlinear dynamical net-
works with a symmetry, as a parameter changes through a critical
value, synchronization among a subset of nodes can deteriorate
abruptly. Simultaneously, perfect synchronization emerges sud-
denly among a different subset of nodes that are not directly
connected. This is a synchronization metamorphosis leading to

an explosive transition to remote synchronization. The finding
demonstrates that explosive onset of synchrony and remote syn-
chronization, two phenomena that have been studied separately,
can arise in the same system due to symmetry, providing another
proof that the interplay between nonlinear dynamics and symme-
try can lead to a surprising phenomenon in physical systems.

I. INTRODUCTION

In physics, the existence of a symmetry implies the conserva-
tion of a physical quantity and a great deal can be learned about the
system without analyzing the intermediary details of the system. The
principle of symmetry often leads to the discoveries of unexpected
and surprising phenomena. In complex networks, intricate dynam-
ical phenomena such as cluster synchronization are the results of
symmetry.1–5 Here, we report such a phenomenon: synchroniza-
tion can switch abruptly from one group of nodes to another as
a bifurcation parameter passes through a critical point, leading to
explosively remote synchronization, signifying a synchronization
metamorphosis in nonlinear dynamical networks.
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Synchronization has been an extremely active research topic in
nonlinear and complex dynamical systems,6,7 which is manifested as
the emergence of coherent motion among coupled dynamical units
when the interaction or coupling is sufficiently strong. Some back-
ground of synchronization in nonlinear and complex systems is as
follows. In a typical study, the setting is coupled nonlinear oscil-
lators, where the bifurcation or control parameter is the coupling
strength among the oscillators. Historically, a central task is to iden-
tify the critical point at which a transition from desynchronization to
synchronization occurs.6,7 Depending on the dynamics of the oscil-
lators and the coupling function, the system can have a sequence
of transitions, giving rise to distinct synchronization regimes in the
parameter space. For example, for a system of coupled identical non-
linear oscillators, complete synchronization can arise when the cou-
pling exceeds a critical strength that can be determined by the master
stability function.27,28 Systems of nonlinearly coupled phase oscilla-
tors, e.g., those described by the classic Kuramoto model6 can host
phase synchronization and the critical coupling strength required
for the onset of this type of “weak” synchronization can be deter-
mined by the mean-field theory.29,30 Synchronization in coupled
physical oscillators was experimentally studied.31,32 A counterintu-
itive phenomenon is that adding connections can hinder network
synchronization among time-delayed oscillators.33 Some previous
key studies of synchronization in complex networks are as follows.
It was found that small-world networks, due to their small network
diameters, are more synchronizable than regular networks of com-
parable sizes,34 but heterogeneity in the network structure presents
an obstacle to synchronization.35 Subsequently, it was found that
heterogeneous networks with weighted links can be more synchro-
nizable than small-world and random networks.36 Synchronization
in complex clustered networks37 and the onset of chaotic phase
synchronization in complex networks of coupled heterogeneous
oscillators were also studied.38 The interplay between network sym-
metry and synchronization was uncovered39,40 and understood.2,3,17

In particular, a symmetry group can be generated by the possible
symmetries of the network and the orbits of the group determine
the partition of the synchronous clusters. In general, the phase
space of the whole networked dynamical system can be decom-
posed into the synchronization subspace and the transverse sub-
space through a transformation matrix generated by the symmetry
group, which determines the stability of the cluster synchronization
patterns.2,3

Recent years have witnessed the discovery of two remark-
able synchronization phenomena: explosive synchronization8–15 and
remote synchronization.16–21 In explosive synchronization, as a sys-
tem parameter changes through a critical point, synchronization
emerges suddenly and discontinuously (in the sense that some
measure of the synchronization abruptly increases from zero to a
finite value), signifying a first-order phase transition. In remote
synchronization, certain non-directly coupled dynamical units are
synchronized but those that are directly coupled are not. Previ-
ously, the two phenomena were regarded as unrelated and studied
separately. In this paper, we demonstrate that the two phenomena
can occur simultaneously in the same network system through a
synchronization metamorphosis.

A mechanism for explosive synchronization is that, at the
abrupt transition point, a number of small sized synchronous

clusters have already existed, and the transition is essentially a per-
colation process leading to a giant connected component of these
clusters.22 Remote synchronization is a manifestation of the fun-
damental symmetry in the network. Our idea is that, in a network
with certain symmetry, the nodes are organized as symmetric clus-
ters: within each cluster, nodes are locally connected but there is no
coupling among nodes in different clusters. Each node in a cluster
has symmetric counterparts in other clusters. The sets of symmet-
ric nodes in all the clusters constitute various layers, where there is
no direct coupling in any of the layers, in which the nodes appear
completely isolated from each other. The layers are thus “virtual.”
Nodes in each cluster are connected locally and can reach synchro-
nization readily, e.g., even in the weakly coupling regime, but there is
no inter-cluster synchronization. As the coupling becomes stronger,
an explosive percolation23 among the symmetric clusters can occur,
leading to a sudden onset of synchronization among the nodes in
each virtual layer. Because of the symmetry, the remote synchroniza-
tion tends to be perfect. However, this does not guarantee inter-layer
synchronization because of the lack of any symmetry among the lay-
ers. In fact, synchronization among the nodes in a cluster is fragile
and can be weakened when the synchronization among the remote,
symmetric nodes takes over. At the explosive transition, there is then
a “transfer” of synchronization from the clusters to the virtual lay-
ers—a metamorphosis. From the point of view of the whole network,
global synchronization can arise explosively at the transition but it is
only partial. Complete synchronization among all nodes can eventu-
ally occur when the coupling is sufficiently strong. To demonstrate
these phenomena in a concrete setting, we consider a multichain
network with a star symmetry and implement the Kuramoto phase-
coupled dynamics on the network—a typical setting for studying
explosive synchronization. We develop a theoretical understanding
of explosively remote synchronization based on symmetry consider-
ations, and the robustness of this phenomenon and synchronization
metamorphosis is established.

II. RESULTS

A. Model and simulation setting

To demonstrate the two phenomena in a concrete setting, we
consider the classic Kuramoto model,6

θ̇i = ωi + ε

N
∑

j=1

Aij sin(θj − θi), (1)

where ωi and θi are the frequency and phase of node i, respec-
tively, and Aij is the ijth element of the network adjacency matrix
A : Aij = 1 if there is a direct link between nodes i and j and
Aij = 0 otherwise. We exploit the star network structure to search
for synchronization metamorphosis and explosively remote syn-
chronization, as it was a previously established setting to demon-
strate explosive synchronization.13,16 Given a simple star network of
n peripheral nodes [Fig. 1(a)], we extend each peripheral node into a
linear chain to generate a concentric chain network, where there are
n such chains radiating from the original central (hub) node with
the same length m, i.e., there are m nodes along each linear chain.
Nodes on different chains but with an equal distance from the hub
node are circularly symmetrical with respect to each other, and they
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FIG. 1. Synchronization metamorphosis in a star-chain network. (a) A star net-
work with n peripheral nodes. (b) A star-chain network where each original
peripheral node is extended into a linear chain of length m. The resulting net-
work hasm circular virtual layers, each with n nodes that are not directly coupled.
(c) Chain order parameter rc vs ε form = 12 and n = 10. In the forward direction,
rc reaches one for ε & 0 and remains approximately constant until the critical

value ε
(f)
c ≈ 0.79 is reached at which a sudden drop occurs. In the backward

direction, rc decreases continuously and smoothly as ε decreases from a large

value and increases abruptly to one at ε
(b)
c ≈ 0.31. A hysteresis loop emerges

along each chain (cluster). (d) and (e) Layer order parameter rl vs ε for the first and
last layers, respectively. An explosive transition to perfect synchronization (rl = 1)

occurs at ε
(f)
c in the forward direction. In the backward direction, an explosive

transition from perfect layer synchronization to total incoherence occurs at ε
(b)
c ,

forming a hysteresis. (f) Global order parameter r vs ε for the forward (black trace)
and backward (yellow trace) directions. A synchronization metamorphosis occurs

at both ε
(f)
c and ε

(b)
c , where perfect remote synchronization in every virtual layer is

achieved at a limited loss of synchronization in the chain direction in the forward
direction and remote synchronization in every layer is lost but synchronization
along the chain becomes perfect in the backward direction, both occurring in an
explosive manner.

form a “virtual layer” because they are not directly coupled with each
other. The network, thus, has m virtual layers—each with n nodes,
as shown in Fig. 1(b). The network has N = nm + 1 nodes and we
label the central hub node with the index one.

To implement the Kuramoto dynamics, we set the initial fre-
quency of the central hub node to be ω1 = 4.0 and those of all other
nodes to be ωi ∈ (1, 1.01) for i = 2, 3, . . . , N. The initial phases are
θi ∈ (−π , π) for i = 1, 2, . . . , N. These initial frequencies and phases

are randomly distributed in their respective ranges with a uni-
form probability density function. To characterize the synchronous
behaviors on the network, we use three types of order parameters:
(1) the global order parameter defined as

r =

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiθj

∣

∣

∣

∣
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N, (2)

(2) the layer order parameter

rl =

∣
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n, (3)

where sl (l = 1, 2, . . . , m) denotes the nodal set of each layer, and (3)
the chain order parameter

rc =

∣

∣

∣

∣

∣

∣

∑

j∈sc

eiθj

∣

∣

∣

∣

∣

∣

/

m, (4)

where sc (c = 1, 2, . . . , n) is the nodal set of each chain (exclud-
ing the central hub node). The order parameters r, rl, and rc, thus,
characterize the synchronization among all, intra-layer, and intra-
chain nodes, respectively, where r, rl, rc ∈ [0, 1]. In particular, null
values of these parameters signify that the nodal dynamics are com-
pletely incoherent and there is lack of any synchronization in the
network. In the opposite extreme, r = 1 indicates that all nodes in
the network are synchronized, while rl = 1 (rc = 1) means that all
nodes in a virtual layer (all nodes in a linear chain) are completely
synchronized.

B. Main numerical results

Figure 1(c) shows, for a star-chain network with m = 12 lay-
ers and each with n = 10 nodes, the chain order parameter rc for an
arbitrary chain vs the coupling parameter. In the forward direction,
perfect synchronization is achieved as ε becomes nonzero. The rc

value remains at approximately a constant value until ε
(f)
c ≈ 0.79, at

which rc drops discontinuously from a near unity value to a lower
value, signifying a replacement of complete synchronization along
the chain by partial synchronization and certain loss of synchroniza-
tion. In the backward direction, i.e., as ε decreases from a relatively
large value (e.g., two), rc decreases smoothly from a near unity value
until ε(b)

c ≈ 0.31, at which rc increases suddenly to a near unity value
so that complete synchronization along the chain is restored. The

difference between the values of ε
(f)
c and ε(b)

c signifies a hysteresis
loop.

The phenomenon of explosively remote synchronization is
demonstrated in Figs. 1(d) and 1(e), where the layer order parameter
rl for l = 1 and l = 12 (the last layer) vs ε is shown. In the forward

direction, a transition to explosive synchronization occurs at ε
(f)
c ,

where rl immediately reaches the maximal value one as ε increases

through ε
(f)
c . This is quite striking as perfect synchronization emerges

among nodes that are not directly coupled. Figures 1(d) and 1(e) also
show that, in the backward direction, rl drops suddenly from one to
some near-zero value as ε decreases through ε(b)

c . Compared with the
behavior of the chain order parameter rc in Fig. 1(c), the hysteresis
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loops in Figs. 1(d) and 1(e) are nearly perfect in the sense of sudden
unity changes in the order parameter.

Figures 1(c)–1(e) present evidence for the phenomenon of
synchronization metamorphosis. In particular, when explosively

remote synchronization sets in at ε
(f)
c , as shown in Figs. 1(d) and 1(e),

rl increases from a near -zero value to a near unity value, while the
value of rc decreases from one to a value about 0.8 [Fig. 1(d)], indi-
cating a weakening of the synchronous behavior along the chain.
That is, remote synchronization along the circumferential direction
is achieved upon an infinitesimal change in ε at the loss of certain

degree of synchronization in the radial direction. At ε
(f)
c , there is

then a sudden jump in the group of synchronized nodes, signifying a
synchronization metamorphosis. As shown in Figs. 1(c)–1(e), meta-
morphosis in the backward direction is more pronounced because,
as ε decreases through ε(b)

c , remote synchronization is lost almost
completely but synchronization along the chain becomes near per-
fect, both occurring in an abrupt and explosive manner. Because of
the circular symmetry of the network structure, the phenomenon of
synchronization metamorphosis occurs with respect to any circular
layer and any linear chain in the radial direction.

Figure 1(f) shows the global order parameter r vs ε. Globally,
in the forward direction, there is a transition to explosive synchro-

nization as ε increases through ε
(f)
c , where r & 0 for ε < ε

(f)
c and r

increases abruptly to a large value of about 0.8 for ε = ε
(f)
c + 0. As

ε increases further from ε
(f)
c , r approaches the maximally possible

value one. Note that, global synchronization as characterized by the
order parameter r can never be perfect in the sense that the value of
r can never reach one for any finite coupling, but both local cluster
synchronization along a chain and remote synchronization in a vir-
tual layer can be perfect as the values of rc and rl can reach unity.
The hysteresis loop exhibited in Figs. 1(c)–1(f) is typical of explosive
synchronization.8–15

To visualize the actual pattern of remote synchronization
among the phase oscillators, we display in Figs. 2(a) and 2(b) all
the phase variables of the network for ε = 0.79 (right after the onset
of explosively remote synchronization in the forward direction) and
ε = 0.31 (right before the destruction of the remote synchronization
in the backward direction), respectively. Various plateaus represent
the nearly constant phases in different virtual layers, i.e., remote
synchronization.

The results in Fig. 1 demonstrate that a synchronization meta-
morphosis occurs in both the forward and backward directions but
at a different critical point, leading to a hysteresis loop in the meta-
morphosis. The parameter interval of the hysteresis loop is given by

1ε = ε
(f)
c − ε(b)

c . How does 1ε depend on the network structural
parameters m and n? Figure 3(a) shows, for fixed m = 12 circular
layers, 1ε vs n, the number of linear chains. It can be seen that,

while the values of ε
(f)
c and ε(b)

c depend on n, the size of the hysteresis
interval 1ε is relatively large and hardly changes with n, suggesting
that the metamorphosis hysteresis is robust. Similarly, for a fixed
value of n, e.g., n = 10, 1ε maintains at a large value, regardless
of how many circular layers hosting remote synchronization are in
the network, as shown in the inset in Fig. 3(a). Globally, for the
whole network, the metamorphosis leads to explosive synchroniza-
tion with a hysteresis loop in the global order parameter, which is
robust with respect to variations in the number of chains and virtual

FIG. 2. Patterns of remote synchronization. Shown are the phase variables at a
large time for two cases: (a) ε = 0.79 and (b) ε = 0.31. Various nearly constant
plateaus indicate synchronization among the nodes in the corresponding virtual
layers.

layers, as exemplified in Fig. 3(b) for fixed m = 12 and in Fig. 3(c)
for n = 10, respectively.

C. Remote synchronization in a symmetric network

We demonstrate that remote synchronization can occur in
networks with a symmetry. Specifically, we consider a sim-
ple network of seven nodes and six edges with the stan-
dard Kuramoto phase dynamics, as illustrated in Fig. 4(a),
where there are three pairs of symmetric nodes: {2,3}, {4,5},
{6,7}. We set the initial frequencies of the seven nodes as

FIG. 3. Dependence of the size of hysteresis loop on network structural param-
eters. (a) 1ε vs n for fixed m = 12. Inset: 1ε vs m for fixed n = 10. In both
cases, 1ε is relatively large and its value has little dependence on n and/or m,
demonstrating the robustness of the hysteresis loop associated with the explo-
sive transitions. (b) Global order parameter r vs n in the forward and backward
directions for m = 12 and (c) r vs m in the forward and backward directions for
n = 10.
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FIG. 4. Remote synchronization in a toy symmetric network with the standard Kuramoto phase-coupled dynamics. (a) The network structure. By choosing the frequency
parameter ωi properly, three pairs of symmetric nodes can be generated: {2,3}, {4,5}, {6,7}. (b) Occurrence of remote synchronization for ε = 0.35, where the nodes in
each symmetric pair, which are not directly connected, are synchronized, but the directly connected nodes are not synchronized. (c) Global phase synchronization among all
seven nodes for ε = 0.8. (d) Global complete synchronization in the network for ε = 5.0.

ω = {2.305, 1.102, 1.102, 0.803, 0.803, 0.506, 0.506} and choose their
initial phase from the interval (−π , π). Figure 4(b) shows, for
ε = 0.35, the phase evolution of the seven nodes. For this relatively
weak coupling, the network as a whole is not synchronized. How-
ever, the two nodes in each symmetric pair are synchronized, which

is in fact remote synchronization, as the nodes are not directly con-
nected. For this coupling, the nodes that are directly connected are
not synchronized. For slightly stronger coupling, e.g., ε = 0.8, the
network achieves global phase synchronization, in addition to clus-
ter synchronization of each symmetric pair, as shown in Fig. 4(c).

FIG. 5. Explosively remote synchronization in a Cayley Tree. (a) The network structure. (b) Global order parameter r vs the coupling parameter ε. There is an explosive
transition to partial global synchronization, as the value of r does not reach unity after the transition. An explosive transition also occurs in the backward direction, generating
a hysteresis. (c)–(e) The layer order parameter rl vs ε for the virtual layers m = 2, 3, and 4. In each layer, there is an explosive transition to perfect synchronization (in the
sense of rl = 1 at the onset of synchronization) and a hysteresis.
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For larger coupling, e.g., ε = 5.0, there is complete synchronization
of all nodes in the network, as shown in Fig. 4(d).

D. Explosively remote synchronization in a tree

network

To demonstrate the generality of explosively remote synchro-
nization in networks with a symmetry, we study the synchronization
dynamics of the Cayley tree, as shown in Fig. 5(a). A node is in
the virtual layer m when the path length from this node to the
central node is m. For a tree network with four virtual layers, the
numbers of nodes in the layers are 3, 6, 12, and 24, respectively.
The initial frequency of the central node is set to be ωH = 0.47
and the initial frequencies of the nodes in the first to the fourth
virtual layers are ω1 ∈ [1.3, 1.31], ω2 ∈ [1.6, 1.61], ω3 ∈ [2.0, 2.01],
and ω4 ∈ [3.9, 3.91], respectively. Figure 5(b) shows the global order
parameter r vs the coupling parameter ε, which exhibits an explosive
transition to partial global synchronization in the forward direction
and a hysteresis. Figures 5(c)–5(e) show the layer order parameter rl

vs ε for the virtual layers m = 2, 3 and 4, respectively, all exhibiting
an explosive transition to perfect remote synchronization among the
nodes in the layer that are not directly connected. While synchro-
nization within each layer is perfect in the sense of rl = 1, there is
no complete interlayer synchronization, so global synchronization
in the entire tree network is only partial, i.e., r < 1 at the onset of
explosively remote synchronization.

III. A THEORETICAL ANALYSIS BASED ON SYMMETRY

CONSIDERATIONS

We exploit the similarity between explosive percolation23 and
explosive transition to synchronization.22 In the forward direction,

for ε . ε
(f)
c , nodes within each chain have already achieved near

perfect synchronization but there is no interchain synchronization,

leading to cluster synchronization. At ε
(f)
c , the dynamics of these

symmetric clusters merge to form a giant synchronous component

in the dynamical sense. Globally, the value of ε
(f)
c is far from being

sufficiently large, so global synchronization in the giant compo-
nent is not perfect. If remote synchronization among the symmetric
nodes in different chains is perfect, then synchronization in the chair
direction, i.e., within each cluster, must be weakened, leading to a
metamorphosis. The question is why the remote synchronization
can be perfect. The answer lies in the symmetry of the network,
which guarantees robust synchronization between symmetric nodes,
even when there is no direct coupling among them, at the explosive
onset.

As the coupling parameter approaches the critical value ε
(f)
c ,

the phase difference between any pair of oscillators is small, so the
Kuramoto system can be linearized as

θ̇i ≈ ωi + ε(f)
c

N
∑

j=1

Aij(θj − θi).

Consider a pair of symmetric nodes with the same degree: i and m,
which are not directly connected. The evolution of the phase variable

θm is governed by a similar equation,

θ̇m ≈ ωm + ε(f)
c

N
∑

n=1

Amn(θn − θm).

At the onset of synchronization, we have θ̇i − θ̇m = 0, so

(ωi − ωm)/ε(f)
c = ki(θi − θm) −

ni
∑

j=1

(θij − θmj
), (5)

where ki is the degree of node i and m, ni ≤ ki is their degree after
removing the common neighboring nodes, and ij and mj denote the
neighboring sets of nodes i and m, respectively. Since nodes i and m
are symmetric, there is an automorphic permutation π : m = π(i),
with P as the corresponding automorphic matrix that satisfies
P · A = A · P . Let e and f be another pair of symmetric nodes:
e = π(f). Permuting all symmetric nodes leads to

(PA)mf =
∑

PmlAlf = Aif

and

(AP)mf =
∑

AmlPlf = Ame. (6)

The identity P · A = A · P stipulates that if f is a neighbor of i,
then e must be a neighbor of m. That is, the neighbors of symmetric
nodes are also symmetric to each other. Denoting the neighbors of i
and m as ij and mj (j = 1, . . . , ni) and using θ̇ij − θ̇mj

= 0, we get

(ωij − ωmj
)/ε(f)

c = kij(θij − θmj
) −

nij
∑

q=1

(θij ,q − θmj ,q) (7)

for j = 1, . . . , ni, where nodes (ij, q) and (mj, q) for q = 1, . . . , nij

denote the sets of neighboring nodes of ij and mj, respectively. The
Kuramoto equations for those neighboring nodes and in fact the
equations for all nodes in the whole symmetric motif can be written
down in a similar way. At the onset of synchronization, the terms on
the left hand side of Eq. (7) are zero. Say there are p pairs of sym-
metric nodes in this symmetric motif that constitute two symmetric
groups of nodes, denoted as G1 and G2, respectively. Converting the
Kuramoto equations of all the symmetric nodes in G1 and G2 into
the form of Eq. (7) and combining them lead to

(L + B) · X = 0, (8)

where L is the p × p Laplacian matrix of G1 or G2 and B is a diag-
onal matrix of elements yl (l = 1, . . . , p) with yl being the number
of common neighbors between this node and its symmetric coun-
terpart, and X is a p × 1 vector of the phase differences between the
symmetric nodes. If the determinant of (L + B) is not zero, the
only solution will be X = 0, i.e., any pair of symmetric nodes are
perfectly synchronized in spite of the absence of direct links between
them.

To prove |L + B| 6= 0, we begin by performing elemen-
tary row and column transformations of the matrix (L + B) and
changing the rows and columns so that yl 6= 0 appears in the first
row and the first column of the matrix. If there are an additional
row and column with yl 6= 0, we place them as the second row and
the second column, and so on, to obtain the following matrix:
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R =

















−
∑p

j=1 r1j + y′
1 r12 r13 · · · r1p

r21 −
∑p

j=1 r2j + y′
2 r23 · · · r2p

r31 r32 −
∑p

j=1 r3j + y′
3 · · · r3p

...
...

...
. . .

...

rp1 rp2 rp3 · · · −
∑p

j=1 rpj + y′
p

















, (9)

where rij = 0 or −1. Consider the case where y′
1 6= 0 is the only

nonzero value among all the y′
l (l = 1, . . . , p), we can convert R into

a Laplacian matrix through row and column additions.
We first treat the case of y′

1 = 1. Adding a new node to the
graph G1 or G2, we obtain a new network with the following
Laplacian matrix:



















1 −1 0 0 · · · 0

−1 −
∑p

j=1 r1j + 1 r12 r13 · · · r1p

0 r21 −
∑p

j=1 r2j r23 · · · r2p

0 r31 r32 −
∑p

j=1 r3j · · · r3p

...
...

...
...

. . .
...

0 rp1 rp2 rp3 · · · −
∑p

j=1 rpj



















.

(10)

We can express the matrix in (10) in the form

Qp+1 ≡

[

1 αT

α R

]

,

where α = [1, −1, 0, 0, . . . , 0]T. Because the new network so
obtained is connected, this matrix has only one trivial eigenvalue
and its rank is p. We transform the matrix Q by adding all rows
to the first row and all columns to the first column to obtain a

matrix in the form

[

0 0
0 R

]

. The rank of this matrix being p implies

|R| 6= 0.

For the more general case of y′
1 = q, we expand the matrix in

the same way to obtain the new Laplacian matrix as

Qp+q ≡





























1 0 0 · · · 0 −1 0T

0 1 0
. . . 0 −1 0T

0 0 1 · · · 0 −1 0T

...
...

...
. . .

...
...

...
0 0 0 · · · 1 −1 0T

−1 −1 −1 · · · −1 −
∑p

j=1 r1j + y′
1 βT

0 0 0
... 0 β Rp−1





























,

(11)

where 0 = [0, 0, 0, . . . , 0]T, β = [r12, r13, . . . , r1p]
T, and the matrix

Qp+q has rank p + q − 1. Adding all the rows in the matrix (11)
as the first row and designating the sum of all the columns as the

first column lead to a matrix
[

0 0
0 Qp+q−1

]

of rank p + q − 1. We then

remove the first q − 1 rows of matrix Qp+q−1 to get a matrix with
rank p,

M ≡

[

−11×q−1 −
∑p

j=1 r1j + y′
1 βT

0p−1×q−1 β Rp−1

]

. (12)

Consider the linear equation M · X = 0, where X is a p + q − 1
dimensional column vector with p + q − 1 unknowns, which can be
rewritten as

[

−
∑p

j=1 +y′
1 βT

β Rp−1

]











xq

xq+1

...
xp+q−1











=











x1 + x2 + · · · + xq−1

0
...
0











. (13)

For fixed x1, x2, . . . , xq−1, Eq. (13) has no free variables, giving a unique solution so that the matrix

R ≡

[

−
∑p

j=1 r1j + y′
1 βT

β Rp−1

]

has the full rank p.
The above proof indicates that in both cases (y′

1 = 1 or y′
1 = q), the matrix R has full rank. It, thus, suffices to consider the case of y′

l 6= 0;
then, y′

l = 1. Let y′
l = 1 for l = 1, 2, . . . , K. We expand the matrix R to have the following Laplacian form:



















K −1 −1 · · · −1 0T

−1 −
∑p

j=1 r1j + y′
1 r12 · · · r1K rT

1

−1 r21 −
∑p

j=1 r2j + y′
2 · · · r2K rT

2

...
...

...
. . .

...
...

−1 rK1 rK2 · · · −
∑p

j=1 rKj + y′
K rT

K

0 r1 r2 · · · rK Rp−K+1



















, (14)

Chaos 32, 043110 (2022); doi: 10.1063/5.0088989 32, 043110-7

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

where rj = [rjK+1, rjK+2, . . . , rjp]
T. Performing the same operations

on matrix (14) as did matrix (10), we have that |R| 6= 0.
Taken together, through elementary column and row trans-

forms, we have proved that |R| ≡ |L + B| 6= 0, so the only solu-
tion of Eq. (7) is zero. Physically, this means that, when the
whole Kuramoto network reaches partial global synchronization,
the phases of the symmetric nodes that are not directly connected
reach the same value abruptly, leading to the numerically observed
explosive onset of perfect remote synchronization with unity layer
order parameter. In the Appendix, we present two concrete exam-
ples to demonstrate the matrix operations.

IV. DISCUSSION

In nonlinear dynamical systems, other metamorphic phenom-
ena can arise such as basin boundary metamorphoses.24–26 The main
contribution of this work is the discovery of the phenomenon of
synchronization metamorphosis in nonlinear dynamical networks,
where an explosive transition to synchrony and remote synchro-
nization, two previously separately studied phenomena, can occur
simultaneously in a metamorphic manner. The key is symmetry,
where its interplay with nonlinear dynamics leads to the observed
explosive onset of remote synchronization. Since perfect global syn-
chronization among all nodes can be achieved only for infinite
coupling, the sudden emergence of perfect remote synchronization
among nodes belonging to a symmetry group must occur at the
expense of the deterioration of previously perfect synchrony among
a distinct set of nodes, leading to a synchronization metamorphosis.

To demonstrate synchronization metamorphosis in a concrete
setting, we have focused on a prototype of the dynamical network:
a multichain network with a star symmetry. The processes on the
network are assumed to be the Kuramoto phase-coupled dynam-
ics. A synchronization metamorphosis occurs at the critical coupling
values in both the forward and backward directions. Specifically, a
perfect remote synchronization in every virtual layer is achieved at a
limited loss of synchronization in the chain direction in the forward
direction, and the remote synchronization in every layer is lost but

the synchronization along the chain becomes perfect in the back-
ward direction, both occurring in an explosive manner. We have
also gained a theoretical understanding of explosively remote syn-
chronization based on symmetry considerations and analyzed the
robustness of synchronization metamorphosis.
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APPENDIX: SIMPLE EXAMPLES

We present two examples to demonstrate the matrix operations
in the mathematical proof in Sec. III. In Fig. 6(a), the Kuramoto
equations of nodes 2 and 3 are

θ̇2 = ω2 + ε(f)
c (θ4 − θ2) + ε(f)

c (θ1 − θ2), (A1)

θ̇3 = ω3 + ε(f)
c (θ5 − θ3) + ε(f)

c (θ1 − θ3). (A2)

Setting θ̇2 − θ̇3 = 0 leads to

ω2 − ω3

ε
(f)
c

= 2(θ2 − θ3) − (θ4 − θ5). (A3)

FIG. 6. Some simple networks: (a) a tree network, (b) a chain network, (c) a mixed tree-chain like network with loops, and (d) a tree-chain network without any loop.
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Similarly, we get

ω4 − ω5

ε
(f)
c

= −(θ2 − θ3) + 2(θ4 − θ5) − (θ6 − θ7), (A4)

ω6 − ω7

ε
(f)
c

= −(θ4 − θ5) + (θ6 − θ7). (A5)

At the onset of synchronization, the terms on the left hand sides of
Eqs. (A3)–(A5) are zero. Combining Eqs. (A3)–(A5), we obtain the
following matrix equation:

RX =





2 −1 0
−1 2 −1
0 −1 1









θ2 − θ3

θ4 − θ5

θ6 − θ7



 =





0
0
0



 . (A6)

To prove |R| 6= 0, we expand R into the following new matrix:

Q =







1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1






, (A7)

where Q is the Laplacian matrix of the new network in Fig. 6(b).
Since the new network is connected, Q has only one trivial eigen-
value and its rank is three. We transform the matrix Q by adding all
rows to the first row and all columns to the first column to obtain
a matrix in the form

[

0 0
0 R

]

. The rank of this matrix being three
implies |R| 6= 0, that is, θ2 = θ3, θ4 = θ5, and θ6 = θ7.

For the network in Fig. 6(c), using the Kuramoto equations of
symmetric nodes, we get the matrix in a similar fashion,

R =





4 −1 0
−1 2 −1
0 −1 1



 . (A8)

We expand R as

Q6×6 =















1 0 0 −1 0 0
0 1 0 −1 0 0
0 0 1 −1 0 0

−1 −1 −1 4 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1















, (A9)

where Q6×6 is the Laplacian matrix of the new network in Fig. 6(d),
so the rank of Q6×6 is five. Adding all rows in matrix (A9) as the first
row and designating the sum of all the columns as the first column
lead to the matrix

[

0 0
0 Q5×5

]

of rank five. We then remove the first
two rows of Q5×5 to get the following matrix of rank three:

M =





−1 −1 4 −1 0
0 0 −1 2 −1
0 0 0 −1 1



 . (A10)

The linear equation M · X = 0 with X ≡ [x1, x2, x3, x4, x5]
T can be

rewritten as




4 −1 0
−1 2 −1
0 −1 1









x3

x4

x5



 =





x1 + x2

0
0



 . (A11)

For fixed x1 and x2, Eq. (A11) has no free variables, so there
is a unique solution and the matrix R has full rank: θ2 = θ3,
θ4 = θ5, and θ6 = θ7.
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