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ABSTRACT

We analyze five big data sets from a variety of online social networking (OSN) systems and find that the growth dynamics of
meme popularity exhibit characteristically different behaviors. For example, there is linear growth associated with online rec-
ommendation and sharing platforms, a plateaued (or an “S”-shape) type of growth behavior in a web service devoted to helping
users to collect bookmarks, and an exponential increase on the largest and most popular microblogging website in China. Does a
universal mechanism with a common set of dynamical rules exist, which can explain these empirically observed, distinct growth
behaviors? We provide an affirmative answer in this paper. In particular, inspired by biomimicry to take advantage of cell popu-
lation growth dynamics in microbial ecology, we construct a base growth model for meme popularity in OSNs. We then take into
account human factors by incorporating a general model of human interest dynamics into the base model. The final hybrid model
contains a small number of free parameters that can be estimated purely from data. We demonstrate that our model is universal
in the sense that, with a few parameters estimated from data, it can successfully predict the distinct meme growth dynamics.
Our study represents a successful effort to exploit principles in biology to understand online social behaviors by incorporating
the traditional microbial growth model into meme popularity. Our model can be used to gain insights into critical issues such as
classification, robustness, optimization, and control of OSN systems.

Published under license by AIP Publishing. https://doi.org /10.1063 /1.5085009

With advances in information technologies, a novel class of
complex dynamical systems has emerged: online social net-
working (OSN) systems. The complexity of OSN systems is
enormous: posting and sharing of messages by users, sud-
den occurrence of breaking news events, random drifts in
user interests, etc., all leading to drastic variations of the

network structure and dynamics with time and making (big)
data analysis an essential approach to uncovering the inner
dynamical working of these systems. A phenomenon that
has attracted recent attention is growth dynamics of memes
such as news, ideas, knowledge, or rumors in OSN systems.
Previous models focusing on the individual level were unable
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to account for the common phenomenon of group popular-
ity, raising the need to develop a comprehensive model that
incorporates heterogeneity of users and memes to quantita-
tively describe the collective dynamics of meme popularity.
Another challenge in the construction of a model for meme
popularity lies in its distinct growth behaviors in differ-
ent OSN systems. Our analysis of five big data sets from
diverse social networking platforms has revealed at least
three characteristically different types of behaviors: linear,
plateaued (or “S” shaped), and exponential growth in time.
Is it possible to construct a single model that can explain
the distinct growth behaviors? This paper provides an affir-
mative answer. The general principle underlying our work
is that, while OSN systems are human-engineered with vast
complexity, nature has solved difficult problems in com-
plex systems. Animals, plants, microbes, and even cells are
extremely well self-organized natural systems with superior
functions and efficiency. The first ingredient of our model is
then an approximate equivalence between meme evolution
in OSN systems and microbial cell population growth. This
leads to a probabilistic, population-level base model, where
at any given time, a cell can experience one of the three
possible events: division (generation), death, and survival.
Regarding memes as the “microscopic” elements of OSN sys-
tems, the possible events that can happen to a meme are
similar: posting/forwarding, being overwritten (exclusion),
or simple survival, which are equivalent, respectively, to cell
division, death, and survival in a microbial system. Because
meme growth is a kind of human behavior, it is also nec-
essary to consider additional model ingredients beyond the
biological equivalence. The second ingredient of our model
is then to incorporate human-interest dynamics into the
bio-inspired base growth model. The outcome is a hybrid
model for meme popularity dynamics, which contains four
free parameters that can be determined from data. The
striking result is that the model can predict the detailed
meme popularity growth behaviors in all real OSN systems
studied, regardless of their characteristically distinct ori-
gins, thereby providing a solid ground for its validity and
universal applicability. To be able to predict the dynami-
cal evolution of memes is of great social, economic, and
political interest. What we have achieved in this paper is
a universal model for this task with minimally required
information.

I. INTRODUCTION

Online social networking (OSN) systems are now
ubiquitous and play an increasingly important role in the
modern society, as they provide unprecedented platforms
supporting communications among a vast number of users
all over the world. Due to the availability of massive data
sets from OSN systems, quantitative system analyses have
become possible."** Previous efforts focused on issues such
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as network and opinion co-evolution,' user behavior mod-
eling on networks,”’ the dynamics of users’ activity across
topics and time,>"" human interest dynamics in e-commerce
and communication,” evolutionary dynamics of forwarding
network in the Weibo platform,” competition among differ-
ent Twitter topics,*'%*%* popular topic-style analyses in the
Twitter-like social media," ™ information diffusion patterns in
different domains,”’ and the effect of coexistence of differ-
ent OSN network services."” These studies mainly considered
two issues common to various OSN systems: the collective
behaviors of users and the dynamics of posts or memes. Based
on empirical findings, e.g., power-law scaling relations, math-
ematical, and/or physical models have been developed to
predict the scaling laws. For example, a two-layer model has
been proposed to characterize the viral dynamics and media
influence,”® a branching process has been used to explain the
power-law distribution of meme popularity,'“*° and a Bayesian
probabilistic model has been developed to characterize the
evolution of tweets.”” While these models are able to sim-
ulate or predict certain aspects of meme popularity in real
OSN systems, they are often dependent upon the structure
of the underlying social network, limiting their applicability
to specific types of social networking platforms with special-
ized functions. Due to the vast complexity and diversity of the
OSN systems, a quantitative, generally applicable model for
the dynamical evolution of key variables of empirical inter-
est is lacking. In this paper, exploiting biological principles,
we develop a universal model to explain the characteristically
distinct behaviors of meme growth observed from diverse
OSN systems.

Previous efforts in this field are briefly summarized as
follows. We define memes broadly as some items that serve
to attract user attention and induce heterogeneous dynam-
ical behaviors in the OSN. Especially, memes are referred to
not only as news pieces, ideas, certain information pieces,
knowledge items, or rumors but also as bookmarks, movies,
Weibo messages, music pieces, etc. The network to character-
ize the user-item relationship typically possesses a bipartite
structure.”® Some memes can go viral, some might receive
constant attention, and some simply get ignored. To uncover
the mechanisms that drive the fates of different types of
memes on a microscopic scale is a challenging task. In this
regard, in a previous work,® it was found that in OSN sys-
tems, the distribution of meme popularity is typically het-
erogeneous as a result of the mutual “competition” among
different coexisting memes for users’ attention. This obser-
vation provides the base for the proposal of a theoretical
model to describe the dynamical evolution of memes with a
particular focus on the influence of user actions on informa-
tion diffusion.’®?Y The mathematical backbone of the theory
is branching processes, and it has successfully explained cer-
tain empirical observations such as the distribution of meme
popularity growth associated with the Twitter data sets. A key
assumption of the theory, which is somewhat ideal and thus
makes feasible an analytic treatment, is that users have con-
stant activity rates, and memes are equipped with the same
“fitness.” While the idealization of identical users and memes
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enables a mathematical analysis, the key ingredient of meme
dynamics in real world OSN systems is heterogeneity in user
and meme behaviors. An alternative modeling approach was to
apply a self-exciting point process (e.g., the Hawkes process™)
to predict the popularity of tweets based on partial infor-
mation about the network structure and observations of the
retweeting times.”*° This type of models can successfully pre-
dict the total final number of retweets but, because of the
focus on information diffusion at the individual level, they are
unable to account for the common phenomenon of group pop-
ularity. It is also worth noting that memes popularity dynamics
are distinct from epidemic spreading dynamics on complex
networks®'~*® in that, in the former, individuals receive and
spread a large number of memes while in the latter, the type
of viruses is typically one or two. The theories and computa-
tional methods developed in the past on network spreading
dynamics® are generally not applicable to meme popularity
dynamics.

At present, a comprehensive model that incorporates the
heterogeneity of users and memes to quantitatively describe
the collective dynamics of meme popularity is lacking. A more
significant challenge in the construction of a model for meme
popularity lies in its distinct growth behaviors in different OSN
systems. In particular, by analyzing five big data sets from
diverse social networking platforms, we find three character-
istically distinct types of behaviors: linear, plateaued (or “S”
shaped), and exponential growth in time. Is it possible to con-
struct a single model that can explain these distinct growth
behaviors? Naturally, such a model will contain a small number
of free parameters whose values depend on the specific OSN
system and can be estimated from data. Except for the differ-
ences in the values of the free parameters, the basic elements
of the model are identical for OSN systems from diverse con-
texts. In this sense, the model can be regarded as universal.
Our main idea is to exploit biological principles (biomimicry)
to develop such a model. The guiding principle is that, while
OSN systems are man-made with vast complexity, nature has
solved difficult problems in more complex systems, especially
in biology. Nevertheless, because meme growth dynamics are
driven by human behaviors, it is also necessary to incorporate
human aspects into the model. For this purpose, we exploit
a model for human interest dynamics." The final outcome
is a hybrid model for meme growth based on the combi-
nation of biomimicry inspired by cell growth in microbial
ecology, human behaviors, and empirical laws extracted from
big data sets. The model can accurately predict characterist-
ically distinct growth behaviors in a diverse array of OSN
systems.

In Sec. 11, we identify the similarities between cell growth
in microbial ecology and meme growth in OSNs to estab-
lish our biomimicry principle. In Sec. 111, we develop a hybrid
model incorporating human interest dynamics into our cell-
growth model for meme evolution. In Sec. IV, we present
numerical support for our hybrid model based on five big data
sets from OSN systems and provide a mathematical analysis.
In Sec. V, we summarize the main results and discuss possible
model generalization.
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1. BIOMIMICRY PRINCIPLE AND EMPIRICAL SUPPORT

A. Biomimicry: From microbial ecology to social
network

In microbial ecology, quantitative analysis of cell popu-
lation is fundamental.**~*® Due to computational constraints,
most cell models are at the population level because it is
impractical to monitor the state of each individual cell and
count the number of living cells at every time step. A typical
cell population model contains three ingredients: cell division
(birth), death, and survival. Likewise, in an OSN system, it is
unrealistic to study the behavior of every single post, but it
is feasible to obtain data reflecting the collective behaviors of
these posts. Especially, a meme can be generated from one
user and passed onto another in response to certain social
event (birth), it can disappear if there is no or no longer any
interest in it (death), or it can simply be associated with the
same user without any change (survival). This analog sug-
gests that, dynamically, a meme associated with an individual
is equivalent to a cell in a microbial system.

To place the cell-meme correspondence on a quantitative
footing, we consider the probabilistic model of cell growth and
mortality.”’ At each basic time step, three possible events can
occur to an individual cell: it can divide, can die, or remain
alive. The probabilities of the respective events are repre-
sented as functions of time with parameters estimated from
experimental data. Considerations of the events and the asso-
ciated probabilities provide a base for us to formulate a meme
probabilistic model. An illustrative example is presented in
Fig. 1. In this toy OSN system, there are seven users and four
types of memes that constitute a bipartite network, as shown
in Fig. 1(a), where the former and the latter are connected with
each other by posting or forwarding actions. Especially, two
users are directionally connected if a meme is forwarded from
one to another. Figure 1(b) shows an example of the posting
or forwarding action for each type of meme from the users
point of view, which is essentially a space-time representation
of how the memes are created and evolved. Here, t = O speci-
fies the initial time of the observational window of the system.
For example, users Ul, U4, U5, and U7 post meme types M1, M2,
M3, and M4 at time t =0, t =1, t = 2, and t = 2, respectively,
while users U2, U3, and U4 forward the Ml type att = 3,t =4,
and t = 5, respectively. As a result, four users (Ul, U2, U3, and
U4) are linked to the meme type M1, as indicated in the bipar-
tite network in Fig. 1(a). Similarly, user U5 forwards meme type
M4 att=3,M3att=4,and M2 att =5, and user U6 forwards
type M4 at t = 6. For a meme associated with a user at a given
time, it can be forwarded, be overwritten (excluded), or sim-
ply survive, as indicated in Fig. 1(c), which corresponds to the
three possible events that can occur to a cell in microbial ecol-
ogy: division, death, or remaining alive. Figure 1(d) shows the
same example as in Fig. 1(b), but from meme’s point of view to
illustrate the three events for each of the four meme types.
From a global perspective, a population of a specific meme
starts to grow when it is first posted. The population size
increases as users continue to forward this meme. Between
each pair of consecutive forwarding events, the meme is in
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FIG. 1. Schematic illustration of evolutionary dynamics of meme popularity. The toy system has seven users and four types of memes, where a meme associated with
an individual user corresponds to a cell in microbial ecology. (a) Bipartite graph representation of users and memes, which are connected with each other by posting or
forwarding actions. (b) Representation of forwarding actions at different time. Each horizontal line is associated with an individual user and each hexagon represents a meme.
For a horizontal line, a hexagon appearing at a time indicates that a meme (regardless of its type) has been created or forwarded at this time. (c) The three events that can
occur to a meme at a given time, together with the respective probabilities: Pr(f)—the probability of being forwarded, Py (t)—the probability of being overwritten (exclusion
probability), and the survival probability 1 — Pr(t) — Py (t). (d) An example of the time evolution of meme popularity, where the green circles represent posting or forwarding
events, the blue circles define survival events, and the red circles correspond to exclusion events. A meme is regarded as dead (excluded) after the last forwarding event.

the survival state. After the last forwarding event, the meme is functions:

regarded as being excluded or dead. F(t) F(t)
The population of a type of memes at any time is deter- Pr(t) = (—) / max (—) )
mined by the numbers of newly forwarded, excluded, and FO +50 + WO FO +50 + W

survived posts. Let F(t), W(t), and S(t) be the numbers of for- Py (t) = ( W(t) ) / max ( W(t) )
warded, excluded, and survived memes, respectively, at time t. F(t) + S(t) + W(t) F(t) + S(t) + W(t)

The meme population at this time can be written as respectively, which determine the values of F(t) and W(t).

N@® = S@® + F@. ) B. Validation of biomimicry principle with empirical
online data sets

The fraction of meme population is defined as . L. . . .
pbop The massive empirical data sets analyzed in this article

are from large-scale online systems: Delicious, Douban, and

Py(t) = (M) / max (M) Weibo. The basic statistical properties of four data sets are
F@®) +S@® +F@®) F(t) + S + F(t) listed in Table I, where the term “Records” represents the

number of records in each raw data set, “Memes” denotes the

and the interactions among memes are described by the total number of memes in each raw data set, “Users” indi-
following normalized forwarding and exclusion probability cates the total number of users involved in each raw data set,
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TABLE |. Basic properties of four data sets studied in this paper. The resolution unit of time is Days.

Data sets Records Memes Users Duration (months) References
Delicious 361,928,091 886,405 43,968,955 42 47
Douban Book 20,199,759 455,177 557,879 53 14
Douban Movie 65,205,220 504,066 86,503 52 14
Douban Music 25,596,271 403,835 395,035 50 14

and “Duration” is the duration of each processed data set. The
details of these data sets are described as follows.

Delicious is a web service focusing on helping users col-
lect bookmarks. Each record consists of the operation time,
user’s ID, Universal Resource Locator (URL), and the tag of
URL. In this data set, a meme is defined as a bookmark, and
users’ collections of bookmarks are regarded as forwarding
actions. An “excluded” (or “overwritten”) bookmark at time t
means that this bookmark no longer appears in the system
after time t.

Douban is a major Chinese Social Networking Service
website. It allows users to record information and make rec-
ommendations related to books, movies, music, etc. Each
record contains users id, time stamps, and item rating actions.
We analyze three Douban data sets: Douban Book, Douban
Movie, and Douban Music. We define each rated item as a
meme and treat each rating action as a forwarding event. A
book (movie or a piece of music) not recurring at time t is
regarded as “excluded” (or “overwritten”).

a _ b
vo[—Box|
V7| e Movie 1.0 F
- - | \Music -
~l
Sl
© 0.5 | 05 |
Q | I
0.0 |- 0.0

Sina Weibo is by far the largest and most popular
microblogging website in China: it is a widely used twitter-like
microblogging social network medium with more than 500
million registered users in China.”® The appealing features of
the data include wide publicity, real-time availability of infor-
mation, and message compactness. Similar to Twitter, Weibo
attracts users through all kinds of breaking news and spotlight
topics. All users can see messages, called Weibo in Chinese,
published by concerned users. Given a specific topic of inter-
est, an individual can participate by retweeting (forwarding)
or tweeting (posting) any interesting Weibo.** In this data set,
for each message with the forwarding information, we record
the original Weibo id, user id who forwards this Weibo, and
the time of creation. Each message represents a meme with a
possible forwarding action.

The probabilities Pr(t) and Py (t) are key quantities in our
meme popularity model, which can be estimated from the
empirical data. igure 2 shows the forwarding and exclusion
probabilities for the five data sets: Delicious, Douban Book,

0.0
e _

o

0.5 1.0

0.5 1.0 0.0 0.5 1.0

FIG. 2. Time evolution of forwarding and exclusion probabilities estimated from empirical data sets. In each panel, lines and the corresponding shadow areas indicate the
average forwarding or exclusion probabilities and the error bars, respectively. The time and the probabilities have been normalized to facilitate a quantitative comparison
among the five data sets that arise from different social networking contexts. The probabilities are for the group of data sets Douban Book, Movie, and Music [(a) and (d)],
Delicious [(b) and (e)], and Weibo [(c) and (f)]. Note that it is not necessary that the probabilities P4 (L) and Py (L) are increasing functions of time. However, since the
focus is on the meme growth dynamics in the normalized time interval considered (L € [0, 1]), these probabilities exhibit an increasing trend. Also, since the probabilities are
normalized by their respective maximum values at L = 1, their values being unity does not mean that all users are active at L = 1.
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Douban Movie, Douban Music, and Sina Weibo (or Weibo). We
find it convenient to organize the five data sets into three
groups in terms of their nature: Douban Book, Movie, and Music
(group 1), Delicious (group 2), and Weibo (group 3). To facil-
itate a comparison of the dynamical behaviors of different
systems, we define the normalized time t — L. For conve-
nience, we choose the range of L to be [0,1], where L =1 is
defined as the time when the fraction Py(L) of meme popu-
lation reaches the maximum. The probabilities Pr(t) — Pg(L)
and Py (t) — Pw(L) are also normalized by their respective
maximum values at L = 1. Initially, the two normalized prob-
abilities have relatively low values, but they begin to increase
after certain time. This initial “silent” phase corresponds to
the lag phase that occurs before the accumulation phase for
cell growth in microbial ecology,**® where the growth and
mortality rates are expected to be low at the beginning but
increase with time. The striking phenomenon is that, for the
five data sets arising from diverse social networking contexts,
the time evolution of the probabilities exhibits quite simi-
lar features, suggesting a universal mechanism underlying the
dynamical evolution of meme popularity.

11l. MODEL CONSTRUCTION

A. Basic principles underlying the construction of a
universal model for meme popularity dynamics

Our first step is to hypothesize the equivalence between
meme evolution in OSN systems and microbial cell popula-
tion growth so as to develop a probabilistic, population-level
base model. In such a dynamical evolution model of cell
population,”~*° at any given time, a cell can experience one
of the three possible events: division (generation), death, and
survival. Likewise, memes are the “microscopic” elements of
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OSN systems. At a given time, the possible events that can
happen to a meme are similar: posting/forwarding, being
overwritten (exclusion), or simple survival, which are equiv-
alent, respectively, to cell division, death, and survival in a
microbial system, as schematically illustrated on the left side
of Fig. 3. This equivalence, or biomimicry, leads to a base
model for meme population growth. Additional model ingre-
dients beyond the biological equivalence must be sought. This
is reasonable as OSN systems are man-made and, as such,
human factors can play a significant role in the dynamics.
The second step in our model building is then to incorpo-
rate human interest dynamics that, intuitively, are correlated
with meme popularity. Incorporating a general model for the
dynamical evolution of human interest into the bio-inspired
base growth model, we arrive at a hybrid model for meme
popularity dynamics, as shown on the right side of I'ig. 3. The
final model contains four free parameters that can be deter-
mined from data, as we demonstrate using empirical big data
sets from diverse OSN systems in interest sharing (e.g., various
Douban platforms and Delicious) and the online OSN platform
Weibo. The striking result is that the model can predict the
detailed meme popularity growth behaviors in all real OSN
systems studied, regardless of their characteristically distinct
origins, thereby providing a solid ground for its validity and
universal applicability. While our model predicts three dis-
tinct meme popularity growth behaviors from five data sets,
with the values of the four free parameters determined from
data, the model has the capability to predict growth behaviors
beyond the three types.

It should be emphasized that, while the cell growth model
captures certain features of the meme dynamics, our data
analysis indicates that large errors can arise when attempting
to predict the detailed growth dynamics of meme population

Human Interest

Dynamics Model

CELL _
~ Division

Survival

o-0 &

Survival
arding

Bio-inspired
Base Model

FIG. 3. lllustration of the basic principles underlying the construction of a universal model for meme popularity dynamics: biomimicry and human interest dynamics. Cell
population dynamics in microbial ecology contain three basic elements: cell division, death, and survival. The dynamical evolution of memes in OSN systems has three
corresponding elements: forwarding, exclusion, and survival. A base model for meme popularity dynamics can then be constructed according to the cell growth model in
biology. Human factors, however, play a significant role in the meme evolution and, therefore, must be taken into account. A combination of the biology inspired base model
and human interest dynamics model leads to a universal hybrid model for meme popularity dynamics.
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in terms of the time evolution of the forwarding and exclu-
sion probabilities estimated directly from the empirical data,
as shown in Fig. 2. Especially, while the biologically motivated
model is able to provide an overall picture (statistical behav-
iors) about the meme growth dynamics, it is not possible for it
to capture the minuscule details in each data set.

B. Beyond biomimicry: Incorporation of human
interest dynamics

While biomimicry can provide pivotal insights into uncov-
ering the laws governing human social networking systems,
certain aspects of the human behaviors are fundamentally
absent in any biological system. In particular, in the context
of our present study, while microbial cell evolution provides a
base for constructing models for online social behaviors, it has
a purely biological origin while OSN systems are man-made.
There ought to be some differences between the two types of
systems. Indeed, in spite of the remarkable agreement among
the forwarding and exclusion probability functions across
OSN systems of different nature (Fig. 2), a detailed examina-
tion of the evolution of the meme population N(t) for the three
groups of data sets reveals some discrepancies, indicating the
need to include additional factors that are not present in the
microbial cell evolution model. In fact, it is necessary to incor-
porate human factors into models of OSN systems. For the
dynamical evolution of meme popularity, the most pertinent
factor is human interest.

Meme growth in OSN systems is a human behavior. In
general, human behaviors are driven by human interest. In
the past decade or so, there has been a great deal of effort
in modeling and understanding human behavior and inter-
est dynamics."°'=°" Of particular interest are characteristics
such as the distribution of the interevent time of human
behaviors, the distribution of the return time to revisit a
particular interest, interest ranking and transition, and the
distribution of the time for which an interest lasts. Because
of the sensitive dependence of human interest on environ-
ment factors, it was previously speculated that the dynamical
underpinnings of human interest are random,***> and this
led to the development of the Markovian type of models
for human interest where an individual's history of inter-
ests (except those in the immediate past) plays no role in
his/her present action.”’~* Deviations from the Markovian
dynamics were reported.'*%*%* For example, a systematic anal-
ysis of a number of big online data sets revealed that an
algebraic (power-law) scaling behavior, which is character-
istic of non-equilibrium complex systems, governs both the
interevent time and event determination statistics associ-
ated with human interest dynamics.*"' This implies that there
are intrinsic dynamical rules underlying the human interest
dynamics. Three such rules were hypothesized: preferential
return, inertial effect, and exploration of new interests, and a
mathematical model was developed to explain the empirically
uncovered algebraic scaling laws."

To take into account human interest dynamics in con-
structing a meme popularity model, we exploit previously
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studied scaling laws associated with models:"*%"’ the bursting
characteristic of human behaviors, the algebraic distribution
of the time required to revisit an interest, and exploration
of new interest. In particular, we first assume that the time
interval ¢ for an individual to forward the same meme to
other individuals in the OSN system obeys the distribution
p(x) ~ 7%, where « > 0 is the algebraic scaling exponent that
is effectively a parameter in our model. Note that p(r) actu-
ally represents the bursting characteristic of human behaviors.
Next, we assume that an individual has the probabilities p and
(1- p) to forward a new and an old meme, respectively, where
p can be regarded as an event determination probability. The
parameters « and p can be estimated from data.

Figure 4 displays the user behaviors extracted from the
empirical data sets based on consideration of human interest
dynamics. The particular quantity that we examine is the acti-
vation rate or probability, the ratio of the number of activated
users at time t to the number of all users involved by this time.
Figures 4(a)-4(c) show, for the five data sets, the user activa-
tion probabilities versus the normalized time L. We see that,
associated with the data sets Douban Book, Douban Movie and
Douban Music, users exhibit a similar behavior in the activa-
tion rates and the three curves can be well fit by a sigmoid
function [Fig. 4(a)]. For the data set Delicious, whose activa-
tion rate curve is shown in Fig. 4(b), there exists a “step.” We
thus divide the curve into two parts and fit each with a sig-
moid function with different parameter values. For the data
set Weibo, as shown in Fig. 4(c), a single sigmoid function fits
the activation curve well. Figure 4(d) shows the distributions
of the individual interevent time for the five data sets, which
are approximately algebraic with the value of the exponent
o ranging from one to three, where the interevent time t is
defined as the time intervals between two consecutive actions
by the same user.*”'= Figures 4(c) and 4(f) display the dis-
tributions of the event determination probability p associated
with data sets Delicious and Weibo. Note that in the data sets
Douban Book, Movie, and Music, users tend to visit or com-
ment on an item only once, leading to a high peak in the
distribution of p near the unity value. Table II summarizes
the parameters of the sigmoid functions in Figs. 4(a)-4(c), and
the parameters « and p are estimated directly from the data
sets. Note that, for the Delicious data set, there are two sets
of values for the parameters B and C: one for each sigmoid
function.

C. Construction of model for dynamical evolution
of meme popularity

Our considerations of both microbial cell evolution and
human interest dynamics in combination with the empiri-
cal observation enable a formal construction of a model to
describe the dynamical evolution of meme popularity. We start
from the basic model that includes meme diffusion and user
activities. For a fixed group of users, at each time step, a ran-
dom fraction of the users become active (enabled), and each
enabled user can post memes or forward some existing ones.
In accordance with the quantitative behaviors extracted from

Chaos 29, 023136 (2019); doi: 10.1063/1.5085009
Published under license by AIP Publishing.

29, 023136-7


https://aip.scitation.org/journal/cha

Chaos

ARTICLE scitation.org/journal/cha

a b c
. = == Sigmoid J = e Sigmoid
_ - A ] 310
S) < osf -/ N
N N ,/ Q:‘ 0.5}
00 e [
1 | I R
0.0 0.5 1.0
d e L
0.12
[~ Delicous|
0.08
~ . a
£ 10 Delicious|+, & I
Q f| s BoOk e, a 0.04 |-
10°® || ==Movie S,
f| e Music r
-8 f| e \\VeibO Slope = -3.0
T R e o0 5. 1.
T 0.0 0.5 1.0 0.0 0.5 1.0

FIG. 4. Users behaviors extracted from the empirical data sets with respect to human interest dynamics. (a)—(c) Activation curves (the fraction of users activated at normalized
time L) together with the error bars for the three groups of empirical data, where the yellow, blue, red, green, and purple solid lines and the corresponding shadow areas
represent the average activation rates and error bars for Delicious, Douban Book, Douban Movie, Douban Music, and Weibo, respectively. The black dashed curves are the
fitted sigmoid functions. For (a), the user activation curves are from the three data sets: Douban Book, Movie, and Music, which exhibit a striking agreement at a detailed
level and can be fitted by a single sigmoid function. For the data set Delicious in (b), a plateau in the user activation curve emerges, which can be fitted by two distinct sigmoid
functions. For the data set Weibo in (c), the activation curve can be fitted by a single sigmoid function. (d) Algebraic distribution of the individual interevent time for the five
data sets, where the algebraic scaling exponent « has values ranging from one to three. (€) and (f) Distributions of parameter p from the data sets Delicious and Weibo,
respectively. See Table || for the fitting values of all model parameters from data, which are estimated from least-squares fitting subject to the standard Kolmogorov-Smirnov

(KS) test™ with D = 0.1.

the empirical data sets, we assume that the fraction of active
users, P4(L), follows a sigmoid function with parameters B
and C:

Pa(L) ~ m- (2)
For an active user, the interevent time r, the time interval
when this user decides to forward (post) a meme, follows a
power law distribution with the parameter «. The user has
probability (1— p) to forward an old meme that he/she has
forwarded before and probability p to forward a new meme.
Once a meme is created and alive on the network, its evolu-
tion is determined by the microbial cell diffusion model. Our
hybrid meme diffusion model is illustrated in Fig. 5.

TABLE Il. Estimated parameters for empirical data sets. Parameters associated with
the sigmoid functions are B and C that are normalized through B = B/Iog(T) and
C= C/Iog(T), where B and C are obtained from empirical data sets and T is the
length of the time series. The parameters « and p characterize the interevent time
and event determination activities.

Data sets B C a P

Delicious 0.24 and 0.40 0.80 and 0.80 1.73 0.54
Douban Book 0.07 0.55 1.38 1.00
Douban Movie 0.07 0.55 1.53 1.00
Douban Music 0.07 0.55 1.46 1.00
Sina Weibo 0.24 0.61 1.50 0.56

IV. RESULTS
A. Simulation results

To simulate the model, we consider a fixed group of Ny =
1000 users. At each time step t, Nf - Po(t) randomly selected
users become active. The interevent time and event determi-
nation activities of these users depend on two parameters: «
and p. Specifically, for each activated user U;, we generate a
time series of forwarding actions based on (1) the time inter-
val ¢ that a forwarding action occurs follows the distribution
p(r) ~ 7% and (2) the probability for this user to forward a new
meme is p and that to forward an old meme is (1 — p). We then
record the forwarding and exclusion probabilities, as well as
the meme popularity at each time for different choices of the
parameters. In the analysis of the empirical data, we truncate
the F and W curves at the peak values to exclude artificial
death events caused by the finite duration of the data sets,
which typically occur at about 80% of the total duration.

Our hybrid model has four parameters: B and C which
determine the users’ sigmoid activation rate [Eq. (2)], « that
regulates the interevent time intervals, and p that accounts
for the event determination activities (probability of explor-
ing new memes). We simulate the model for different choices
of parameters to check the parameter sensitivity of the key
quantities representing the model outcome: the forwarding
and exclusion probabilities. We then estimate the four param-
eters directly from the five empirical data sets.

Figure 6 shows the simulation results of the forward-
ing and exclusion probabilities for different choices of the

Chaos 29, 023136 (2019); doi: 10.1063/1.5085009
Published under license by AIP Publishing.

29, 023136-8


https://aip.scitation.org/journal/cha

Chaos

ARTICLE scitation.org/journal/cha

Select activated Users @

Sigmoid (t, B, C) ;

Time

linear-linear scale Uj

Users inter-event time b

Event determination activitiesC

T
log-log scale

Meme Meme

FIG. 5. A schematic illustration of the proposed biomimicry based hybrid meme diffusion model incorporating human interest dynamics and empirical observations. (a) At
each time step t, a fraction of users are selected to be activated based on a sigmoid curve. (b) For a selected user U;, the activities occur at different times according to the
probability p(t) ~ 7%, where 7 is the interval between two adjacent forwarding actions. (c) At time ¢, the selected user U; has probability o to forward a new meme and
probability (1 — p) to forward an old meme. The model is hybrid because (1) the dynamical evolution of the memes follows the rules of microbial cell diffusion (biomimicry)
and (2) the probabilities p(z) and p are from the human interest dynamics with key parameters extracted from actual data.

parameters «, p, and C. For panels in a row, we modify
one parameter and compare the results, where the nominal
parameter values are B = 0.5, C = 0.5, « = 1.5, and p = 0.5, for
the reasons that (1) a commonly used sigmoid function has
B =C=0.5, (2) users’ interevent time distribution exponent «
is typically in the range' from one to three, and (3) it is reason-
able to assign equal probabilities for both old and new memes
when the event determination activities are not known, lead-
ing to the choice p = 0.5. A key result of Fig. 6 is that the
forwarding and exclusion probabilities are sensitive to user
actions. For the sigmoid activation function, a small value of C
means that the users get activated at an early time, resulting in
increased forwarding and exclusion probabilities at the early
time, as shown in Figs. 6(a) and 6(d). In terms of the interevent
time distribution, a large value of « means that the distribution
is more concentrated, indicating that many users have short

interevent time. This leads to a slow growth in the forwarding
probability at an early time, as shown in Fig. 6(b). While the
increment is not dramatic as compared with that in the for-
warding probability, there is a slight delay in the rising of the
exclusion probability in early time when the value of « is large,
as shown in Fig. 6(e). We note that the forwarding probability
changes slightly with different values of the event determi-
nation parameter p. For example, a large value of p, which
leads to a higher probability to forward new memes, results in
a delayed increment in the forwarding probabilities, and the
high probability of new memes indicates a small number of
forwarding events per meme on the average, which causes the
early increment of the exclusion probabilities. In all six panels,
the amplitudes of increase in the forwarding probability with
different parameters values are always larger than those of the
exclusion probabilities. This is because in simulations, a meme
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FIG. 6. Time evolution of the forwarding and exclusion probabilities generated from our hybrid model. Normalized probabilities for (a) and (d) different values of C in the
users activation sigmoid function, (b) and (e) different values of « in the statistical distribution of user interevent time, and (c) and (f) different values of p in the user event
determination probabilities. In all panels, the solid curves and the associated shadowed area indicate the average values and the error range, respectively.

Chaos 29, 023136 (2019); doi: 10.1063/1.5085009
Published under license by AIP Publishing.

29, 023136-9


https://aip.scitation.org/journal/cha

Chaos

ARTICLE scitation.org/journal/cha

a b c .
= Book 10 Delicious 1 0 |p==—=weibo
1.0 | Movie U |eeeeModel » Y [[eeeeModel
~ e |\/USiC Theory i Theory
Sh eeee\odel o5 E
QZ 0.5 Theory : y 05 F
[ 00| oce= [
0.0 2 [ 2 1 J 1 L N 1 . 00 I }
00 05 10 00 05 10 00 05 10
L L

FIG. 7. Test of the predictive power of the proposed model: comparison between model predicted and real grow curves of meme popularity. Dashed and solid curves
represent model prediction and the results from the real data, respectively: (a) linear growth of meme popularity for the Douban Book, Douban Movie, and Douban Music
OSN systems, (b) an “S-shape” type of growth behavior from the data set Delicious, and (c) an approximately exponential growth curve for the data set Weibo. The four key
model parameters B, C, «, and p are estimated from data. For the data set Delicious, the empirical fitting requires two sigmoid functions for the activation rate with different
values of parameters B and C (see Table II). However, our hybrid model requires a single sigmoid function only (for B = 0.15 and C = 0.5) to generate the meme popularity
growth curve that agrees well with the empirical results. The remarkable feature is that, regardless of the characteristically different growth behaviors in the meme popularity
associated with diverse OSN systems, both model simulations and analytic solutions are capable of accurate prediction. Parameters used for solving Eq. (7) are T = 1000
and dt = 0.01. The model, analytic, and real results have passed the standard Kolmogorov-Smirnov (KS) test™ with D = 0.05.

is regarded as being excluded only after the last recorded for-
warding actions so that the influence of user actions on the
overwriting action is postponed.

To validate our model, we set its four essential param-
eters to the values estimated from real data and compare the
model predicted dynamical evolution of meme popularity with
the real one. We do this for all five big OSN data sets, as shown
in Fig. 7, where the growth curves of the normalized meme
popularity with time [Py (t) — Py(L)] from model and data are
displayed. The remarkable feature in Fig. 7 is that, regardless
of the disparity in the nature of the data sets and regard-
less of the characteristic differences in the growth dynamics
of meme popularity, our model predicts behaviors that agree
with the actual behavior accurately at a detailed level. In par-
ticular, for the data sets Douban Book, Movie, and Music in
Iig. 7(a), the meme popularity grows linearly with time and our
model predicts this behavior precisely. For the data set Deli-
cious, the meme popularity growth curve exhibits an “S-shape”
feature, which is characteristically different from the linear
behavior in Fig. 7(a), but the model prediction based on a single
set of parameter values (B,C,«, p), which is in good agree-
ment with the empirical result, captures this distinct feature
unequivocally. For the growth behavior in Fig. 7(c) from the
data set Weibo, the meme popularity exhibits an exponential
behavior over time, which is predicted by our model.

We test the results from our mathematical analysis of the
hybrid meme polarity growth model in Sec. IV B. Numerical
solutions of Eq. (7) are shown by the cyan dashed lines in
Fig. 7. For both analytic and numerical solutions, the param-
eters (B, C) associated with the users activation function and
the event determination parameter p are key to determin-
ing the shape of the meme popularity growth curves. We find
that fluctuations of the parameters about their “exact” values
can be tolerated in our model without affecting its prediction.
That is, our hybrid model not only predicts successfully the
meme popularity growth dynamics but also is robust against
parameter inaccuracy and uncertainties.

B. Mathematical analysis of meme popularity
growth model

From Eq. (1) and Fig. 1, we see that the meme population at
time t depends on the numbers of the survived and forwarded
memes, which can be described by the following relation:

N® =St -1 +Ft—-1 — W)+ Fa®),

where F,(t) is the number of newly added memes at time t.
The recursive relation can be approximated by the following
differential equation:

IO
i = B - Wa. ®)

In simulations, at each time step, we add some users into the
system according to the sigmoid function. Based on natural
human behavior as illustrated in Fig. 5, a subset of the newly
added users contribute to new memes at the same time. The
fraction of the added new memes is p, so the number of newly
added memes is

1
1+ exp [—E(t - C)] .

Fa(t) = pN; - 4

After the last forwarding event, a meme is regarded as being
overwritten or excluded. Since the user interevent time inter-
vals follow the distribution p(r) ~ 7%, it is reasonable to
assume that all users’ last interevent interval follows the same
distribution, so does the memes’ last interevent interval. The
death term W(t) in Eq. (3) depends on the total number of
memes added into the system, which can be written as

W) = /t oN;
0 1+ exp [—B(t’ — C)]

dt’ - (T — . ©)
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where T is the final observation time, as shown in Fig. 5(a).
Substituting Egs. (4) and (5) to Eq. (3), we obtain

dN(®) 1
—— =Ni- o
dt 1+ exp [—B(t — C)]

t i A ~
—f PN e o, ®)
0 14 exp [—B(t’—C)]

where t and T are normalized time defined as

t=t-log(T)/T,
T = log().
The integral in Eq. (6) can be calculated analytically, leading to
dN(t) 1

Ta f “1+exp[_f3<f_6>]

_ ,01;1 . (B.E_log[l+exp(l~3‘é)]

+ log{1+exp [B.(é—t)”).(f—f)*“. (7)

The derivation of the analytic prediction of meme popularity
growth, Eq. (7), relies on approximations such as taking the
average of the growth and exclusion processes. For typical
OSN systems where the meme and user numbers are large,
the approximations are reasonable. Solutions of Eq. (7) for dif-
ferent choices of the parameters B, C, «, and p adopted from
Table I are typically curves with both increasing and decreas-
ing phases. To be consistent with the simulation settings, we
truncate curves of the analytic solutions at the point where
they start to decrease. As shown in Fig. 7, there is a good
agreement among the three types results: analytic prediction,
results from direct simulation of the hybrid model, and those
from the empirical data.

A remarkable feature of Fig. 7 is that, associated with
the three types of results there are characteristically different
growth behaviors: linear, “S-shape,” and exponential, depend-
ing on the choices of the parameters B, C, and p. To gain
a qualitative understanding, we examine the effects of these
parameters on the meme popularity dynamics. In particular,
B and C are parameters in the activation sigmoid function,
where B controls the shape of the function and C modulates
the value of L when the activation rate reaches the value of 0.5
in Eq. (2). A large C value will then result in a late arrival of the
half of the total meme popularity, and a large B value will make
the slope of the sigmoid function steeper. A large increasing
rate in the popularity can be expected in the region where the
normalized time L is close to the C value. As a result, large val-
ues of B and C will delay the onset of the popularity growth
to a later time, but when growth does start, it does so at a
large rate. This explains the exponentially growing behavior in
Fig. 7(c). For moderate values of B and C (e.g., B around 0.15 and
C about 0.5), the onset of popularity growth occurs at an ear-
lier time and reaches the maximum rate at a later time when
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the decrease due to exclusion and the increase due to the
newly added memes are balanced, leading to an “S-shape” type
of growth curves, as illustrated in Fig. 7(b). Finally, for small B
and moderate C values, the slope of the sigmoid function is
small, leading to an approximately linear growth behavior in
the meme popularity.

Note that, the second term in Eq. (7) represents the num-
ber of excluded memes. For small £, this exclusion term adds
only a small modification to meme’s popularity. For £ ~ T, this
term plays an important role in the growth behavior. The
parameter p does not affect the shape of the growth curve
and, in fact, its effect is quite straightforward: a large (small)
value of p leads to a large (small) absolute popularity value. In
a real system, for small values of p (e.g., 0.02), stochastic fluc-
tuations will play a non-negligible role in the growth behavior,
which can be seen through a comparison of Figs. 7(a)-7(c).

V. DISCUSSION

Recent years have witnessed an unprecedentedly rapid
growth of OSN systems. These systems have become ubiqui-
tous in the modern society with the tendency to eventually
replace many of the traditional social networks. Understand-
ing the dynamics and the dynamical processes on OSN sys-
tems is of importance to the well-being of the human society.
There have been efforts in analyzing OSN systems in the past
few years. »!4717:20.26:42.65-68 A common approach is to search for
certain statistical or scaling relations through (big) data anal-
ysis and then to articulate a quantitative model to reproduce
the specific scaling laws (often power-law scaling). While this
approach has indeed yielded great insights into the dynamics
of specific OSN systems, the inconvenient truth is that these
systems are diverse and exhibit characteristically different
behaviors even for a single quantity of interest.

A ubiquitous phenomenon with general interest is the
growth dynamics of meme popularity in OSN systems. Our
analysis of empirical data from diverse OSN systems reveals
a lack of common growth behavior: depending on the system
the growth dynamics can be linear, “S-shaped,” or exponential.
We ask the challenging question: can a single, universal model
be articulated to capture and predict the characteristically
different growth behaviors of meme popularity? Naturally, in
order to produce distinct dynamics, the model should contain
free parameters whose values depend on the specific system
and should be estimated from data. In spite of this, previ-
ous phenomenological models were not generally applicable
to diverse OSN systems. We are thus motivated to articu-
late our model based on the fundamental dynamical elements
underlying the growth and spread of meme popularity. We find
biomimicry to be highly inspirational, effective, and useful for
achieving this goal. Specifically, we realize that the dynamics
of cell evolution in microbial ecology bear similarities to the
dynamics of meme popularity.

In microbial ecology, at any time a cell can experience
one of the three events: division, death, or survival. Like-
wise, in OSN systems, at any time a meme can be forwarded,
overwritten, or can survive. In both contexts, each event
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is associated with a probability that is a function of time
with free parameters. The close resemblance between cell
and meme popularity growth dynamics provides the micro-
scopic base for a population model of memes. Through data
analysis, we find that the key probability functions have the
shape of a sigmoid function, with two free parameters that
can be determined from data. However, relying solely on the
bio-inspired growth model is not sufficient to capture the
detailed dynamical behaviors of meme popularity growth, as
the OSN systems involve human behaviors and can thus be
significantly more complex than just biological cell growth.
For meme popularity, it is natural and reasonable to attribute
the modeling element beyond cell growth to human interest
dynamics, for which models have been developed recently.
Incorporating the ingredient of human interest into basic cell
growth, we end up with a hybrid model that contains four
free parameters—all determinable from data. With the param-
eter values so estimated, we demonstrate that our model
has the ability to predict the detailed, characteristically dis-
tinct growth dynamics of meme popularity in diverse OSN
systems. To our knowledge, this is the first time that a uni-
versal model has been successfully developed to capture and
predict the dynamical evolution of a broadly interested entity
characteristic of modern social networking systems.

We remark that, in spite of the large meme varieties, it
is still possible to construct a general model for the meme
growth dynamics through the actions of forwarding (posting),
staying survival, and being overwritten (exclusion). To capture
the essential dynamics while making the model simple and
analyzable, additional factors such as friendship reciprocity,
visibility, intrinsic interaction among users, or other regular
operations on past memes were not taken into account in our
model. More specifically, in the real world, a user’s activity is
the overall result of its own intrinsic motivation and the influ-
ence of its peers.®” Our current model does not have the ability
to deal with this complicated issue mainly because not a single
data set includes detailed information about these additional
factors (although some data sets contain limited information
about user behaviors). Moreover, one focused aspect of our
model is the effects of user intrinsic activities on the meme
popularity. To make this possible, we have neglected user-user
interactions or the influences of peers, which are certainly
important for further development of the model.

From the control point of view, our hybrid model leads
to a new framework to understand the general mechanisms
underlying the dynamics of OSN systems and how they may
be manipulated or harnessed. Regardless of the specific fea-
tures in the OSNs studied in this paper [from bookmark-
ing shared networks (Delicious) to interest discovered media
(Douban) and microblogging system (Weibo)], they all share
the same “microscopic” dynamical elements (e.g., forwarding
and exclusion) that results in certain rapid growth behav-
ior. It is conceivable that the growth dynamics can be con-
trolled through perturbations to these dynamical elements.
This may lead to network design that, for instance, optimizes
meme populations. It is also possible to optimize the robust-
ness or resilience of information spreading in OSN systems
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to external attacks through modulating the forwarding and
exclusion probabilities. Taken together, our work uncovers
the fundamental principles underlying meme popularity in
OSNs through the approach of biomimicry in combination
with insights from human behavior dynamics, which may shed
lights on further development of social networks and out-
standing issues such as classification, robustness, optimiza-
tion, and control.
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APPENDIX A: RESULTS FROM EMPIRICAL DATA SETS

To gain quantitative insights into the number of occur-
rence for each event in the empirical data sets, we illustrate
the results on the numbers of forwards and overwrites in
Figs. 8 and 9, respectively.

APPENDIX B: EFFECTS OF PARAMETER VARIATIONS

As discussed in the main text, users’ intra-event activities
can be described by two probabilities: p -n~# to forward an
old meme and (1— p-n~?) to forward a new meme, where n
is the number of hopping events and g is an index (see user
interest modeling in the main text). We find that, for different
values of 8, the forwarding, overwritten, and popularity rates
hardly change, as shown in Fig. 10, justifying the use of a single
parameter p to characterize users’ intra-event activities.

We also examine the effects of small variations in the
parameter B in the users activation Sigmoid function [Eq. (2)
in main text] on the forwarding, overwritten, and popularity
rates, as shown in Fig. 11. While varying the value of B can
affect the rates of different events (especially the forwarding
rate), the effects are negligible as compared with, e.g., those of
varying the parameter C as shown in panels (a) and (d) in Fig. 5
of the main text. We thus fix B = 0.5 in our model analysis and
simulations.

APPENDIX C: REGULARITIES IN THE EMPIRICAL DATA
SETS

In population modeling of both cell growth in microbial
ecology and meme popularity in social networking systems, a
factor of consideration is cell or meme age.'****"*14> In meme
modeling, “age” is defined as the time duration between a
meme'’s first appearance and death. Figure 12 shows the dis-
tribution of meme’s age for all the empirical data sets studied.
We see that, for data sets Douban Book, Movie, and Music,
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FIG. 8. Number of forwards from the five empirical data sets studied. In each panel, the line and the shadow area represent the average number of forwards and the error,
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FIG. 10. Effects of the value of B on the dynamical rates. (a)—(c) The forwarding, overwritten, and popularity rates for different values of parameter 8 associated with

modeling of users’ intra-event process. Small variations of B have little effect on the rates.
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on a linear-linear scale. (d) and () Meme age distribution in Delicious and Weibo on a logarithmic-logarithmic scale.

10%¢

102%

Delicious
Book

[ | — Movie
10°F
—— Music
Ll —— Weibo

Slope =-2.0 I

10-8 1 L L 1
10° 10", 10° 10°

FIG. 13. Distributions of meme’s forwarding intervals for the five empirical data
sets studied. Yellow, blue, red, green, and purple solid curves represent the pow-
er-law distributions of meme forwarding intervals for Delicious, Douban Book,
Douban Movie, Douban Music, and Weibo, respectively: p(z) ~ z77.

the age distributions are relatively homogeneous, where most
memes have the age of 400 to 1200 days. For Delicious and
Weibo, memes have a heterogeneous age distribution, where
many memes have short duration. The difference in the age
distribution suggests that the corresponding OSN systems do
possess different structures, but our framework is flexible
and general enough to make unified modeling of popularity
diffusion dynamics of different OSNs possible.

Heterogeneity in the OSN systems is also reflected in the
distribution of the time interval r for memes, as shown in
Fig. 13 for the five data sets studied. We see that most memes
have short time intervals (gaps) and only a few memes have
large intervals.
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