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ABSTRACT

Spatially distinct, self-sustained oscillations in artificial neural networks are fundamental to information encoding, storage, and processing
in these systems. Here, we develop a method to induce a large variety of self-sustained oscillatory patterns in artificial neural networks
and a controlling strategy to switch between different patterns. The basic principle is that, given a complex network, one can find a set of
nodes—the minimum feedback vertex set (mFVS), whose removal or inhibition will result in a tree-like network without any loop structure.
Reintroducing a few or even a single mFVS node into the tree-like artificial neural network can recover one or a few of the loops and lead
to self-sustained oscillation patterns based on these loops. Reactivating various mFVS nodes or their combinations can then generate a large
number of distinct neuronal firing patterns with a broad distribution of the oscillation period. When the system is near a critical state, chaos
can arise, providing a natural platform for pattern switching with remarkable flexibility. With mFVS guided control, complex networks of
artificial neurons can thus be exploited as potential prototypes for local, analog type of processing paradigms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069333

Unconventional, non-Boolean systems provide a paradigm for
local, analog type of processing such as rapid image or pat-
tern recognition and processing.1,2 Possible prototypical systems
are the oscillatory networks that can generate a large variety of
distinct self-sustained periodic oscillations according to needs,
which are fundamental to information encoding, storage, and
processing in these systems. While exploiting physical systems
with engineering design can lead to viable solutions,3–12 nature
has provided us with a rich variety of biological oscillators with
dynamical mechanisms leading to operational principles that can
be exploited for designing the fundamental oscillator systems.13–20

Guided by the bio-inspired approach, we investigate artificial

neural networks (ANNs) that are capable of generating diverse,
stable periodic oscillatory patterns in both space and time. Fur-
thermore, an advantage of using the ANNs is that diverse, dis-
tinct oscillation patterns can be generated through control of
only a small set of nodes. Intuitively, for an ANN to produce a
rich variety of distinct spatiotemporal oscillations, the underly-
ing topology of the network needs to be complex. We are thus
motivated to study complex ANNs with the aim to develop an
effective method to generate certain self-sustained oscillatory pat-
terns from a given ANN and to uncover the underlying dynam-
ical mechanisms for the emergence, dynamical evolution, and
switching of such patterns.
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I. INTRODUCTION

Complex artificial neural networks (ANNs) belong to the broad
class of excitable dynamical systems that arise in many natural
processes such as epidemic spreading,21,22 chemical reactions,23 spa-
tiotemporal patterns in cardiac tissues,24 tissue formation,25,26 and
neuronal activities.27,28 In such a network, the nodes are neurons and
the edges represent the electrical or chemical interactions among
the neurons. Self-sustained oscillations in neuronal networks play
an important role in normal physiological activities29,30 such as
visual perception,31 cognitive process,32 olfactory,33 and arousal and
sleep.34 To maintain sustained oscillations, a network setting is
necessary28,29,35,36 because a single neuron, when isolated, is incapable
of exhibiting rich oscillatory behaviors.37 In excitable media, chaos
and transient chaos can also arise.38,39 In terms of computations,
there were previous studies on how memory is encoded, stored, and
retrieved in ANNs.40–43

What is the basic ingredient required for a complex ANN to
generate a rich variety of spatially distinct oscillation patterns? The
key lies in the fact that self-sustained oscillations in an excitable
system are typically maintained by loops. A bi-directional coupled
complex network of reasonable size has typically embedded within
itself a large number of closed loops that involve different com-
binations of the nodes in the network.44–47 In principle, any of
the loops can support a self-sustained periodic oscillation pattern
in the ANN, i.e., a “pacemaker,” with the period being determined by
the loop size. While the loops are dense,44 not all loops can become
pacemakers.48,49 In fact, for a loop to become a pacemaker, the path
connecting any two nodes along this loop should be minimum to
support a propagating wave. Furthermore, if the length of the loop
is too short, it can happen that most of the nodes in the loop would
be in a refractory state, breaking the propagation of the excitations
along the loop again, leading to a resting state.

Given a network with rich and complex loop structures, how
can we induce a self-sustained oscillation pattern of desired length?
Our idea is to exploit the minimum feedback vertex set (mFVS)50–54

to derive a control principle. In particular, for a complex network,
an FVS is a subset of nodes (vertices) such that their removal will
leave the network with no loop. That is, an FVS is a subset of nodes
containing at least one vertex of every possible loop in the network.
If all FVS nodes are removed, the network will degenerate into a
tree or forest structure without any loop, eliminating the possibil-
ity of bringing about any self-sustained oscillation. From a different
perspective, if some FVS nodes are present, there will then be some
loops in the network to support self-sustained oscillations. Typically,
FVS is not unique—for a large network, there can be a large number
of FVS. A simple way to obtain FVS is randomly removing nodes
until no loop exists. This method is equivalent to making a site per-
colation, and, as a result, removing FVS nodes will destroy the giant
connected cluster on which the system functioning relies and break
the network into a large number of small disconnected components.
However, empirically removing the FVS of the smallest possible size,
the minimum FVS (mFVS), to eliminate loops can largely preserve
the connectivity of the system. Reintroducing a single or a combi-
nation of mFVS nodes into the network will form a particular loop
structure and enable it to generate distinct self-sustained oscillation
patterns.

In this paper, we study a prototype of complex artificial neural
networks and demonstrate that our mFVS based control principle is
capable of generating a large variety of distinct self-sustained oscil-
lations in the network. We find that, when all mFVS nodes are
suppressed (or inhibited) except for a few or even a single one,
various self-sustained oscillation patterns can arise. A dynamical
analysis reveals that the system can reach a critical state in the sense
of a transition from self-sustained periodic oscillations to chaos. In
a critical state, chaos is beneficial because it enables the system to
be remarkably flexible in the sense that it can quickly switch from
one oscillation pattern to another spatially distinct one through an
alteration of the active mFVS node. The maintained mFVS nodes
leading to specific self-sustained oscillating patterns are effectively
memory triggers for the respective patterns to be recalled and real-
ized. Critical phenomena with implications to memory encoding,
storage, and retrieval are studied. Our findings suggest that complex
artificial neural networks incorporating mFVS guided control can be
exploited to efficiently generate and switch self-sustained oscillation
patterns.

We note that the concept of FVS has been exploited55,56 previ-
ously for controlling networks of nonlinear oscillators with strong
dissipation, where such a network can be fully controlled if all nodes
in an FVS are directly driven by external inputs. Particularly, when
the FVS nodes have been controlled, the effect of control will “prop-
agate” to all other nodes in the network, driving the whole network
to a desired state. For example, if the target state is a limit cycle,
insofar as the dynamical variables of the FVS nodes are “pinned” to
the corresponding set of the cycle, the whole network will converge
to it. It was established mathematically55,56 that, for nodal dynami-
cal processes described by a set of nonlinear differential equations
with dissipation, harnessing properly the dynamical variables of the
FVS nodes can bring the whole system to a desired state. Our prob-
lem is different as there is no target state, and we seek to generate as
many distinct and desired self-sustained oscillation patterns as pos-
sible and efficient switching strategy between different patterns for a
given ANN with minimum control.

II. MODELS

Given a complex network, the problem of finding the mFVS
is an NP-hard problem. Nonetheless, for networks of a reasonably
large size, an effective numerical method has been developed based
on the belief propagation algorithm.50 Here, we consider a ran-
dom regular network, whose nodes have the same degree k, i.e., the
number of edges, that are randomly connected between different
nodes. An example of the mFVS of a random regular network of
size N = 200 and degree k = 3 is shown in Fig. 1(a), where there are
51 nodes in the mFVS (marked by the gray open squares). When the
mFVS is removed or inhibited, the remaining nodes in the network
constitute two tree-like components with one connected tree con-
taining almost all the nodes. This intrinsic connectivity is a virtue of
the mFVS method because, if one tries to eliminate loops in a net-
work through the traditional site-percolation method, a much larger
number of nodes will need to be removed and the resulting network
will be fragmented.
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FIG. 1. Example of mFVS and illustration of the generation of different attractors with spatially distinct self-sustained oscillation patterns. As different mFVS nodes are
excited, the network generates distinct attractors. (a) A random regular network of size N = 200, where the mFVS consists of 51 nodes (denoted by the gray open squares
on the periphery). When the mFVS is removed or inhibited, the remaining nodes form a tree-like network, as highlighted by the colored filled circles. Numerically, setting the
value of the coupling parameter Di of an mFVS node to a small value will inhibit it, while a proper finite value will activate it. (b) When different mFVS nodes [colored open
squares in (c)–(g)] are stimulated, the network can generate different attractors. (c) The loop structure of the attractor generated in the time interval t < 1000 by setting the
coupling parameter of a specific mFVS node (blue open square) to 0.4 while keeping those for all other mFVS nodes at a lower value, e.g., D = 0.08 < Dc, to ensure that
these nodes are suppressed. (d)–(g) Attractors with distinct loop structures generated by activating different mFVS nodes (the green, purple, yellow, and red open squares,
respectively) for t ≥ 1000. In principle, activating somemFVS nodes or combinations of these nodes can result in a large number of self-sustained, spatially distinct oscillation
patterns.

We consider a class of excitable networked systems,57 a
generalized version of the piece-wise linearized FitzHugh–Nagumo
(FHN) neural network model,37,58 where the nonlinear elements are
a simplified version of the Hodgkin–Huxley (HH) type of neurons.59

We will mainly focus on the FHN system to demonstrate the work-
ing of our scheme and then verify with the HH system that our
results are general and not depend on specific models. In the main
text, we shall only consider the random regular network of size
N = 200 and degree k = 3 as an example to demonstrate the work-
ing of the mFVS based control. Consistent results of different net-
work models are presented in Appendix A, and the efficiency of the
mFVS based controlling scheme in larger systems is demonstrated
in Appendix B.

A. Model of FitzHugh–Nagumo type of ANNs

Mathematically, the FHN system is described by

dui

dt
= −

1

ε
ui(ui − 1)

(

ui −
vi + b

a

)

+ Di6i,

dvi

dt
= f(ui) − vi, i = 1, . . . , N, (1)

f(ui) =











0, ui < 1/3,

1 − 6.75ui(ui − 1)2, 1/3 ≤ ui ≤ 1,

1, ui > 1,

where ui is the membrane potential of neuron i, vi is a dynam-
ical variable characterizing the collective effect of the underlying
ionic channels, Di is the coupling parameter, and 6i is the coupling
term characterizing the influences of other neurons on the dynam-
ics of neuron i. Typical parameter values are a = 0.84, b = 0.07, and
ε = 0.04. A neuron in the network is connected with other neurons
through electrical synapses modeled by

6i =

∑

j Aijuj
∑

j Aijuj + K
− ui, (2)

where Aij is an element of the adjacency matrix of the network and
K = 0.8. For a concrete example, we assume that the neural network
has the random regular topology with 200 nodes and 300 edges. For
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a non-mFVS node, we set the value of its coupling parameter to be
Di = 0.4. The parameter setting is such that a resting node can be
excited by a single spike from a neighboring node. For clarity, we
reserve D to denote the coupling parameter associated with all the
mFVS nodes (except the activated one).

In our simulations, the initial values of ui and vi are randomly
chosen from the unit interval [0, 1]. For typical initial condition, the
networked system evolves toward some stable, biologically mean-
ingful state, e.g., a self-sustained oscillatory state. For example, for
D = 0.4, we find that the probability for the system to exhibit
self-sustained oscillations is approximately 97%.

B. Model of Hodgkin–Huxley type of ANNs

The Hodgkin–Huxley (HH) equations of a single neuron i are

C
dVi

dt
= −gNami

3hi(Vi − ENa) − gKni
4(Vi − EK)

− gL(Vi − EL) + I
syn
i , (3)

where Vi is the membrane potential, C = 1 µF/cm2 is the
membrane capacitance, gNa = 120 mS/cm2, gK = 36 mS/cm2, and
gL = 0.3 mS/cm2 are the maximum conductivity of the sodium ion,
the potassium ion, and the leak channels, respectively. The Nernst
potentials are ENa = 115 mV, EK = −12 mV, and EL = 10.6 mV.
The gating variables m and h are associated with the activated and
inactivated channels of sodium, respectively, and the variable n is
for the activated channels of potassium. The differential equations
describing the evolution of the gating variables are

dxi

dt
= αxi

(Vi)(1 − xi) − βxi
(Vi)xi, xi = mi, hi, ni, (4)

where αxi
and βxi

are given by60

αmi
= 0.1

25

exp [(25 − Vi) /10] − 1
, βmi

= 4 exp (−Vi/10) ,

αni
= 0.01

(10 − Vi)

exp [(10 − Vi) /10] − 1
, βni

= 0.125 exp (−Vi/80) ,

αhi
= 0.07 exp (−Vi/20) , βhi

=
1

exp [(30 − Vi) /10] + 1
.

The interaction between neurons is through the current I
syn
i given by

I
syn
i =

∑

j

DAij

(

Vi − Vj

)

, (5)

where Aij is the ijth element of the adjacency matrix and D is the
coupling strength.

III. RESULTS

A. Self-sustained oscillation patterns, chaos, and

control in FitzHugh–Nagumo neural networks

We first study FitzHugh–Nagumo (FHN) type37,58 of ANNs.
In general, self-sustained oscillations result from the spreading or
propagation of excitation along selective, spatially distinct loops. For
a sizable network of neurons, the number of distinct loops can be
large and tends to increase exponentially with the network size.49

Some loops can act as pacemakers and lead to self-sustained oscilla-
tions at the scale of the whole system. Once such a loop has emerged,
it dominates the system dynamics as the neural activities of the
nodes not keeping pace with the loop are greatly suppressed. Any
loop must necessarily contain at least one mFVS node. Activating
a different mFVS node can result in a spatially distinct oscillation
pattern associated with a different attractor of the system, as exem-
plified in Fig. 1(b). Figures 1(c)–1(g) show the spatial structures of
five different loops (colored nodes and links) generated by activat-
ing five different mFVS nodes (colored open squares), respectively,
each corresponding to a spatially distinct pattern of self-sustained
oscillations.

In addition to self-sustained oscillation patterns, rich spa-
tiotemporal dynamical behaviors can emerge in system (1) through
manipulation of the mFVS nodes, e.g., through a change in the
value of their associated coupling parameter. For the parameter set-
ting in Fig. 1, when the coupling parameter is set to be D = 0.4
for all mFVS nodes, the ensemble averaged membrane potential
〈u(t)〉 ≡

∑

i ui(t)/N exhibits periodic oscillations of relatively large
amplitude. As the value of D for all the mFVS nodes is decreased, a
transition in the system dynamics from periodic to chaotic oscilla-
tions can occur. If D decreases further and passes a critical value Dc,
no oscillatory state exists in network dynamics. Note that in gen-
eral, Dc depends on the neuron model and also the network model.
For the FHN system on random regular networks of size N = 200
and k = 3, through scanning the value of D with a step of 0.001,
it is found that Dc

∼= 0.096. In particular, Fig. 2(a) shows that, for
D = 0.1, a small perturbation δ → 0 upon the potential u: u

∗(0)
= u(0) + δ leads to a new orbit u

∗(t) that separates exponentially
from the original orbit u(t),

‖1‖ = ‖u
∗(t) − u(t)‖ ∼ ‖δ‖ exp (λt), (6)

where λ is the maximum Lyapunov exponent. In a chaotic state,
the separation ‖1‖ will reach a certain value, e.g., 10−3, at time τ .
Figure 2(b) shows that τ decreases logarithmically with the pertur-
bation magnitude ‖δ‖, and the slope of the fitted line is approxi-
mately −1/λ. In particular, we have λ = 0.121 for D = 0.099 and
λ = 0.0962 for D = 0.14. Figure 2(c) shows the localization mea-
sure, the inverse participation ratio L of the power spectrum S(T) of
〈u(t)〉 defined as

L =
∑

T

S4(T)

/(

∑

T

S2(T)

)2

(7)

vs D, where

S(T) =

∣

∣

∣

∣

∫

〈u(t)〉 eit/T dt

∣

∣

∣

∣

2

.

Due to the loop structure, S(T) typically contains separate peaks.
If S(T) has one or two dominant peaks, the value of L is large. In
contrast, if there is chaos so that S(T) is broad, the value of L is
small. Relatively small values of L are thus indicative of chaos. As
D decreases from about 0.1, the weak coupling leads to isolation of
the mFVS nodes from the system, ruling out self-sustained oscilla-
tions. Note that all the mFVS nodes are inhibited. If in this process,
one particular mFVS node stays activated, for D < 0.1, only the loop
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FIG. 2. Induced chaotic behavior in the ANN. A chaotic attractor emerges when all mFVS nodes are inhibited properly. (a) Demonstration of sensitive dependence on initial
conditions: exponential separation of two trajectories of 〈u(t)〉 due to an initial perturbation of magnitude |δ| = 10−10, where D = 0.1 for all the mFVS nodes and Di = 0.4
for all the other nodes. (b) For 1 = 10−3, the average time 〈τ 〉 for the differences between the two initially nearby trajectories to reach 1 vs the initial perturbatio δ. Each
data point is the result of averaging 100 realizations. (c) The inverse participation ratio L of the power spectrum S(T) of 〈u(t)〉 vs D. In the shaded region 0.096 < D < 0.175
where chaos arises, the resulting oscillatory behavior is the consequence of the interactions among a number of pacemakers. Each data point corresponds to the average
of 100 random realizations with different sets of initial values {ui(0), vi(0), i = 1, . . . ,N} sampling from the unit interval [0, 1]. (d) Chaos enabled switching among different
self-sustained oscillation patterns. As the value of D of the coupling of all the mFVS nodes except the activated one increases from 0.08 to 0.092 at t = 1000, a transition
in the system dynamics from a periodic to chaotic attractor (the shaded region) occurs. After a time 1t, D returns to the original value 0.08 and the system approaches a
different periodic attractor, which also depends on the interval 1t.

induced by this mFVS node exists and supports self-sustained oscil-
lations, as shown in Fig. 1. In this case, L takes on a large value again
(see Figs. 7–9 in Appendix A).

That chaos can arise when all the mFVS nodes are inhibited
can be advantageous for switching the system dynamics from one
sustained oscillation to another. In particular, as the mFVS nodes
are gradually inhibited (accomplished by a continuous decrease in
the value of the coupling parameter D from a relatively large value),
transition in the system dynamics from large amplitude periodic
oscillations to chaos occurs. The propagation patterns along differ-
ent loops mix with each other in a complex way, making it difficult
to recognize a loop as a “pacemaker.” The chaotic oscillations can
typically sustain for a relatively long time. At the transition point,
the system possesses effectively a tree-like structure with no active
loop. At this time, turning on any individual mFVS node by increas-
ing its Di value significantly can lead to self-sustained oscillations
generated by the loop due to this mFVS node. Activating differ-
ent mFVS nodes can lead to spatially distinct oscillation patterns.
Qualitatively, this behavior is similar to that arising in controlling
chaos:61–63 chaos offers a natural platform for switching to stabilizing
different unstable periodic orbits at different time points.

Figure 2(d) demonstrates the attractor switching behavior
through activation of the originally inhibited mFVS nodes. Here,

initially, the system has only one mFVS node activated with
Di = 0.4, while all the other mFVS nodes are inhibited by setting
their coupling to D = 0.08. The system evolves to a self-sustained
oscillation pattern for t < 950. As the value of D of all the inhib-
ited mFVS nodes (except for the excitable one) increases from 0.08
to 0.092, the system evolves into a chaotic state, as revealed by the
shaded region in Fig. 2(d). After a time 1t, we tune back the D
value to 0.08. The system converges to a different periodic attrac-
tor, although Dis recover to the same profile. In fact, modulating
the length of 1t results in different periodic attractors and hence
different self-sustained oscillation patterns.

To better understand the mechanism behind the generation of
spatially distinct self-sustained oscillations through controlled acti-
vation of mFVS nodes, we consider the simple case in which a single
mFVS node (denoted by m) is excitable, while all the remaining
mFVS nodes are inhibited. The node, being part of mFVS, may
simultaneously belong to a number of loops in the network, and,
hence, activating the node makes it feasible to generate a number of
distinct self-sustained, periodic oscillation patterns, as exemplified
in Fig. 1. The number of loops that this mFVS node can induce to
the tree-like network is less than or equal to k(k − 1)/2, where k is
the degree of this node. Among these loops, typically, one acts as a
pacemaker that drives the other loops and hence the whole system.
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Depending on the initial condition, the pacemaker can be different,
either supported by a different loop activated by the same mFVS
node or the same loop but with a different propagation direction.
Figure 3 displays the patterns of 〈u(t)〉 and the corresponding topo-
logical structure of the network with a single mFVS node activated
(the blue open square), where multiple patterns can be seen. The
reasons for a single mFVS node to stimulate multiple self-sustained
oscillation patterns are twofold: (1) among all the loops that con-
tain m, more than one can act as a pacemaker depending on initial
states, and (2) there can be multiple routes to stimulating even a
single pacemaker. The two distinct patterns in Figs. 3(a) and 3(b)
correspond to the clockwise and counterclockwise stimulation pro-
cesses for a given loop, as illustrated by the filled blue circles shown
in Figs. 3(c) and 3(d), the respective snapshots of the firing neu-
rons. Figure 3(e) shows the normalized power spectrum of 〈u(t)〉

FIG. 3. Multiple attractors belonging to one given configuration in controlling
mFVS. Shown is a case where one given mFVS node m is excitable (with
Dm = 0.4, the blue open square) and all other mFVS nodes are inhibited (with
D = 0.08, not shown). (a) and (b) As the active mFVS node m can belong to dif-
ferent loops, multiple coexisting attractors can arise, generating spatially distinct
self-sustained oscillation patterns revealed by the time evolution of 〈u(t)〉. (c) and
(d) The corresponding snapshots of the oscillation patterns in (a) and (b), respec-
tively, at the time indicated by the red arrow, and the firing nodes are red colored.
The arrow indicates the propagation direction of the firing dynamics. (e) Normal-
ized power spectrum of 〈u(t)〉 from different realizations. The thick gray curve
denotes the mean power spectrum averaged over a few hundred realizations.

obtained from different realizations, where the gray solid trace is the
average and the dotted curves indicate the power spectra of three
spatially distinct self-sustained oscillation patterns. The mFVS node
m induces three loops, and the components contributed by the three
loops as a pacemaker can be identified in the power spectra. Partic-
ularly, the insets show the cases with three different colored loops
playing the role of a pacemaker, and the corresponding peaks in the
power spectra are marked by the same color.

The features revealed by the power spectra in Fig. 3(e) and the
underlying topological loop features imply that an arbitrary dynam-
ical pattern of a complex artificial neural network can be regarded

FIG. 4. Representative waveform that can be generated through controlled acti-
vation of mFVS nodes. (a) A schematic diagram of the network structure. The
red squares are possible mFVS nodes, and a blue hollow circle indicates a sin-
gle node. The thick blue lines are one dimensional chains of artificial neurons
with length marked by gray numbers. The thin lines are connections between two
artificial neurons. The orange rectangles are three waveform generators, with the
detailed artificial neuron connections shown on their right side. Besides the wave-
form generator of sinusoidal function, other two generators are tree-like structures.
An mFVS of this network contains four nodes, but the selection is not unique.
Some examples of mFVS are {1, 2, 4, 6} or {1, 2, 5, 7}. Through controllingmFVS,
different wave patterns can be generated: (b) a sawtooth wave (with nodes 1, 2,
and 5 inhibited), (c) a sinusoidal wave (with nodes 2, 5, and 7 inhibited), (d) a
square wave (with nodes 1, 2, and 7 inhibited), and (e) a triangular wave (with
nodes 1, 2, and 4 inhibited).
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FIG. 5. Statistical distribution of the periods of self-sustained oscillations with targeted mFVS based control (a) and random control (b). Ten network realizations with 51
nodes in mFVS are used for obtaining the statistics. For each realization, n nodes randomly selected from an mFVS or from the whole system are inhibited, corresponding
to targeted mFVS based control and random control, respectively. Inhibition is implemented by reducing the coupling strength of the controlled nodes to a small value (e.g.,
0.08) from the normal value (0.4). If the network produces periodic oscillations, the value of the period (T) is recorded. Examining a large number of random nodal sets across
all ten network realizations enables the distribution of the periods to be calculated. The distribution corresponding to targeted control is shown via a colored heat-map in (a),
whereas the periods resulting from random control are shown in (b) with a much narrower range. Random control results in oscillation patterns of short periods, while the
mFVS based targeted control results in a much broader distribution of the periods.

as the superposition of the basic components of pacemakers. This
may have potential applications in unconventional computing: var-
ious collective oscillatory patterns with a desired waveform can be
generated through a proper combination of the mFVS nodes and
thus the corresponding pacemakers. This is demonstrated in Fig. 4,
where a number of representative waveform that can be generated
through pacemakers from mFVS based control are shown: (b) a
sawtooth wave, (c) a sinusoidal wave, (d) a square wave, and (e) a
triangular wave. Through controlled activation of as few as a sin-
gle mFVS node, a complex ANN can generate various types of
waveform through combining modes distributed in the networks.
This might provide useful guidelines for designing artificial neural
network hardware.

Finally, we demonstrate that our mFVS based control strat-
egy can lead to a wide variety of distinct self-sustained oscillations.
Figure 5 presents the statistical distribution of the periods of the
resulting periodic oscillations from two scenarios: (a) targeting
mFVS and (b) controlling a random set of nodes. Specifically, for
scenario (a), the inhibited nodes are randomly selected from an
mFVS with the number of the inhibited nodes less than its size (51),
and, for scenario (b), we inhibit a randomly chosen set of nodes,
whose number is denoted as n. For example, for the network in
Fig. 1, an mFVS contains 51 nodes. We carry out a statistical test
where, for each realization, we inhibit n (n ≤ 50) randomly chosen
nodes [from an mFVS for (a) and from the whole system for (b)]
and calculate the periods of the resulting self-sustained oscillations
(if they occur). Nodal inhibition is accomplished by reducing the
coupling parameter value from 0.4 to a small value (e.g., 0.08). The
left column of Fig. 5 displays a distribution of the periods of the self-
sustained oscillations from many realizations following scenario (a).
For scenario (b), the distribution of the period of the self-sustained

oscillation patterns concentrates in a much smaller range with rel-
atively small periods. This means that inhibiting a random set of
nodes is unable to efficiently eliminate the loops, and consequently,
a large number of short loops exist in the network, leading to self-
sustained oscillations of small periods. This can also be seen from
the localization of the power spectrum in Fig. 2(c), where the oscil-
lation periods of the unperturbed network are distributed in a region
of small periods. In contrast, when most mFVS nodes are inhib-
ited (e.g., by setting the values of the coupling parameters for all
the mFVS nodes to 0.08 except for the excitable one whose coupling
strength is 0.4), the resulting distribution of the oscillation period
becomes much broader, as shown in Fig. 5(a). Targeted control
of the mFVS can thus generate a broad spectrum of self-sustained
oscillations with significantly longer periods than those that can be
naturally generated in the uncontrolled network.

Our extensive numerical computations with the FHN neural
networks reveal that loops capable of hosting self-sustained oscilla-
tions can act as pacemakers through controlled activation of mFVS
nodes. These nodes thus provide a powerful platform to control the
dynamics of complex artificial neural networks. Controlled activa-
tion of proper sets of mFVS nodes can induce a large number of
distinct pacemakers, greatly enriching the dynamical outcomes and
enhancing the expression ability of the networked system.

B. Self-sustained oscillations and chaos in

Hodgkin–Huxley neural networks

To demonstrate the generality of the correspondence between
the loop structure in ANNs and self-sustained oscillations, we fur-
ther exploit the full Hodgkin–Huxley (HH) type of ANNs. In fact,
the two-dimensional FHN neuron model is a simplification of the
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FIG. 6. Self-sustained oscillations and switching behavior in the HH network. The network topology is of the regular random type with N = 200 nodes and degree k = 3.
(a) Switching among distinct oscillation patterns. For t < 800ms, the HH system is dominated by a loop activated by the blue square node in (b). At t = 800ms, this node
is inhibited, and a different node in the mFVS is excited, activating a different loop. The dynamics of the HH system approach different attractors after a transient. (c)–(e)
The spatial configurations of three loops that generate distinct self-sustained oscillation patterns, as indicated in (a) for t > 800ms. Each configuration contains a distinct
subset of excitable nodes. (f) Shown is the inverse participation ratio L of the power spectrum of the self-sustained oscillations vs D, the coupling strength of all mFVS nodes.
The shaded region corresponds to chaotic oscillations that can be exploited to switch between different attractors via transient chaos. Each data point is an average over 50
random realizations.

HH quaternion neuron equation of a giant axon of squid.59 The HH
model better describes the experimentally observed firing behaviors
of neurons, as the model captures the change not only in the mem-
brane potential but also in the gated ion channels at a detailed level.
To demonstrate the generality of the above results, we investigate
coupled HH neurons on a regular random network.

Since the refractory period of the HH neuron is longer than that
of the FHN neuron, a large number of random initial conditions are
needed to realize self-sustained oscillations (e.g., about one in every
1000 initial conditions). We articulate an initialization procedure to
overcome this difficulty. In particular, initially, we set all nodes to
the resting state and randomly excite one neuron and inhibits its two
neighbors for a short period of time. While this initialization does
not lead to all possible states of periodic self-sustained oscillations,
it is effective for demonstrating the power of the mFVS control to
readily achieve these oscillations.

Similar to the results from the FHN network (Fig. 1), in
the HH network, periodic self-sustained oscillations arise and are
encoded into the mFVS nodes. We find that different combina-
tions of activated mFVS nodes lead to distinct oscillation patterns,
as shown in Fig. 6 where, for t < 800 ms, the coupling strength
of the activated mFVS node is D = 0.1 and the remaining mFVS
nodes are suppressed. When the activated mFVS node is changed at
t = 800 ms, as shown in Fig. 6(a), after a short transient time, the
network settles down to a different attractor that depends on the
specific activated neuron in mFVS, leading to distinct self-sustained

oscillation patterns, as shown in Figs. 6(c)–6(e). The behavior of the
inverse participation ratio L of the power spectrum S(T) is shown
in Fig. 6(f), which is similar to that for the FHN network as in
Fig. 2(c). When the mFVS nodes have a large coupling strength,
e.g., D > 0.07, the oscillations become periodic with short periods
as the network system now contains many short dynamical loops.
For D . 0.06, chaotic oscillations arise, which are eventually unable
to sustain themselves when all the mFVS nodes have been inhibited
beyond the critical point Dc

∼= 0.015, ruling out the existence of any
loop.

IV. DISCUSSION

Spatially distinct, self-sustained oscillations in excitable sys-
tems, such as ANN systems, are fundamental to information encod-
ing, storage, and processing in these systems. An outstanding ques-
tion is, what is the dynamical mechanism for an ANN to generate
a large number of spatially distinct and robust self-sustained oscil-
lations, each involving a different subset of neurons? We have
addressed this question from the standpoint of complex nonlin-
ear dynamical networks of excitable elements. Our main finding is
that a variety of such oscillation patterns can be generated through
exploiting a subset of special nodes in the network: nodes that belong
to the mFVS—minimum feedback vertex set.50,55,56 Particularly, an
mFVS is a minimum set of nodes in the network whose removal (or
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complete inhibition) will result in a tree-like, yet still mostly con-
nected network without any loops. Our idea is then that activating
or de-inhibiting some mFVS nodes would create some loops that can
support periodic oscillations in a self-sustained manner. The present
study has indeed revealed that this is the case: a variety of stable,
self-sustained oscillation patterns can emerge through targeted acti-
vation of even a single mFVS node. While most results reported in
this paper are for the case of exciting a single mFVS node, we find
that de-inhibiting a subset of mFVS nodes can lead to a drastically
richer variety of oscillation patterns. In the terminology of nonlinear
dynamics, these patterns correspond to limit-cycle type of periodic
attractors.

Another finding is that varying the coupling strength of the
mFVS nodes with the remaining of the network continuously, e.g.,
by strengthening the inhibition level for all or some mFVS nodes,
can drive the whole artificial neural network system into a chaotic
attractor. We note that chaos can arise in ANNs with balanced exci-
tatory and inhibitory activity.64 The great advantage of chaos is that
it can naturally facilitate switching among different self-sustained
oscillation patterns. Particularly, suppose the current oscillation pat-
tern becomes undesired. One can tune the inhibition level of the
mFVS nodes so that the system settles into chaos, with which the
activation of an mFVS node targeted at a different but desired oscil-
lation pattern can drive the system quickly into the corresponding
attractor. More generally, this implies the potential benefits of tun-
ing the system near a critical state with chaos: there is great flexibility
in achieving rapid switching among oscillation patterns depending
on needs. In fact, there is belief that a healthy brain always works
in a critical state (edge of chaos), where a rich variety of oscilla-
tion patterns exist.65–67 While neural excitability generally depends
on biological factors such as the inhibitory or excitatory synapse
connections and the refractory period, these features of artificial
neurons realized using circuits in a complex ANN can be read-
ily regulated in a controllable way. Our work reveals a possible
dynamical mechanism for generating and switching among such
patterns—tasks that are essential for the normal functioning of the
artificial neural networks.

It should be stressed that our controlling scheme captures the
key ingredients, e.g., the background loop structure that supports
the self-sustained oscillations, and do not depend on dynamical
details. There are many neuronal systems that the synapses are based
on chemical couplings, not the electrical couplings in this study. The
main difference between chemical synapses and electrical synapses
is their responses to subthreshold stimulus. For general electrical
synapse models, different subthreshold stimulus can superimpose
together naturally and activate the target neuron.68 However, for
chemical synapses, the response to subthreshold stimulus depends
on details of models, e.g., short-term synaptic plasticity, which plays
a significant role for chaotic oscillations.69 For neuronal systems
with chemical synapses, our results should still be valid as their self-
sustained oscillations are again dominated by the loops, where the
mFVS based controlling scheme will be efficient in modulating the
oscillation patterns.

From an applied point of view, the finding that ANNs with
complex connection topologies can generate a rich variety of spa-
tially distinct, self-sustained oscillations through manipulation of
a few or even a single mFVS node has applications in developing

unconventional, non-Boolean type of computing paradigms for
ANNs. Furthermore, our findings are robust against variations in
the network topology, in system size, or in the neuronal dynamics
of the nodes. Broad applications of our results could be expected in
designing functional ANNs.
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APPENDIX A: EFFECTS OF DIFFERENT NETWORK

STRUCTURES OF ANNs

The results in the main text on exploiting mFVS for con-
trolled generation of self-sustained oscillations in two types of ANNs
are from regular random networks. Here, we demonstrate that the
principle also holds for scale-free and small-world networks and is
independent to the system sizes.

1. Scale-free networks

We generate three scale-free networks of size N = 200 and
average degree 〈k〉 = 4. For each network, we determine the FVS
using 104 independent runs using the algorithm in Ref. 50. As shown
in Fig. 7(a), all FVS have size 21 so that the size of the mFVS is
21, which contains all hub nodes with degree larger than five. As
the coupling strength D of 20 nodes in the mFVS decreases, peri-
odic oscillations of short periods, chaotic oscillations, and periodic
oscillations of long periods, all self-sustained, emerge successively.
Figure 7(b) shows the inverse participation ratio L vs D. For either
large or small values of D, in general, there are only one dominating
oscillation pattern supported by a loop structure in the network, and
the power spectrum concentrates on this period, leading to a large L
value. For D ∼ 0.1, L drops significantly, indicating a broad partic-
ipation of many loops, whose competition results in the observed
chaotic motion. This is similar to the results on regular random net-
works. Figure 7(c) further corroborates the above reasoning that,
by inhibiting increasingly more neurons in the mFVS, the distribu-
tion of the periods becomes broader, signifying participation of the
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FIG. 7. Controlled generation of self-sustained oscillations in scale-free networks. The networks have size N = 200 and average degree 〈k〉 = 4. (a) Size distribution of
FVS. Three networks are generated, whose size of the mFVS is 21. For each network, the FVS is sampled from 104 independent runs. (b) For one of the three networks,
the inverse participation ratio L of the power spectrum vs the coupling strength D. The shaded region with relatively small values of L indicates broad participation of many
dynamic loops in the network of varying periods, leading to chaotic oscillations. Each data point is obtained from 100 random initializations. (c) and (d) Distribution of the
periods T of sustained oscillations for inhibiting n nodes in the mFVS and for randomly inhibiting n nodes in the whole network, respectively. The maximum number of inhibited
nodes n is 20; i.e., only one node in the mFVS is not inhibited. For each n, the data are obtained from statistics of 1000 random initializations on each of the three networks.

different loop structures. In contrast, inhibiting randomly selected
neurons in the whole system does not have such an effect, as shown
in Fig. 7(d).

2. Small-world networks

Because of the refractory period of the neuron, a loop with four
or fewer nodes cannot support self-sustained oscillations. However,
one node in the loop must belong to the mFVS. To make a con-
nection of the nodes in the mFVS with the self-sustained oscillation
dynamics, we study a honeycomb lattice with periodic boundary
conditions and random rewiring of 2% of the edge nodes to gen-
erate a small-world network, where the smallest loop has six nodes
and so can support self-sustained oscillations. Figure 8(a) shows the
distribution of the FVS size in three small-world networks of 224
nodes, indicating that the mFVS contains 59 nodes. As the cou-
pling strength of the links between 58 nodes in mFVS and other
nodes in the network decreases, the inverse participation ratio L
exhibits behaviors similar to those with regular random networks
in the main text. Figure 8(b) shows L vs D, where periodic oscilla-
tions of short periods occur in the region of relatively large D values.
As D decreases from this region, chaotic oscillations arise. For

D < 0.09, the controlled nodes have little response to their neigh-
bors and periodic oscillations set in again. Figures 8(c) and 8(d)
show the results of controlled and random generation of self-
sustained oscillations, respectively. Similar to the results from
regular-random networks in the main text and those with scale-
free networks in Fig. 7, self-sustained oscillation patterns can be
effectively generated by control.

3. Larger regular random networks

Here, we study larger regular random networks of size 400 and
average degree k = 3. Figure 9(a) shows the distribution of the size
of FVS. Three networks are chosen from several realizations whose
mFVS contains 101 nodes. For each network, 10 000 runs of the
FVS are obtained for statistical analysis. For the self-sustained oscil-
lations, the inverse participation ratio L of the power spectrum is
calculated by inhibiting 100 nodes in the mFVS and leaving one
node uncontrolled. Figure 9(b) shows L vs D. A nearly plateaued
region of L values arises for D > 0.2, in which periodic self-sustained
oscillations of short periods occur. As D decreases from 0.2, L
drops suddenly and the oscillations become chaotic. When most of
the mFVS nodes are inhibited, the remaining uncontrolled one or
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FIG. 8. The same plot as Fig. 7 but for small-world networks with N = 224 and k = 3. The size of the mFVS is 59.

FIG. 9. The same plot as Fig. 7 but for larger regular random networks with N = 400 and k = 3. The size of the mFVS is 101.
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two mFVS nodes lead to one or two loops that act as the “pace-
maker” of the system. As a result, the number of distinct periods is

reduced, leading to large L values again and periodic oscillations of

a long period. Controlling the nodes in the mFVS can significantly

increase the period of oscillations and broaden the period distribu-

tion, as shown in Fig. 9(c). In contrast, inhibiting a set of randomly

selected nodes from the whole system leads to a localized distri-

bution, notwithstanding a small increase in the average period, as
shown in Fig. 9(d).

APPENDIX B: CONTROLLING LOOP STRUCTURES IN

LARGER SYSTEMS BY mFVS

In the main text, we have shown that the dynamics of the
FHN or HH networks are dominated by the loop structures, espe-
cially those of long periods in the neuronal activities. In general,
the length of a loop that drives a self-sustained oscillation pattern
is proportional to the oscillation period T. To demonstrate the effec-
tiveness of the mFVS control on larger systems, instead of directly
calculating the time evolution of the FHN system, we examine the

FIG. 10. Length of the longest loop after removing n nodes vs n/N. The blue dashed and orange solid curves are the mean values for the cases of random removal and
mFVS control (removing n nodes belonging to the mFVS), respectively. For each parameter value around 500 realizations are carried out to obtain the mean and standard
deviation, which is indicated by the shaded area around the mean value. The networks are of the regular random type with degree k = 3 for (a,d), k = 4 for (b,e) and k = 5
for (c,f). The system sizes are N = 200 for the left column, e.g., (a)–(c), and N = 20 000 for the right column (d)–(f). The critical point of site percolation is marked by the
black arrow.
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FIG. 11. The same plot as Fig. 10 but for small-world networks with k = 3 (a) and (c) and scale-free networks with 〈k〉 = 4 (b) and (d). For these small-world networks, 2%
of the edges are rewired to be long-range connections.

loop structures, especially those of the maximum length. Note that,
for every pair of nodes in a loop, at least one path with the mini-
mum length between them exists (the loop length). Only this kind
of loops can serve as the “pacemaker” of the system and supports
self-sustained oscillations. To be concrete, we examine, after remov-
ing n nodes from the system, how the length of the longest loop
lmax is changed. We compare two cases: (a) nodes are randomly
removed from the mFVS and (b) nodes are removed randomly from
the whole network, with the anticipation of the former scenario to
have a more significant effect on lmax.

Figure 10 demonstrates the average length of the longest loop
for random control (blue dashed line) and mFVS control (orange
solid line) for regular random networks of varying sizes and degrees,
where the width of the shaded areas indicates the fluctuations of
lmax. Obviously, for larger networks, the relative deviation has much
shrunk except at the critical point. Comparing with the distribution
of the oscillation periods in Fig. 5 in the main text for N = 200 and
that in Fig. 9(c) for N = 400, we find that the curves of lmax(n) are
essentially identical to those oscillation periods obtained by solving
the FHN dynamics.

The process of randomly inhibiting (removing) nodes until
there is no loop in the network can be regarded as a site-percolation
process. Since the size of the largest connected cluster is small when
the fraction of inhibited nodes is beyond the critical point,70,71 the
longest length of the loop is restricted by the cluster size and will
decrease abruptly about the critical point. As a result, the peri-
ods of the oscillation patterns are most abundant about the critical
point, while the precise position of the peak of the distribution of
the periods is affected by the finite-size effect. The black arrow in

Fig. 10 marks the position of the critical point of site percolation,
which is n/N = (k − 2)/(k − 1) for infinite regular random net-
works. After site percolation occurs, large connected clusters no
longer exist, neither do long loops. In contrast to random control,
harnessing mFVS nodes can result in longer loops and make the
generated self-sustained oscillations to achieve a longer period more
efficiently, as fewer controlled nodes are needed. For larger degree
k, a larger fraction of nodes need to be removed to reach the criti-
cal point. Figure 10 shows the results for N = 200 and N = 20 000,
while intermediate sizes have also been investigated. Comparing dif-
ferent network sizes, it has been found that the critical value of the
mFVS control has little finite-size effects, indicating that the size of
mFVS is proportional to the system size. Similar results have been
obtained for two-dimensional small-world networks with k = 3 and
scale-free networks with 〈k〉 = 4 (Fig. 11). These results provide fur-
ther support for the conclusion in the main text, with generalization
to networked systems of larger sizes, of different connection density,
and of different types of topology.
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