
Suppression of epidemic spreading in complex networks by local information based
behavioral responses
Hai-Feng Zhang, Jia-Rong Xie, Ming Tang, and Ying-Cheng Lai 
 
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 043106 (2014); doi: 10.1063/1.4896333 
View online: http://dx.doi.org/10.1063/1.4896333 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/24/4?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Epidemic spreading in time-varying community networks 
Chaos 24, 023116 (2014); 10.1063/1.4876436 
 
Traffic-driven epidemic outbreak on complex networks: How long does it take? 
Chaos 22, 043146 (2012); 10.1063/1.4772967 
 
Interplay between collective behavior and spreading dynamics on complex networks 
Chaos 22, 043113 (2012); 10.1063/1.4766677 
 
The impact of awareness on epidemic spreading in networks 
Chaos 22, 013101 (2012); 10.1063/1.3673573 
 
Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks 
Chaos 21, 033111 (2011); 10.1063/1.3622678 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.219.51.205 On: Tue, 21 Oct 2014 16:16:02

http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/503132006/x01/AIP-PT/Chaos_ArticleDL_101514/aplmaterialsBIG_2.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Hai-Feng+Zhang&option1=author
http://scitation.aip.org/search?value1=Jia-Rong+Xie&option1=author
http://scitation.aip.org/search?value1=Ming+Tang&option1=author
http://scitation.aip.org/search?value1=Ying-Cheng+Lai&option1=author
http://scitation.aip.org/content/aip/journal/chaos?ver=pdfcov
http://dx.doi.org/10.1063/1.4896333
http://scitation.aip.org/content/aip/journal/chaos/24/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/24/2/10.1063/1.4876436?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/4/10.1063/1.4772967?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/4/10.1063/1.4766677?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/22/1/10.1063/1.3673573?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/21/3/10.1063/1.3622678?ver=pdfcov


Suppression of epidemic spreading in complex networks by local
information based behavioral responses

Hai-Feng Zhang,1,2,3,a) Jia-Rong Xie,4 Ming Tang,5 and Ying-Cheng Lai2
1School of Mathematical Science, Anhui University, Hefei 230039, China
2School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287,
USA
3Department of Communication Engineering, North University of China, Taiyuan, Shan’xi 030051,
People’s Republic of China
4Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
5Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 611731, China

(Received 18 July 2014; accepted 12 September 2014; published online 20 October 2014)

The interplay between individual behaviors and epidemic dynamics in complex networks is a topic

of recent interest. In particular, individuals can obtain different types of information about the

disease and respond by altering their behaviors, and this can affect the spreading dynamics,

possibly in a significant way. We propose a model where individuals’ behavioral response is based

on a generic type of local information, i.e., the number of neighbors that has been infected with the

disease. Mathematically, the response can be characterized by a reduction in the transmission rate

by a factor that depends on the number of infected neighbors. Utilizing the standard susceptible-

infected-susceptible and susceptible-infected-recovery dynamical models for epidemic spreading,

we derive a theoretical formula for the epidemic threshold and provide numerical verification. Our

analysis lays on a solid quantitative footing the intuition that individual behavioral response can in

general suppress epidemic spreading. Furthermore, we find that the hub nodes play the role of

“double-edged sword” in that they can either suppress or promote outbreak, depending on their

responses to the epidemic, providing additional support for the idea that these nodes are key to con-

trolling epidemic spreading in complex networks. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896333]

Outbreaks of epidemics can trigger spontaneous behav-

ioral responses of individuals to take preventive meas-

ures, which in turn can alter the epidemic dynamics and

affect the disease transmission process. To study the

interplay between behavioral response and epidemic

spreading has attracted recent attention. In spite of the

efforts, a quantitative picture taking into consideration

physical reality of the epidemic dynamical process is

needed. Here, we propose a model in which individuals’

behavioral responses are based on a generic type of local

information, i.e., the number of neighbors that have been

infected with the disease. This should be contrasted with

existing works in which the responses are based on the

density of infection among the local neighborhood or on

global information. Utilizing the standard SIS (suscepti-

ble-infected-susceptible) and SIR (susceptible-infected-

refractory) dynamical processes for modeling epidemic

spreading, we derive theoretical formulas for the epi-

demic thresholds and provide numerical verification.

Our main finding is that individual behavioral response

can in general augment significantly the epidemic thresh-

old, thereby suppressing the prevalence of epidemic effec-

tively, regardless of type of the dynamics. Especially, the

hub nodes in the network can adaptively and actively

generate cautious responses to protect themselves and

hence many other nodes in the network. The hub nodes

thus play the role of “double-edged sword” in epidemic

dynamics as they can either suppress or promote out-

break. Our work reinforces the idea that hub nodes are

key to controlling epidemic dynamics.

I. INTRODUCTION

Epidemic spreading in complex networks often occurs

in an extremely interactive manner. Consider, for example,

the spread of a virus. When individuals become aware of the

potential disease, they would take preventive measures (e.g.,

using better hygiene, wearing protective masks, or avoiding

congested public places) to protect themselves and those

around them. In this sense, individuals in the network cannot

be treated as “passive” nodes awaiting to be infected but

they can in fact be quite “reactive” to the spreading dynam-

ics. Such human behavioral responses can have significant

effects on the epidemic dynamics,1–5 a topic of great recent

interest.6–14

The individual reactions to an epidemic often rely on

detailed information about the disease. Broadly, there are

two types of information: local or global.15 For example,

news obtained from the social neighborhood of an individual

is local, but information from the mass media or from the

public health authorities can be regarded as global. The influ-

ences of local16–20 or global21–23 information based behav-

ioral responses, or awareness, on the epidemic dynamics can

in general be quite different, and there is also recent work ona)Electronic mail: haifengzhang1978@gmail.com
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the effects of combined local and global information based

awareness.24–27 Quantitatively, the impact of different types

of information-based awareness can be characterized by how

they modify the epidemic threshold and the final epidemic

size (or epidemic prevalence). For example, Bagnoli et al.26

assumed that individuals’ risk perception of epidemic is an

exponential function of local and global information, and

they showed that a nonlinear increase in the perception risk

can lead to extinction of the disease. Funk et al.17 studied the

impacts of awareness spread on both epidemic threshold and

prevalence and found that, in a well-mixed population,

spread of awareness can reduce the outbreak size but does

not tend to affect the epidemic threshold. This result, how-

ever, does not appear to hold for social networks for which

the mixed-population assumption is not valid. In particular,

Wu et al.24 compared the roles of the three forms of

information-based awareness, i.e., local, global, and contact

awareness, in the epidemic threshold, and concluded that

global awareness cannot alter the epidemic threshold, while

both local and contact awareness can. Sahneh et al.6,7 proved

that local information-based response can enhance the epi-

demic threshold and reduce the prevalence, given that the

probability of susceptible individuals to alter their state is

proportional to the number of the infected neighbors.

Our work is motivated by the following two considera-

tions. First, a general result from previous works is that the

local information-based responses can enhance the epidemic

threshold and reduce its prevalence, but global information-

based awareness, although being capable of altering the epi-

demic size, has little effect on the threshold.6,24,25 In these

works on the interplay between epidemic spreading in com-

plex networks and human behavioral responses, a tacit hy-

pothesis24–26,28 is that local information-based behavioral

response is a function of the density of infection among the

local neighborhood, denoted as s/k, where s is the number of

infected neighbors among a total of k neighbors. However,

simple situations can be conceived where this assumption

does not hold. For example, consider two nodes in a complex

network, i and j, which have 10 and 100 neighbors, respec-

tively. Assume that in their respective neighborhoods, there

are 5 and 50 infected nodes. The hypothesis would then

assign the two nodes with the same value of s/k, or identical

risk perception. However, common sense stipulates that

node j, because of the much larger number of infected neigh-

bors, should have stronger awareness about the epidemic

than node i. A real-world example is some popular websites

or important network routers that have a large probability of

being attacked by virus. As a result, for various reasons they

tend to be much better protected.

The second motivation of our work is that most recent

works addressing the roles of individual behavioral response

tend to focus on one type of epidemic process, e.g., either

SIS or SIR dynamics. A key difference between SIS and SIR

dynamics is that the former is reversible while the latter is ir-

reversible.29,30 Another difference is that, for SIS dynamics,

the system can only reach a dynamically steady state since

the propagation process always occurs once the transmission

rate exceeds the epidemic threshold. However, for the SIR

process, propagation will terminate once there are no longer

infected nodes in the network. These differences can lead to

different interplay between the epidemic dynamics and be-

havioral response, demanding a systematic comparison

study.

In this paper, we introduce a realistic local information-

based behavioral response mechanism into both SIS and SIR

dynamics. In particular, we assume that individuals generate

behavioral responses by reducing their contact rates, depend-

ing on the actual number of infected neighbors (not the den-

sity of such neighbors), and study how the epidemic

thresholds and prevalence for both types of epidemic dynam-

ics are altered. We find that the mechanism generates similar

effects on the SIS and SIR epidemic thresholds but lead to

different epidemic sizes for the two types of dynamics. An

important consequence of our realistic behavioral response

mechanism is that, for both SIS and SIR dynamics, the infec-

tion densities can be maximized for some intermediate val-

ues of the node degree. This implies that both small- and

large-degree nodes are relatively more resilient to infection,

in sharp contrast to the monotonic increase of the infection

density with the node degree as in situations where no behav-

ioral response is taken into account.31,32

In Sec. II, we describe our model of epidemic spreading

with local information based behavioral response. In Sec. III,

we develop theoretical analyses with numerical support to

understand the effects of such response on the spreading dy-

namics in terms of the two fundamental quantities: epidemic

threshold and prevalence. Due to the intrinsic difference

between SIS and SIR processes, we shall treat them using

different theoretical methods. In Sec. IV, we present conclu-

sion and discussions.

II. MODELING BEHAVIORAL RESPONSE

Epidemic spreading is a fundamental type of network

dynamical process that has been studied extensively due to

the development of complex networks. In a network, a node

represents an individual and an edge between a pair of nodes

specifies a contact through which the epidemic can diffuse or

propagate.33–37 In the absence of any behavioral response,

for an unweighted network the contact rate of every pair of

nodes can be conveniently set to be unity. A reasonable

assumption is that an individual would become more cau-

tious and therefore take more effective preventive measure if

many of the neighbors have been infected. The behavioral

response can then be modeled quantitatively by introducing

the reduction factor (1 – a)s in the contact rate of a suscepti-

ble node, where s is the number of infected neighbors and

0� a< 1 is a parameter characterizing the response strength

of the individuals to the epidemic. The larger the value of a,

the more cautious the individual becomes, resulting a more

substantial reduction in the contact rate. In a real situation,

the value of a would vary across all the individuals in the

network. Here, for simplicity and for gaining insights into

the epidemic dynamics subject to behavioral response, we

assume identical value of a for all nodes in the network. For

the trivial case of a¼ 1.0, the contact rate will immediately
become zero once a neighbor is infected, ruling out any epi-

demic outbreak. Let k be the original transmission rate along

043106-2 Zhang et al. Chaos 24, 043106 (2014)
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each edge. The new transmission rate in our model is
~k ¼ kð1� aÞs.

Our goal is to investigate, quantitatively, the effect of

reduced contact rates due to the individual behavioral

response on the epidemic dynamics in terms of the two basic

quantities: epidemic threshold and prevalence. In the follow-

ing, we will treat the SIS and SIR processes separately.

III. EFFECT OF BEHAVIORAL RESPONSE ON
EPIDEMICS: THEORY AND NUMERICAL VALIDATION

A. SIS dynamics

We first consider the standard SIS epidemic model on a

network with general degree distribution P(k). At any time,

each node in the network can be in one of the two states: sus-

ceptible (S) or infected (I). The transmission probability

along each SI edge is ~k. With probability l, an infected indi-

vidual recovers and returns to the susceptible state. For con-

venience,38 we set l¼ 1.0.

We use the standard degree-based approximation (heter-

ogeneous mean-field approximation)39–42 to analyze the epi-

demic dynamics, in which all nodes of the same degree are

assumed to have the same probability of infection at any

given time. In particular, letting H(t) be the probability that

a randomly selected edge points to an infected individual at

time t, we have

H tð Þ ¼
X

k

Q k � 1ð Þqk tð Þ ¼ 1

hki
X

k

kP kð Þqk tð Þ; (1)

where qk(t) is the probability that a node with degree k is

infected and Qðk � 1Þ ¼ kPðkÞ=hki is the excess degree dis-

tribution in the absence of degree-to-degree correlation.43

The probability that a node with degree k has exactly s
infected neighbors is then given by24

Bðk; sÞ ¼ k
s

� �
Hsð1�HÞk�s: (2)

For a susceptible node with k neighbors, among which s are

infected, in a sufficiently small time interval [t, tþDt]
(Dt! 0) the probability of infection is

uðsÞ ¼ 1� ½1� Dtkð1� aÞs�s ’ ksð1� aÞsDt: (3)

The average probability that a susceptible node with k neigh-

bors is infected is

ProbðS! IÞffiE½uðsÞ�¼
Xk

s¼0

Bðk;sÞuðsÞ

¼kDt
Xk

s¼0

Bðk;sÞsð1�aÞs

¼kDtð1�aÞkH
Xk

s¼1

ðk�1
s�1Þ½Hð1�aÞ�s�1ð1�HÞðk�sÞ

¼kDtð1�aÞkHð1�aHÞk�1: (4)

According to Eq. (4), the discrete-time epidemic process can

be described as

qkðtþ DtÞ � qkðtÞ
¼ �DtqkðtÞ þ ð1� qkðtÞÞkDtð1� aÞkHð1� aHÞk�1:

(5)

In the limit Dt ! 0, Eq. (5) can be written as a continuous-

time equation

dqk tð Þ
dt
¼ �qk tð Þ þ 1� qk tð Þ

� �
k 1� að ÞkH 1� aHð Þk�1

:

(6)

For a¼ 0, Eq. (6) reduces to the standard mean-field equa-

tion for the SIS model.34,44

Imposing the steady-state condition dqk(t)/dt¼ 0 on Eq.

(6), we obtain

qk ¼
k 1� að ÞkH 1� aHð Þk�1

1þ k 1� að ÞkH 1� aHð Þk�1
: (7)

Substituting Eq. (7) into Eq. (1), we obtain the following

self-consistent equation:

H tð Þ ¼ kH 1� að Þ
hki

X

k

P kð Þk2 1� aHð Þk�1

1þ kkH 1� að Þ 1� aHð Þk�1

¼ f Hð Þ:
(8)

A nonzero steady infection size is obtained when the follow-

ing inequality holds:

df Hð Þ
dH

jH¼0 � 1; (9)

which gives the epidemic threshold as

~k
SIS

c ¼
1

1� að Þ
hki
hk2i ¼

kSIS
c

1� a
; (10)

where kSIS
c ¼ hki=hk2i is the epidemic threshold for the

classical SIS model in heterogeneous networks34,44 and hk2i
¼
P

k k2PðkÞ is the second moment of the degree distribution.

To validate our analysis, we consider networks gener-

ated from the standard configuration model45 with degree

distribution P(k)� k�3. The size of all networks studied is

N¼ 10 000, the minimal and maximal degrees are kmin¼ 3

and kmax ¼
ffiffiffiffi
N
p
¼ 100, respectively. The results presented

below are insensitive to network structural and/or parameter

changes.

Figure 1 illustrates how the transmission rate k and the

behavioral-response strength a affect the epidemic preva-

lence and threshold. In particular, from Fig. 1(a), we see that

the epidemic threshold increases with a but the final epi-

demic size (prevalence) rapidly decreases to a low value.

Figure 1(b) shows the numerically calculated contours of the

values of epidemic prevalence in the parameter plane (k – a),

with the theoretically predicted curve (white line) for the epi-

demic threshold (corresponding to zero prevalence). We

observe a good agreement between theory and numerics. For

relatively large values of a, the lowest line in Fig. 1(b) devi-

ates somewhat from the theoretical value with small
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oscillations. The reason lies in the difficulty to numerically

distinguish the two cases where the epidemic is suppressed

or prevalent for the large a regime.

To further reveal the impact of behavioral response on

the epidemic process, we show in Fig. 2 the dependence of

the epidemic prevalence q on a for different values of k,

where we observe a rapid decrease (faster than linear) in q as

a is increased. This indicates that proper behavioral response

can greatly suppress epidemic outbreak. For example, for

a� 0.8, epidemic is nearly eliminated.

For the classical SIS dynamics on heterogeneous net-

works, it has been established that the degree-specific infec-

tion density qk increases with k, implying that hub nodes

should have a higher probability of being infected.34,44

However, when behavioral response is taken into account,

the situation becomes somewhat complicated. For example,

a hub node would possibly have many infected neighbors,

making it better informed about the epidemic and

consequently generating a stronger protective response.

Figure 3 shows how qk depends on the degree for different

values of a. For a¼ 0 (the standard SIS model without any

behavioral response), qk increases with degree k. However,

for a> 0, e.g., a¼ 0.2 and a¼ 0.5, we obtain a non-

monotonic dependence: qk first increases with k, reaches a

maximal value, and then begins to decrease with k and

approach zero for very large values of k. This case can be

quantitatively explained using Eq. (7) where, for a fix value

of H, the value of (1 – aH)k converges to zero in the numera-

tor. As a result, we have qk¼ 0 for sufficiently large values

of k. The increasing phase can be understood by noting that

nodes with small degree have lower probabilities to reduce

their contact rate because they are typically unaware of the

disease as their neighbors are few and the infected neighbors

are even fewer. As k is increased from some low value, the

probability of infection is increased (as for the standard SIS

dynamics without behavioral response).

FIG. 1. Effect of behavioral response strength a on the epidemic threshold and prevalence for SIS model: (a) final epidemic size q versus the transmission rate

k for different values of a; (b) contour of q in the (k – a) parameter plane, where the white line denotes the theoretically predicted curve associated with the epi-

demic threshold [Eq. (10)], and the light gray region divided by the dash pink line corresponds to the zero prevalence. The number of the initial infected seeds

is I0¼ 5. Each point is the statistical average of 20 random network configurations and 50 independent initial conditions for each network realization.

FIG. 2. For the same parameter setting as in Fig. 1, simulation shows the de-

pendence of the epidemic prevalence q on a.

FIG. 3. For SIS dynamics on scale-free networks, degree-dependent steady-

state infection density qk for different values of a. The original transmission

rate is k¼ 0.5 and other parameters are the same as for Fig. 1.
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We thus see that, in our model, the hub nodes are capa-

ble of inhibiting epidemic spreading, providing an effective

way to control the dynamics. This should be contrasted to

the traditional models that do not take into account individu-

als’ behavioral responses in which the role of the hub nodes

is generally understood as enhancing epidemic spreading.

In general, there are two competing factors determining

the epidemic size: probability of infection and information

from the neighbors. In the small-degree regime, the former

has a stronger effect, leading to an increase in the epidemic

prevalence with the degree. In the intermediate degree re-

gime, the effects of the two factors are approximately bal-

anced, so the final epidemic size reaches a maximum.

Finally, in the large degree regime, the effect of awareness

and hence behavioral response exceeds that of the infection,

leading to a significant reduction in the transmission rate and

consequently a continuous decrease in the epidemic preva-

lence with the degree. The same mechanism explains the

rapid decrease in the epidemic prevalence with a.

B. SIR dynamics

In SIR dynamics, infected nodes can enter a recovery

state (R) to become immune to the disease. The underlying

epidemic process is then an irreversible process, as a result,

we should provide a modification in the way to characterize

behavioral response for this case. Specifically, we assume

that susceptible nodes adjust the transmission rate based not

only on the number of infected nodes but also on the number

of recovered nodes. This is reasonable as any recovered

neighbor of a node has already gone through the infection

stage and therefore is able to inform the node about the dis-

ease. To analyze the resulting SIR dynamics, we find the

generating function method and cavity theory30,46 suitable

for calculating the critical epidemic threshold.

We first define “externally infected neighbor” (EIN) for

any node.47 For node i, if a neighbor is an EIN, it is infected

by its neighbors other than i. We then define u to be the prob-

ability that i’s neighbor j is an EIN of i, i.e., the probability

that node j is infected even when i is removed from the net-

work (the basic assumption of the cavity theory in statistical

physics47). The probability that a node with degree k has m
EINs is then

pðmjkÞ ¼ ðkmÞumð1� uÞk�m: (11)

Let ~pðRjmÞ be the conditional probability of infection if one

node i has m EINs. The EINs typically appear in a sequential

order, so we need to calculate ~pðRjmÞ in a time-ordered fash-

ion. In particular, when the first EIN appears, the probability

of node i not being infected is 1 – T1, where T1	 k(1 – a) is

the probability that i is infected after the first EIN appears in

its neighborhood. In general, the probability that node i has

not been infected after mth EINs appear in its neighborhood

is 1 – Tm, where Tm¼ k(1 – a)m. We thus have

~pðRjmÞ ¼ 1� ð1� T1Þð1� T2Þ 
 
 
 ð1� TmÞ: (12)

In general, it is difficult to simplify the expression of

~pðRjmÞ. However, if we focus on the epidemic threshold, the

probability Tm will be small since the corresponding value of

k [or (1 – a)] is small. In this case, Eq. (12) can be approxi-

mated as

~p Rjmð Þ ’
Xm

j¼1

Tj ¼
k 1� að Þ

a
1� 1� að Þm
� �

: (13)

For a randomly selected node i, the probability of having m
EINs is

pðmÞ ¼
X1

k¼m

pðmjkÞPðkÞ: (14)

For a randomly selected neighbor j, the probability that it has

exactly m EINs (excluding i) is

qðmÞ ¼
X1

k¼m

pðmjkÞQðkÞ; (15)

where QðkÞ ¼ ðk þ 1ÞPðk þ 1Þ=hki is the excess degree dis-

tribution.43 The generating function associated with the

excess-degree distribution is

G1ðxÞ ¼
X

k

QðkÞxk: (16)

Combining Eqs. (11), (15), and (16), we obtain the generat-

ing function for the probability q(m) as

F1ðxÞ ¼
X

m

qðmÞxm ¼
X1

m¼0

X1

k¼m

pðmjkÞQðkÞxm

¼
X

k�m�0

pðmjkÞQðkÞxm

¼
X1

k¼0

QðkÞ
Xk

m¼0

ðkmÞumð1� uÞk�mxm

¼
X1

k¼0

QðkÞð1� uþ xuÞk

¼ G1ð1� uþ xuÞ:

(17)

From the definition of the probability u, we have

u ¼
X

m

q mð Þ~p Rjmð Þ ¼ k 1� að Þ
a

X

m

q mð Þ 1� 1� að Þm
� �

¼ k 1� að Þ
a

1� F1 1� að Þ½ �

¼ k 1� að Þ
a

1� G1 1� auð Þ½ � ¼ f uð Þ; (18)

which is a self-consistent equation for u. There is a trivial so-

lution u¼ 0. In order to have a non-trivial solution, the fol-

lowing condition must be met:

df uð Þ
du
ju¼0 ¼

k 1� að Þ
a

aG01 1ð Þ
� �

� 1; (19)

which implies

k � ~k
SIR

c ¼ 1

1� a
hki

hk2i � hki ¼
1

1� a
kSIR

c ; (20)
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where kSIR
c ¼ hki=ðhk2i � hkiÞ is the epidemic threshold of

SIR dynamics on heterogeneous networks in the absence of

any behavioral response.30

Figure 4 shows the dependence of the SIR epidemic

prevalence [panel (a)] and threshold [panel (b)] on k and a.

Fig. 4(a) indicates that the epidemic prevalence R1

decreases with a but the critical threshold ~k
SIR

c increases with

a. Figure 4(b) presents the theoretical prediction from Eq.

(20) (white line) in comparison with the simulation result for

near-zero R1 value. We observe a good agreement.

Figure 5 shows the dependence of R1 on k for different

values of a. Comparing Fig. 2 with Fig. 5, we can see that, for

SIR dynamics with local behavioral response, the epidemic

prevalence also rapidly decreases with a, demonstrating that

such a response can be effective to suppress epidemic spread-

ing, as for the case of SIS dynamics. Since, for an SIS process,

the system can sustain a dynamically steady state in which the

infected individuals are more likely to have their contact rates

reduced after becoming susceptible again,48 one might intui-

tively expect the effect of behavioral response to be somewhat

different. In particular, the intrinsically irreversible SIR dy-

namics can cause the system to quickly converge to a steady

state. As a result, the hub nodes are infected relatively soon

and they have no chance to make any behavioral responses,

limiting their role in suppressing the spreading. However, we

note that the susceptible nodes can adjust their transmission

rates based not only on the number of infected nodes but also

on the number of recovered nodes, so as to greatly enhance

the awareness of hub nodes and effectively reducing the prob-

ability of their being infected. Support for this heuristic rea-

soning can be found in Fig. 6, where the final recovery density

R1k as a function of degree k for the SIR model is shown. We

see that, even though the hub nodes cannot be completely pro-

tected from the epidemic, R1k reduces to a low level and

decreases as a is increased. Consequently, local behavioral

response associated with SIR dynamics can also be effective

in suppressing epidemic spreading.

FIG. 4. For SIR dynamics, effect of local behavioral response on epidemic prevalence and threshold: (a) epidemic prevalence R1 as a function of transmission

rate k for different values of a; (b) contour of R1 with respect to k and a, where the white line is the prediction of Eq. (20). The gray region under the pink

dash link indicates the epidemic prevalence R1 < 7� 10�4. Since the number of the initial infected seeds is I0¼ 5, we have R1 � 5=N ¼ 5� 10�4 for the

steady state. Other parameters are the same as for Fig. 1.

FIG. 5. For SIR dynamics, simulation shows the epidemic prevalence R1 ver-

sus a for different values of k. Other parameters are the same as for Fig. 1.

FIG. 6. For SIR dynamics, final recovery density R1k versus degree k for dif-

ferent values of a, for k¼ 0.5. Other parameters are the same as for Fig. 1.
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IV. CONCLUSIONS

Recognizing that individuals in a social network have the

natural tendency to respond to potential disease spreading by

taking preventive measures, we investigated to what extent be-

havioral responses based on local information can affect typical

epidemic dynamics. Using two standard types of processes in

epidemiology, SIS and SIR, as prototypical dynamical model,

we developed theoretical analysis to understand how the two

fundamental characterizing quantities, the epidemic threshold

and prevalence, are shaped by local-information based behav-

ioral response. We found that such response can in general aug-

ment significantly the epidemic threshold, regardless of SIS or

SIR dynamics, and we obtained an explicit expression for the

augmentation factor. This means that individual behavioral

responses can make the whole network much more resilient to

epidemic outbreak. In the case where outbreak has occurred, the

final epidemic size, or epidemic prevalence, can be reduced.

A unique feature of our work is the assumption that indi-

vidual response is determined by the local information,

which in turn is proportional to the number of infected neigh-

bors. Our findings complement the previous results in the ab-

sence of any individual response that epidemic can prevail in

heterogeneous networks due to the existence of hub nodes.

Particularly, when individuals are able to receive information

about the disease and are capable of taking preventive meas-

ures, it is the hub nodes that can adaptively and actively gen-

erate responses to protect themselves and hence many other

nodes in the network. The hub nodes thus play the role of

“double-edged sword” in epidemic dynamics as they can ei-

ther suppress or promote outbreak, depending on how they

respond to epidemic. Our work reinforces the idea that hub

nodes are key to controlling epidemic dynamics.

We focused on an epidemic response model where the

individuals respond to the epidemic according to the number

of infected neighbors. There are real world situations where

this is meaningful. For example, a node with potentially a

large number of infected neighboring nodes would have

stronger awareness about the epidemic. Our model thus com-

plements the previous model in which the local information-

based behavioral response is assumed to be a function of the

density of infected nodes in the local neighborhood.
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