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ABSTRACT

In applications of nonlinear and complex dynamical systems, a common situation is that the system can be measured, but its structure and
the detailed rules of dynamical evolution are unknown. The inverse problem is to determine the system equations and structure from time
series. The principle of exploiting sparse optimization to find the equations of dynamical systems from data was first articulated in 2011 by
the ASU group. The basic idea is to expand the system equations into a power series or a Fourier series of a finite number of terms and then
to determine the vector of the expansion coefficients based solely on data through sparse optimization. This Tutorial presents a brief review
of the recent progress in this area. Issues discussed include discovering the equations of stationary or nonstationary chaotic systems to enable
the prediction of critical transition and system collapse, inferring the full topology of complex oscillator networks and social networks hosting
evolutionary game dynamics, and identifying partial differential equations for spatiotemporal dynamical systems. Situations where sparse
optimization works or fails are pointed out. The relation with the traditional delay-coordinate embedding method is discussed, and the recent
development of a model-free, data-driven prediction framework based on machine learning is mentioned.
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In experiments and real-world applications, the detailed
equations of motion of an underlying system are often unknown,
but observational data from the relevant dynamical variables of
the system are available. As equations of motion are required for
constructing a mathematical description of the dynamical system
and thus represent a proof that some understanding of the sys-
tem has been gained, a question is whether it would be possible
to determine the system equations from data. This inverse prob-
lem of finding the system equations from data was first attempted
by Crutchfield and McNamara in 1987, who developed an infor-
mation based method to extract the effective equations of motion
that may be different from the original equations. A method
based on the inverse Frobenius–Perron operator to design a
dynamical system that is “near” the original system in terms of the
invariant density was proposed in 2000 by Bollt. About ten years
ago, the idea of exploiting sparse optimization, e.g., compressive
sensing, to find the governing equations of nonlinear dynami-
cal systems was articulatedby the ASU group (see Refs. 78 and
89). The method has been extended to finding the full connecting

topology of complex networks hosting oscillatory, evolutionary
game, or binary-state dynamics and to finding partial differen-
tial equations (PDEs) for spatiotemporal dynamical systems. This
Tutorial provides a succinct review of the sparse optimization
principle for finding system equations from observational data.
The range of applicability and limitations are discussed.

I. INTRODUCTION

In nonlinear dynamics, the traditional solution to the inverse
problem, i.e., to analyze time series to probe into the inner “gears”
of the system, is based on the paradigm of delay-coordinate
embedding.1,2 The research started about four decades ago when
Takens1 proved that the underlying dynamical system can be faith-
fully reconstructed from a time series with a one-to-one correspon-
dence between the reconstructed and the true but unknown dynam-
ical systems. From the reconstructed system, statistical quantities
characterizing the dynamical invariant set of the original system can
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be assessed.3,4 For example, from a time series, the fractal dimensions
of the underlying chaotic attractor can be estimated,5–12 as well as the
Lyapunov exponents13–19 and some unstable periodic orbits.20–25 The
continuity and differentiability of the original dynamical system can
be tested.26–30 Practical issues on determining the basic parameters of
delay-coordinate embedding such as the proper time delay11,12,31–36

and the embedding dimension37 were addressed. Takens’ paradigm
was also extended to dynamical systems in the regime of transient
chaos38–43 and to systems with a time delay.44

There were previous methods on data-based identification and
forecasting of nonlinear dynamical systems.45–68 One approach is
to approximate a nonlinear system by a large collection of linear
equations in different regions of the phase space to reconstruct
the Jacobian matrices on a proper grid45,50,55 or to fit ordinary dif-
ferential equations to chaotic data.52 Approaches based on chaotic
synchronization58 or genetic algorithms60,68 to system–parameter
estimation were also investigated. In most studies, short-term pre-
dictions can be achieved. For nonstationary systems, the method of
overembedding was introduced62 in which the time-varying param-
eters were treated as independent dynamical variables so that the
essential aspects of determinism of the underlying system can be
identified.

Takens’ embedding paradigm, while having evolved into a
powerful and effective framework in the past 40 years to address
the inverse problem in nonlinear dynamical systems, gives only
a topological equivalent of the system of interest: it does not
give the equations of motion of the original system. As such, the
state evolution cannot be predicted nor critical transitions lead-
ing to a possible system collapse upon parameter variations. The
inverse problem of determining the system equations from mea-
surements was addressed in 1987 by Crutchfield and McNamara,69

who extended the notion of qualitative information contained in a
sequence of observations to deduce the effective equations of motion
that give the deterministic portion of the observed behavior. The
effective equations, however, may contain additional terms that are
not present in the original equations. The idea of using the inverse
Frobenius–Perron problem through L∞ to design a dynamical sys-
tem that is “near” the original system with a desired invariant density
was proposed in 2000 by Bollt.70 Modeling and nonlinear parameter
estimation using the least squares (L2) best approximation (Kro-
necker product representation) were articulated and analyzed in
2007 by Yao and Bollt.71 In the past decade, the idea of using sparse
(L1) optimization methods such as compressive sensing72–77 was
articulated78–86 for discovering the exact equations of motion for
certain class of nonlinear and complex dynamical systems.87 Quite
recently, entropic regression for overcoming the problem of outliers
in nonlinear system identification was articulated.88

The principle of sparse optimization for finding the equations
of nonlinear dynamical systems from data was first published78 by
the author’s group at the Arizona State University in 2011.89 The
basic idea is that many nonlinear dynamical systems in nature and
engineering are governed by smooth functions that can be approx-
imated by series expansions. The inverse problem of determining
the system equations then boils down to estimating the coefficients
in the series. If the series contains many high-order terms, the
total number of coefficients to be estimated will be large. In this
case, there is no advantage to use the series expansions, and the

problem remains as difficult as with the original equations. How-
ever, if the system equations are relatively simple in the sense that
most coefficients in the series expansions are zero, as in many clas-
sical nonlinear dynamical systems, the vector of all the coefficients
to be determined will be sparse, rendering applicable and effective
sparse optimization methods such as compressive sensing72,73,75–77

originally developed in the field of signal processing in engineering
and applied mathematics. A virtue common to sparse optimization
methods is the low requirement of observation data. In addition
to enabling finding equations of nonlinear dynamical systems from
data,78,90 compressive sensing has also been exploited for the recon-
struction of complex networks with discrete and continuous time
nodal dynamics78,80 and evolutionary game dynamics,79 for detecting
hidden nodes,82,84 for predicting and controlling network synchro-
nization dynamics,81 and for reconstructing spreading dynamics
based on binary data.85

II. PRINCIPLE OF DISCOVERING SYSTEM EQUATIONS
FROM DATA BASED ON SPARSE OPTIMIZATION

Compressive sensing solves the following convex optimization
problem:

min ∥a∥1 subject to G · a = X, (1)

where a is a sparse vector to be determined, G is a known ran-
dom projection matrix, X is a measurement vector constructed from
the available data, and ∥a∥1 =

∑N
i=1 |ai| denotes the L1 norm of

vector a. Compressive sensing is a paradigm of high-fidelity signal
reconstruction using only sparse data,72,73,75–77 which was originally
developed to solve the problem of transmitting massive data sets,
such as those collected from a large-scale sensor network. Because of
the high dimensionality, direct transmission of such data sets would
require a broad bandwidth. However, a common situation with sen-
sor networks is that, most of the time, majority of the sensors are
inactive so that the data set collected from the entire network at a
time is sparse. For example, say, a data set of N points is represented
by an N× 1 vector a, where N is a large integer. Since a is sparse,
most of its entries are zero and only a small number of k entries are
non-zero, where k≪ N. One can use a Gaussian random matrix G

of dimension M× N to obtain an M× 1 vector X: X = G · a, where
M ∼ k. Because the dimension of X is much smaller than that of
the original vector a, transmitting X would require a much smaller
bandwidth, provided that a can be reconstructed at the receiver end
of the communication channel.

The problem of reconstructing the equations of a nonlinear
dynamical system from data can be formulated in the compres-
sive sensing framework.78,90 Consider a general dynamical system
described by

dx

dt
= F(x), (2)

where x is an m-dimensional vector: x ≡ (x1, x2, . . . , xm)T, and F(x)
represents the velocity (vector) field of the system with m compo-
nents: F(x) = [F1(x), F2(x), . . . , Fm(x)]T. The goal is to determine
F(x) from limited measured time series x(t). The basic idea78 is to
expand the velocity field as a multi-dimensional power series. In par-
ticular, the jth component of the velocity field can be expanded to
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order q as

Fj(x) =

q
∑

l1=0

q
∑

l2=0

. . .

q
∑

lm=0

(aj)l1 l2 ...lm
xl1

1 xl2
2 . . . xlm

m , (3)

where (aj)l1 l2 ...lm
(l1, . . . , lm = 1, . . . , q) constitute the set of (1 + q)m

coefficients to be determined from the measurements. If this set of
coefficients is dense in the sense that most of them are nontrivial,
then resorting to the power series expansion as in Eq. (3) does not
lead to any step closer to the solution because the coefficients can-
not be determined based on limited measurements. However, if the
coefficient set is sparse in that most of its elements are zero, then
it would be possible to use compressive sensing to uniquely solve
for the nontrivial coefficients. Some well studied nonlinear dynami-
cal systems, such as the classic Lorenz91 and Rössler92 oscillators, fall
into this “sparse” category because their vector fields contain only a
few power series terms.

To better understand the mathematical structure of the prob-
lem formulation, consider the concrete case of a three-dimensional
phase space (m = 3) and a power series expansion up to order
three (n = 3). In this case, the total number of unknown coefficients
is (1 + n)m = 64. For convenience, let the dynamical variables be
x(t) ≡ [x(t), y(t), z(t)]T. The first component of the vector field can
be written as

F1(x) = (a1)000x
0y0z0 + (a1)100x

1y0z0 + · · · + (a1)333x
3y3z3. (4)

The N = 64 coefficients to be determined can be organized into a
vector, a N× 1-dimensional column vector,

a1 ≡

⎛

⎜

⎝

(a1)000

(a1)100

. . .
(a1)333

⎞

⎟

⎠
. (5)

Defining all the combinations of the powers of the dynamical
variables in Eq. (4) as a 1× 64-dimensional row vector,

g(t) ≡
[

x0(t)y0(t)z0(t), x1(t)y0(t)z0(t), . . . , x3(t)y3(t)z3(t)
]

, (6)

we can write Eq. (4) as

F1[x(t)] = g(t) · a1. (7)

Suppose measurements of the dynamical variables x(t) are available
at (M + 1) time instants t0, t1, . . . , tM, where M≪ N. We have

dx(t1)/dt = F1[x(t1)] = g(t1) · a1

dx(t2)/dt = F1[x(t2)] = g(t2) · a1

. . .
dx(tM)/dt = F1[x(tM)] = g(tM) · a1.

(8)

The derivatives can be estimated from the measurements

dx(ti)

dt
≈

x(ti)− x(ti−1)

δt
,

for i = 1, . . . , M. All the derivatives of M can be organized into a
measurement vector that is M× 1-dimensional,

X =

⎛

⎜

⎝

dx(t1)/dt
dx(t2)/dt

. . .
dx(tM)/dt

⎞

⎟

⎠
. (9)

Likewise, the M row vectors g(t1), . . . , g(tM), each being 1× N
dimensional, can be organized into an M× N dimensional matrix

FIG. 1. Standard form of compressive sens-
ing. The goal is to obtain the optimal solu-
tion of the N-dimensional coefficient vector a
from the M-dimensional measurement vector
X through the projection matrix G that is M ×
N dimensional, where M ≪ N. The math-
ematical framework of compressive sensing
guarantees an optimal solution insofar as the
coefficient vector to be solved is sparse: it
has only k nontrivial elements, where k ≤ M,
provided that the projection matrix is random.
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as

G =

⎛

⎜

⎝

g(t1)
g(t2)
. . .

g(tM)

⎞

⎟

⎠
. (10)

Equation (8) can then be written as

XM×1 = GM×N · (a1)N×1. (11)

The structure of Eq. (11) is shown in Fig. 1, where G is the projection
matrix. Suppose that the coefficient vector a1 is sparse: it has k non-
trivial elements, where k≪ N. If the inequality k ≤ M≪ N holds,
then Eq. (11) is in the standard form of compressive sensing,72,73,75–77

which is Eq. (1).
Two remarks are in order.
First, the coefficient vector a1 is associated with the velocity

field of the first dynamical variable x. For any other dynamical vari-
able in Eq. (2), a similar expansion procedure can be carried out. For
example, for the second dynamical variable y, the coefficient vector
a2 of its velocity field can be solved through

YM×1 = GM×N · (a2)N×1, (12)

where YM×1 is the measurement vector constituting the derivatives
of y at the measurement points. Note that the projection matrix
GM×N has the same form in Eqs. (11) and (12).

Second, in the mathematical framework of compressive sens-
ing, a requirement is that the projection matrix G be random with
zero correlation among its elements. However, in the power series
expansion formulation, the elements of this matrix are distinct com-
binations of the powers of all the dynamical variables in the system.
Since the system is deterministic, nonzero correlations among the
matrix elements are inevitable. For chaotic systems, this violation
of the randomness condition may not be as severe, since the time
evolution of the dynamical variables is effectively random, insofar as
the time interval between the adjacent measurement points is rea-
sonably large. Nonetheless, there is no mathematical guarantee that
an optimal solution can be obtained for solving the inverse problem
in nonlinear dynamical systems through the compressive sensing
approach, in spite of previously demonstrated successes.78–82,84,85,90

III. APPLICATIONS

A number of applications of the compressive sensing based
solutions of inverse problems in nonlinear and complex dynamical
systems are described.

A. Predicting system collapse

When some parameter of a nonlinear dynamical system
changes, a bifurcation that leads to the collapse of the system can
occur. For example, in a global bifurcation called crisis,93 at the bifur-
cation point, a chaotic attractor collides with its own basin boundary
and is destroyed. Let p be the bifurcation parameter and pc be the cri-
sis point. Before the crisis, i.e., p < pc, the system functions normally
with a sustained chaotic behavior in its time evolution, as shown in
Fig. 2(a), where the ordinate represents a typical dynamical variable
of the system. Beyond the bifurcation point, the system collapses
eventually after exhibiting transient chaos, as shown in Fig. 2(b). The

FIG. 2. Dynamical behaviors before and after a crisis bifurcation. The bifurcation
occurs at the critical parameter value pc. (a) Before the crisis (p < pc), the system
functions normally, as the average values of its dynamical variables maintain at a
healthy level, in spite of chaotic fluctuations. (b) After the bifurcation, the system
exhibits transient chaos and eventually collapses.

bifurcation is thus a catastrophe that must be prevented. In natural
and engineering systems, catastrophic collapse is always a possibil-
ity. For example, in electrical power systems, voltage collapse94 can
occur after the system enters into the state of transient chaos.38,93

In ecology, slow parameter drift caused by environmental deteri-
oration can induce a transition into transient chaos, followed by
species extinction.95,96 For a dynamical system of interest, predicting
a catastrophe in advance of its occurrence is of paramount impor-
tance. This is a challenging problem when the system equations are
unknown and the only available information that one can rely on
to make the prediction is time series measured while the system still
functions normally.

If the underlying equations of the system have a simple math-
ematical structure, e.g., if its velocity field consists of a few power
series or Fourier series terms only, then sparse optimization meth-
ods such as compressive sensing can be exploited to identify the
system equations78,97 and consequently to predict transitions. In
particular, based on the time series, one first predicts the system
equations and then identifies the pertinent parameter of the system
that can potentially lead to a collapse. With such information, one
can perform a computational bifurcation analysis to locate poten-
tial catastrophic events in the parameter space so as to determine
the likelihood of systems drifting into a catastrophic regime. For
example, if it is determined that the system currently operates in a
parameter region close to the crisis bifurcation, a catastrophe may
be imminent as a small parameter change or a random perturba-
tion can push the system into the regime of transient chaos where
collapse is inevitable.

The principle of compressive sensing based prediction of sys-
tem collapse has been demonstrated with a number of nonlinear
dynamical systems.78,97
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B. Predicting future attractors in time-varying
dynamical systems

Physical systems are constantly under external influences that
can lead to parameter drifting. If the time scale of the internal
dynamics of the system is much faster than that of the external per-
turbation, the resulting drift in the parameter can be regarded as
adiabatic. In this case, in a time window of duration much longer
than the internal but shorter than the external time scale, the system
can be viewed to be in a type of “asymptotic state” or an “attractor,”
as for the case of a stationary dynamical system with no time-varying
parameters. However, in a long time scale, the attractor does depend
on time. A problem of significant interest is to forecast the “future”
attractor of the system. For example, consider the climate system.
It is under random disturbances all the time, but adiabatic parame-
ter drifting is also present, such as that induced by the injection of
CO2 into the atmosphere due to human activities. The time scale
for any appreciable increase in the CO2 level (e.g., months or years)
is typically much slower than the intrinsic time scales of the sys-
tem (e.g., days). The climate system can thus be regarded as an
adiabatically time-varying, nonlinear dynamical system. To forecast
the possible future attractor of the system is key to sustainabil-
ity, an issue that is critical to many other natural and engineering
systems.

It was demonstrated90 that predicting the future attractor of
an adiabatically time-varying dynamical system can be formulated
as a problem solvable by compressive sensing. In particular, let the
system be described by

dx/dt = F[x, p(t)], (13)

where x is the set of dynamical variables of the system in the m-
dimensional phase space and p(t) ≡ [p1(t), . . . , pK(t)] denotes K
independent, time-varying parameters. The tacit assumption is that
both the velocity field F and the vector parameter function p(t) are
unknown, but only time series x(t) measured from the system in the
time interval tM − TM ≤ t ≤ tM are available, where tM is the current
time. The goal is to determine the precise mathematical forms of F
and p(t) from the available time series at tM so that the dynamical
evolution of the system and the likely attractors for t > tM can be
computationally assessed.

As for the case of predicting system collapse discussed in
Sec. III A, the first step is to expand all components of the time-
dependent vector field F[x, p(t)] into a power series in terms of both
dynamical variables x and time t. The ith component F[x, p(t)]i of
the vector field can be written as

n
∑

l1,...,lm=1

[(αi)l1,...,lmxl1
1 . . . xlm

m ·

v
∑

w=0

(βi)wtw]

≡

n
∑

l1,...,lm=1

v
∑

w=0

(ai)l1,...,lm ;wxl1
1 . . . xlm

m · tw, (14)

where xk (k = 1, . . . , m) is the kth component of the dynamical
variable, ai is the ith component of the coefficient vector to be
determined, and the time evolution of each term can be approxi-
mated by the power series expansion in time, i.e.,

∑v
w=0 (βi)wtw. The

power series expansion can then be cast into the standard form of

compressive sensing Eq. (1). If every combined scalar coefficient
(ai)l1,...,lm ;w associated with the corresponding term in Eq. (14) can
be determined from time series for t ≤ tM, the vector field compo-
nent [F(x, p(t))]i becomes known. Repeating the procedure for all
components, the entire vector field for t > tM can be identified.

Note that, the predicted form of F and p(t) at time tM would
contain errors that, in general, will increase with time. In addition,
for t > tM, new perturbations can occur to the system so that the
forms of F and p(t) may be further changed. It is thus necessary to
execute the prediction algorithm frequently using time series avail-
able at the time. For example, the system could be monitored at all
times so that time series can be collected, and predictions can be car-
ried out at tis, where . . . > ti > . . . > tM+2 > tM+1 > tM. For any ti,
the prediction algorithm is to be performed based on available time
series in a suitable window prior to ti.

C. Finding complex network structure from data

In complex dynamical networks, a typical inverse problem is
to find the full connecting topology of the network based on obser-
vational time series from the nodes. If the network is sparse, as are
many complex networks in the real world,98 then compressive sens-
ing can be used to address the inverse problem. In particular, given
a sparsely connected network with unknown connecting structure
and nodal dynamical equations, if oscillatory time series can be
measured from all nodes in the network, it would be possible to
determine the connection structure and identify the nodal equations
of motion.80

An oscillator network is a high-dimensional dynamical sys-
tem that generates oscillatory time series at various nodes. The local
dynamics at a node are described by

ẋi = Fi(xi) +

n
∑

j=1,j̸=i

Kij · (xj − xi), (i = 1, . . . , n), (15)

where xi ∈ Rd represents the set of externally accessible dynamical
variables of node i, n is the number of nodes, and Kij is the d× d
coupling matrix between the dynamical variables at nodes i and j
denoted by

Kij =

⎛

⎜

⎜

⎜

⎝

k1,1
ij k1,2

ij · · · k1,d
ij

k2,1
ij k2,2

ij · · · k2,d
ij

· · · · · · · · · · · ·

kd,1
ij kd,2

ij · · · kd,d
ij

⎞

⎟

⎟

⎟

⎠

. (16)

In the elements of matrix Kij, the superscripts lm (l, m = 1, 2, . . . , d)
stand for the coupling from the kth component of the dynamical
variable at node i to the lth component of the variable at node j.
For any pair of nodes, the number of possible coupling terms is d2.
If there is at least one nonzero element in matrix Kij, nodes i and
j are coupled and, as a result, there is a link between them. Often,
more than one element in Kij can be nonzero. However, if all the
elements of Kij are zero, nodes i and j are not coupled. The connect-
ing structure and the interaction strengths among various nodes of
the network can be found if the coupling matrix Kij is determined
from the observational data.
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The first step in constructing a sparse optimization solution of
the network inverse problem is to rewrite Eq. (15) as

ẋi = [Fi(xi)−

n
∑

j=1,j̸=i

Kijxi] +

n
∑

j=1,j̸=i

Kijxj, (17)

where the first term in the square bracket is a function of the dynam-
ical variable vector xi of node i and the second term is a function of
variables of other nodes through node-to-node coupling. The terms
in the square bracket can be conveniently denoted as !i(xi). The lth
component of !i(xi) can be represented by a power series of order
up to q

[!i(xi)]l ≡

⎡

⎣Fi(xi)−

n
∑

j=1,j̸=i

Kijxi

⎤

⎦

l

=

q
∑

l1=0

q
∑

l2=0

. . .

q
∑

ld=0

[(αi)l]l1,...,ld
[(xi)1]

l1 [(xi)2]
l2 . . . [(xi)d]

ld ,

(18)

where (xi)l (l = 1, . . . , d) is the lth component of the dynamical
variable at node i, the total number of products is (1 + q)d, and
[(αi)l]l1,...,lm

∈ Rm is the coefficient scalar of each product term,
which is to be determined from measurements as well. Note that
terms in Eq. (18) are all possible products of different components
with different power of exponents. As an example, for d = 2 (the
components are x and y) and q = 2, the power series expansion is

α0,0 + α1,0x + α0,1y + α2,0x
2 + α0,2y

2 + α1,1xy

+ α2,1x
2y + α1,2xy2 + α2,2x

2y2.

The second step is to rewrite Eq. (17) as

ẋi = !i(xi) + Ki1x1 + Ki2x2 + · · · + Kinxn. (19)

The goal is to estimate the various coupling matrices Kij (j =
1, . . . , i− 1, i + 1, . . . , n) and the coefficients of !i(xi) from sparse
measurements. The sparsity requirement of compressive sensing
stipulates that, to reconstruct the coefficients of Eq. (19) from data,
most coefficients must be zero. To include as many coupling forms
as possible, one can write each termKijxj in Eq. (19) as a power series
in the same form of !i(xi) but with different coefficients,

ẋi = !1(x1) + !2(x2) + · · · + !n(xn). (20)

This setting includes many possible coupling forms and ensures that
the sparsity condition is met so that the prediction problem can be
formulated in the compressive sensing framework. For an arbitrary
node i, information about the node-to-node coupling, or about the
network connectivity, is fully contained in !j(j ̸= i). For example,
if in the equation of node i, a term in !j(j ̸= i) is not zero, nodes
i and j are then coupled with the strength given by the coefficient
of the term. Subtracting the coupling terms−

∑n
j=1,j̸=i Kijxi from !i

in Eq. (18), which is the sum of the coupling coefficients of all !j

(j ̸= i), the local system equations Fi(xi) can be obtained. Once the
coefficients of Eq. (20) have been determined, the nodal dynami-
cal equations and the couplings among the nodes are all known. As
explained in Sec. III A, the power series expansion coefficients of
Eq. (20) can be determined through compressive sensing.

D. Finding social network structure from evolutionary
game data

In the summer of 2011, a small social network experiment was
conducted at the Arizona State University, where 22 students from
different schools were invited to test the effectiveness of a sparse
optimization based approach to mapping out the structure of social
networks. In particular, the 22 participants constituted a social net-
work, where any individual has a few acquaintances/friends in the
group, but many participants had not known each other prior to the
experiment. The network is thus sparse. During the experiment, all
participants were asked to play an evolutionary game, the prisoner’s
dilemma game (PDG), with their friends for about 30 runs. That is,
each and every agent (node) in the network was asked to play the
game but only with his/her direct neighbors. For each run of the
play, the strategies used by the opponents of each and every pair of
players were recorded, together with the outcome (i.e., the winner
and loser). Based on the data from all 30 runs, a compressive sens-
ing based algorithm was executed, yielding a network structure that
matches exactly with that of the actual social network. In fact, it was
demonstrated that data from about 15 runs were already sufficient
to infer the underlying network structure with 100% accuracy.79

The theoretical underpinning of this successful experiment lies
in formulating the dynamical process of evolutionary game on a
network as a problem of sparse optimization. Specifically, in an evo-
lutionary game, the players use different strategies in order to gain
the maximum payoff, which, in general, can be divided into two
types: cooperation and defection. It was shown79 that, with limited
data on each player’s strategy and payoff, a compressive sensing
based framework can be developed to yield precise knowledge of the
node-to-node interaction patterns in an efficient manner.

A sketch of the principle underlying the compressive sensing
framework is as follows. In an evolutionary game, at any time a
player can choose one of the two strategies S: cooperation (C) or
defection (D), which can be expressed as S(C) = (1, 0)T and S(D) =
(0, 1)T. The payoffs of two players in a game are determined by their
strategies and the payoff matrix of the specific game. For example,
for the prisoner’s dilemma game (PDG)99 and the snowdrift games
(SG),100 the payoff matrices are given, respectively, by

PPDG =

(

1 0
b 0

)

and PSG =

(

1 1− r
1 + r 0

)

, (21)

where b (1 < b < 2) and r (0 < r < 1) are parameters characterizing
the temptation to defect. When a defector encounters a cooperator,
the defector gains payoff b in the PDG and payoff 1 + r in the SG,
but the cooperator gains the sucker payoff 0 in the PDG and payoff
1− r in the SG. At each time step, all agents play the game with their
neighbors and gain payoffs. For agent i, the payoff is

Pi =
∑

j∈$i

ST
i · P · Sj, (22)

where Si and Sj are the strategies of agents i and j at the time and
the sum is over the neighboring set $i of i. After obtaining its pay-
off, an agent updates its strategy according to its own and neighbors’
payoffs, attempting to maximize its payoff at the next round. Possi-
ble mathematical prescriptions to describe quantitatively an agent’s
decision making process include the best-take-over rule,99 the Fermi
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rule,101 and one based on the payoff-difference-determined updat-
ing probability.102 For example, the Fermi rule is defined, as follows.
After player i randomly chooses a neighbor j, i adopts j’s strategy Sj

with the probability101

W(Si ← Sj) =
1

1 + exp [(Pi − Pj)/κ]
, (23)

where κ characterizes the stochastic uncertainties in the evolution-
ary game dynamics: κ = 0 corresponds to absolute rationality where
the probability is 0 if Pj < Pi and 1 if Pi < Pj, and κ →∞ indi-
cates completely random decision making. The probability W thus
characterizes the bounded rationality of agents in a society and the
natural selection based on the relative fitness in evolution.

The key to solving the inverse problem of network reconstruc-
tion is the relationship between agents’ payoffs and strategies. The
interactions among the agents in the network can be characterized
by an n× n adjacency matrix A with elements aij = 1 if agents i and
j are connected and aij = 0 otherwise. The payoff of agent x can be
expressed by

Px(t) = ax1S
T
x (t) · P · S1(t) + · · · + ax,x−1S

T
x (t) · P · Sx−1(t)

+ ax,x+1S
T
x (t) · P · Sx+1(t) + · · · + axnST

x (t) · P · Sn(t),
(24)

where axi (i = 1, . . . , x− 1, x + 1, . . . , n) represents a possible con-
nection between agent x and its neighbor i, axiS

T
x (t) · P · Si(t)

(i = 1, . . . , x− 1, x + 1, . . . , n) stands for the possible payoff of
agent x from playing the game with i (if there is no connection
between x and i, the payoff is zero because axi = 0), and t = 1, . . . , M
is the number of rounds that all agents play the game with their
neighbors. This relation provides a base to construct the vector Xx

and matrix Gx in a proper compressive sensing framework to obtain
the solution of the neighboring vector Ax of agent x. In particular,
one can define

Xx ≡ (Px(t1), Px(t2), . . . , Px(tM))T,

Ax ≡ (ax1, . . . , ax,x−1, ax,x+1, . . . , axn)
T,

(25)

and

Gx ≡

⎛

⎜

⎜

⎜

⎝

Fx1(t1) · · · Fx,x−1(t1) Fx,x+1(t1) · · · Fxn(t1)
Fx1(t2) · · · Fx,x−1(t2) Fx,x+1(t2) · · · Fxn(t2)

... · · ·
...

...
...

...
Fx1(tM) · · · Fx,x−1(tM) Fx,x+1(tM) · · · Fxn(tM)

⎞

⎟

⎟

⎟

⎠

,

where Fxy(ti) = ST
x (ti) · P · Sy(ti). The relation among the vectors

Xx, Ax, and the matrix Gx is given by exactly the same form as of
compressive sensing Eq. (1),

Xx = Gx · Ax, (26)

where Ax is sparse due to the sparsity of the underlying network,
making the compressive sensing framework applicable. Since ST

x (ti)
and Sy(ti) in Fxy(ti) come from data and P is known, the vector Xx

can be obtained directly while the matrix Gx can be calculated from
the strategy and payoff data. The vector Ax can thus be predicted
based solely on the time series game data. Since the self-interaction
terms axx are not included in the vector Ax and the self-column

[Fxx(t1), . . . , Fxx(tM)]T is excluded from the matrix Gx, the compu-
tation required for compressive sensing can be reduced. In a similar
fashion, the neighboring vectors of all other agents can be predicted,
yielding the network adjacency matrix

A = (A1, A2, . . . , An),

and, hence, the connection structure of the underlying social net-
work.

E. Sparse optimization based on LASSO and
applications in reconstructing complex networks
with binary-state dynamics

A generalization of the compressive sensing approach to
inverse problems in nonlinear and complex dynamical systems is
sparse optimization based on LASSO (least absolute shrinkage and
selection operator).103,104 In statistical and machine learning, LASSO
is a regression method that embodies both variable selection and
regularization to enhance the prediction accuracy and interpretabil-
ity of the statistical model it produces.105,106 In particular, LASSO
incorporates an L1-norm and an error control term to solve the
sparse vector a according to the constraint G · a = X [as in Eq. (1)]
from a small amount of data by optimizing

min
a

{

1

2M
∥G · a− X∥22 + λ∥a∥1

}

, (27)

where ∥a∥1 is the L1 norm of X assuring the sparsity of the solu-
tion, the least squares term ∥G · a− X∥22 guarantees the robustness
of the solution against noise in the data, and λ is a nonnegative reg-
ularization parameter that affects the reconstruction performance
in terms of the sparsity of the network, which can be determined
by a cross-validation method.107 The advantage of LASSO is sim-
ilar to that of compressive sensing: the number M of bases (mea-
surements) needed can be much less than the length of a. The
LASSO-based sparse optimization method was successfully applied
to reconstructing the structures of complex networks.103

In data-based reconstruction of complex networks, a difficult
problem is when the nodal dynamical states are discrete and are of
the binary type—a situation that arises commonly in nature, tech-
nology, and society.108 In a networked system hosting binary nodal
dynamics, each node can be in one of the two possible states, e.g.,
being active or inactive in neuronal and gene regulatory networks,109

cooperation or defection in networks hosting evolutionary game
dynamics,110 being susceptible or infected in epidemic spreading
on social and technological networks,111 two competing opinions
in social communities,112 etc. The interactions among the nodes
are complex, and a state change can be triggered either deter-
ministically (e.g., depending on the states of their neighbors) or
randomly. Indeed, deterministic and stochastic state changes can
account for a variety of emergent phenomena, such as the outbreak
of epidemic spreading,113 cooperation among selfish individuals,114

oscillations in biological systems,115 power blackout,116 financial
crisis,117 and phase transitions in natural systems.118 A variety of
models have been introduced to gain insights into binary-state
dynamics on complex networks,98 such as the voter models for
competition of two opinions,119 stochastic propagation models for
epidemic spreading,120 models of rumor diffusion and adoption of
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new technologies,121 cascading failure models,122 Ising spin models
for ferromagnetic phase transition,123 and evolutionary games for
cooperation and altruism.102 A general theoretical approach to deal-
ing with networks hosting binary state dynamics was developed124

based on the pair approximation and the master equations, provid-
ing a good understanding of the effect of the network structure on
the emergent phenomena.

The problem of reconstructing complex networks with binary-
state dynamics is challenging for three reasons. First, the basic nodal
dynamics are governed by the probability to transition between the
two states—the switching probability of a node, which depends on
the states of its neighbors according to a variety of functions that
can be linear, nonlinear, piecewise, or stochastic. If the function that
governs the switching probability is unknown, it would be difficult
to obtain a solution of the reconstruction problem. Second, struc-
tural information is often hidden in the binary states of the nodes in
an unknown manner and the dimension of the solution space can
be high, rendering impractical (computationally prohibitive) brute-
force enumeration of all possible network configurations. Third,
the presence of measurement noise, missing data, and stochas-
tic effects in the switching probability make the reconstruction
task even more challenging, calling for the development of effec-
tive methods that are robust against internal and external random
effects.

In 2017, a general and robust framework for reconstruct-
ing complex networks based solely on the binary states of the
nodes without any knowledge about the switching functions was
developed.104 The idea was centered about developing a general
method to linearize the switching functions from binary data. The
data-based linearization method was demonstrated to be applica-
ble to linear, nonlinear, piecewise, or stochastic switching functions.
The method allows one to convert the network reconstruction prob-
lem into a sparse signal reconstruction problem for local structures
associated with each node. In particular, because of the natural
sparsity of complex networks, LASSO was used103,104 to identify the
neighbors of each node in the network from sparse binary data
contaminated by noise. The linearization procedure was justified
through a number of linear, nonlinear, and piecewise binary-state
dynamics on a large number of model and real complex networks.
For all the models tested, universally high reconstruction accuracy
was achieved104 even for small data amount with noise. Because
of its high accuracy, efficiency, and robustness against noise and
missing data, the reconstruction framework can serve as a gen-
eral solution to the inverse problem of network reconstruction
from binary-state time series, which is key to articulating effective
strategies to control complex networks with binary state dynam-
ics.

F. Discovering models of spatiotemporal dynamical
systems from data

There was an early work on modeling and parameter estima-
tion for coupled oscillators and spatiotemporal dynamical systems
based on the Kronecker product presentation.71 In recent years,
sparse optimization or learning has been applied to discovering
models of spatiotemporal systems described by partial differential
equations (PDEs).125–129 PDEs for spatiotemporal systems in science

and engineering have the general form

n
∑

i=0

cifi(u, ∂tu,∇u,∇2u, . . .) = 0, (28)

where cis are constant coefficients and fis are vector functions of
time and space derivatives of various orders of the vector field
u. Usually, symmetry and physical considerations can be used to
reduce the number of terms in Eq. (28) and to narrow down the
possible functional forms of fi. From the measurement of (noisy)
spatiotemporal data u, sparse optimization can be used to remove
the unnecessary terms and yield a model that contains a small
number of terms.125–129

In Ref. 129, the following procedure was devised. Consider
a system that contains only a single term of the first-order time
derivative of the vector field, written as

∂tu =

n
∑

i=1

cifi(u,∇u,∇2u, . . .). (29)

To obtain a set of linear equations for sparse optimization, one mul-
tiplies a weight vector w with Eq. (29) and integrates both sides over
a number of distinct spatiotemporal domains (l (l = 1, . . . , L) to
convert Eq. (29) to

q0 =

n
∑

i=1

ciqi = Q · c, (30)

where c ≡ (c1, . . . , cn)
T is the coefficient vector to be determined

from data, qi is an L-dimensional column vector with entries given
by

ql
i =

∫

(l

q · fid(, (31)

and Q ≡ (q1, . . . , qn) constitutes the “library” of possible terms qis.
Note that the integral in Eq. (31) involves derivatives of the vector
field u. If the measurements of u are noisy, evaluating these deriva-
tives can be problematic. However, performing integration by parts
entails transferring the derivatives to the weight vector w, which can
be chosen to be smooth.

For L ≥ n, an iterative sparse regression algorithm can be used
to solve129 the coefficient vector in Eq. (31). Each iteration involves
the following form of the solution that minimizes the residual
in Eq. (31),

c̄ = Q+ · q0, (32)

where Q+ is the pseudoinverse of the matrix Q. Using an empirical
thresholding procedure to eliminate dynamically irrelevant terms
qi, with the solved sparse coefficient vector c, one can obtain a
minimal PDE model from the measurements u. The method was
tested129 with the one-dimensional Kuramoto–Sivashinsky model
that has in its solutions spatiotemporal chaos, the two-dimensional
Navier-Stokes equation, and the reaction–diffusion equation.

IV. DISCUSSION

The principle of exploiting sparse optimization such as com-
pressive sensing to find the equations of nonlinear dynamical sys-
tems from data was first articulated78 in 2011. The basic idea is
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to expand the equations (the velocity field for a continuous time
dynamical system or the map function for a discrete time system)
of the underlying system into a power series or a Fourier series
of a finite number of terms and then to determine the vector of
the expansion coefficients based on data through sparse optimiza-
tion. The sparse optimization principle has been demonstrated to
be effective for finding the governing equations of certain types of
nonlinear dynamical systems for inferring the detailed connection
structures of complex dynamical networks such as oscillator net-
works and social networks hosting evolutionary game dynamics. In
spite of the demonstrated success, limitations and open questions
remain.

A key requirement is that the coefficient vector to be deter-
mined must be sparse. If the vector field or the map function
contains a few power series terms, such as the classical Lorenz91 or
Rössler92 chaotic oscillator, or contains a few Fourier series terms,
such as the standard map,130,131 then sparse optimization can be
quite effective and computationally efficient for finding the system
equations.78 However, if the vector field or the map function con-
tains a large number of terms in its power series or Fourier series
expansion so that the coefficient vector to be determined is dense,
then the sparse optimization methodology will fail. One such exam-
ple is the classical Ikeda map132,133 that describes the propagation of
a laser pulse in an optical cavity,

F(x, y) =

(

a + b(x cos φ − y sin φ
b(x sin φ + y cos φ

)

, (33)

with the nonlinear phase variable φ given by

φ ≡ p−
k

1 + x2 + y2
, (34)

where a, b, k, and p are parameters. It can be seen that both com-
ponents of the map function contain an infinite number of power
series terms, rendering inapplicable sparse optimization for finding
the system equations from data.

In the mathematical formulation of compressive sensing
Eq. (1), a requirement is that the projection matrix G be random,
e.g., Gaussian type of random matrices with no correlations among
the matrix elements.72,73,75–77 However, in the power series formu-
lation, e.g., Eq. (11), the elements of the projection matrix are
different combinations of the powers of the dynamical variables,
which are correlated even for a chaotic system. The demonstrated
success in finding the system equations as reviewed in this Tuto-
rial thus has no mathematical guarantee. It may also be possible that
the “workable” domain of sparse optimization is larger than that
guaranteed by rigorous mathematics. To possibly relax the condi-
tions under which sparse optimization is effective remains an open
mathematical issue.

Another difficulty with the application of sparse optimization
to find system equations from data is the need to collect time series
from all dynamical variables of the system. In real-world appli-
cations, situations are common where only a limited set of the
intrinsic dynamical variables of the system are externally acces-
sible. The requirement of observing all dynamical variables thus
represents a formidable obstacle to the actual application of the

sparse optimization methods. This should be contrasted to the tradi-
tional delay-coordinate embedding paradigm1,2 where, in principle,
measurements from a single dynamical variable are sufficient to
reconstruct the phase space of the underlying system. The capabil-
ity of the embedding paradigm in uncovering the topological and
statistical properties of the dynamical invariant set responsible for
the observed data notwithstanding, it is unable to yield the system
equations.

In the past several years, machine learning has emerged as a
promising paradigm for predicting the state evolution of nonlin-
ear dynamical systems. In particular, a class of recurrent neural
networks,134–137 the so-called reservoir computing machines, have
attracted considerable attention since 2017 as a powerful paradigm
for model-free, fully data driven prediction of nonlinear and chaotic
dynamical systems.138–155 A typical reservoir computing machine
consists of an input layer, a hidden layer that is usually a complex
dynamical network, and an output layer. Time series data from the
dynamical system to be predicted are used to train the machine
through a series of adjustments to the weights that connect the hid-
den layer with the output layer. Once the machine has been trained,
it can predict the state evolution of the target system for certain
duration of time. A well trained reservoir computing machine can
thus be viewed as a “replica” of the target system, where temporal
synchronization between the two can be maintained.152 While the
machine learning approach does not yield the equations of the sys-
tem, it can be used to predict the system behavior especially for those
that do not meet the sparsity condition. For example, it has been
demonstrated recently155 that crisis and transient chaos in the Ikeda
map system (33) can be predicted by parameter-cognizant reservoir
computing machines.154
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