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Chaos has long been recognized to be generally advantageous from the perspective of control. In

particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the

intrinsically sensitive dependence on initial conditions imply that a chaotic system can be

controlled to a desirable state by using small perturbations. Investigation of chaos control,

however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper,

we show that chaos may be used to modulate or harness quantum mechanical systems. To be

concrete, we focus on quantum transport through nanostructures, a problem of considerable interest

in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that

chaos, more specifically transient chaos, can be effective in modulating the conductance-

fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a

device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the

gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos

to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical

characteristics of the quantum conductance-fluctuation pattern. To understand the physical

mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized

non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-

energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the

imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are

more difficult to form, making smoother the conductance-fluctuation pattern. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4790863]

Controlling quantum-mechanical systems is generally a

challenging problem in science and engineering. In this

paper, we exploit the idea that chaos may be used to har-

ness certain statistical features of quantum transport dy-

namics. While previous works elucidated the basic

physics underlying the effect of chaos on quantum trans-

port, we propose a scheme that can be implemented

experimentally to systematically harness conductance

fluctuations associated with quantum transport through

nanostructures. Our idea can be illustrated by using a

Sinai-type of open billiard quantum dot (QD), where a

central circular region forbidden to classical trajectories

can be generated by applying a relatively high gate volt-

age, and the size of the region can be controlled in a con-

tinuous manner. Since the system is open, chaos in the

classical limit must be transient. We demonstrate for

both non-relativistic (semiconductor two-dimensional

electron gas (2DEG)) and relativistic (graphene)

quantum-dot systems that, when the radius of the central

potential region is varied so that the characteristics of the

corresponding classical chaotic dynamics are modified,

the quantum conductance-fluctuation patterns can be

effectively modulated. While a semiclassical argument

based on previous works on quantum chaotic scattering

can be used to explain qualitatively the role of classical

transient chaos of different dynamical characteristics in

affecting the conductance fluctuations, we develop a for-

mal theory based on the concept of self-energies and the

complex eigenvalue spectrum of the corresponding gener-

alized non-Hermitian Hamiltonian. The emergence of

narrow resonances can be related to the magnitude of the

imaginary part of the eigenvalues, and we obtain an

explicit formula predicting the form of the narrow reso-

nance. Our theory indicates that the role of continuously

varying chaos in the classical limit lies in removing suc-

cessively the eigenvalues with extremely small imaginary

parts. Our results suggest a viable way to harness quan-

tum behaviors of nanostructures, which can be of interest

due to the feasibility of experimental implementation of

our scheme.

I. INTRODUCTION

Controlling chaos in dynamical systems has been stud-

ied for more than two decades since the seminal work of Ott,

Grebogi, and Yorke.1 The basic idea was that chaos, while

signifying random or irregular behavior, should not be

viewed as a nuisance in applications of nonlinear dynamical

1054-1500/2013/23(1)/013125/9/$30.00 VC 2013 American Institute of Physics23, 013125-1

CHAOS 23, 013125 (2013)

http://dx.doi.org/10.1063/1.4790863
http://dx.doi.org/10.1063/1.4790863
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4790863&domain=pdf&date_stamp=2013-02-21


systems. In fact, given a chaotic system, that there is an infi-

nite number of unstable periodic orbits embedded in the

underlying chaotic invariant set means that there are an

equally infinite number of choices for the operational state of

the system depending on need, provided that any such state

can be stabilized. Then, the intrinsically sensitive depend-

ence on initial conditions, the hallmark of any chaotic sys-

tem, implies that it is possible to apply small perturbations to

stabilize the system about any desirable state. Controlling

chaos has since been studied extensively and examples of

successful experimental implementation abound in physical,

chemical, biological, and engineering systems.2 The vast lit-

erature on controlling chaos, however, has been limited to

nonlinear dynamical systems in the classical domain. The

purpose of this paper is to elaborate the recent idea that

chaos may be exploited to harness or modulate quantum-

mechanical behaviors3,4 by presenting a systematic study of

the role of transient chaos in modulating quantum transport

dynamics.

A fundamental quantity characterizing the transport of

an electron through a nanostructure, such as a quantum dot

or a quantum point contact, is quantum transmission proba-

bility, or simply quantum transmission. In general, quantum

transmission is determined by many electronic and system

parameters such as the Fermi energy, the strength of external

magnetic field (if there is one), and the details of the geome-

try of the structure. If the structure is connected through elec-

tronic waveguides (or leads) to electron reservoirs (i.e.,

contacts) to form a circuit, the conductances defined with

respect to various voltage biases among the contacts, to-

gether with the corresponding currents, will be determined

by the quantum transmission.5 This means that the conduc-

tances can also depend sensitively on electronic and geomet-

rical parameters. For example, as the Fermi energy of the

electronic system changes, the conductances can exhibit

wild and sharp fluctuations.6 In applications such as the de-

velopment of electronic circuits and nanoscale sensors,

severe conductance fluctuations are undesirable and are to be

eliminated so that stable device operation can be achieved.

The outstanding question is then, can practical and experi-

mentally feasible schemes be articulated to modulate the

quantum conductance fluctuations? We shall demonstrate

and provide theoretical understanding that classical transient
chaos can be used to effectively modulate conductance-

fluctuation patterns associated with quantum transport

through nanostructures.

Intuitively, the basic principle underlying our transient-

chaos based strategy for modulating quantum transport can

be explained, as follows. It is known that quantum pointer

states, which are resonant states of finite but long lifetime

formed inside the nanostructure,7 can cause sharp conduct-

ance fluctuations—a kind of Fano resonance.8,9 For a

quantum-dot system whose classical dynamics is either regu-

lar or contains a significant regular component, there are sta-

ble periodic orbits in the classical limit. If the dot geometry

is closed, highly localized states can form around the classi-

cally stable periodic orbits. When electronic waveguides

(leads) are attached to the quantum dot so that it is open,

some periodic orbits can still survive, leading to resonant

states, or quantum pointer states. Since the corresponding

classical orbits are stable, the resonant states can have long

lifetime, so their coupling to the leads is weak. As a result,

narrow resonances can form around the energy values that

are effectively the eigenenergies for the stable periodic orbits

in the corresponding closed system. When the dot geometry

is modified so that the underlying classical dynamics

becomes more and more chaotic, many of the periodic orbits

become unstable. Although scars can still be formed around

classically unstable periodic orbits in a closed chaotic sys-

tem,10 the corresponding resonant states in the open system

generally will have much shorter lifetimes. This means that

these resonant states do couple to the leads more strongly,

broadening the narrow resonances in the conductance-

fluctuation pattern. Here, chaos is transient because the sys-

tem is open. According to the theory of transient chaos,11 the

dynamical invariant sets responsible for transient chaos are

non-attracting chaotic sets in the phase space. If the proper-

ties of transient chaos can be adjusted in the experiments

by tuning some parameters, the quantum conductance

fluctuation-patterns can then be harnessed in a desirable

manner. If, in the future, nano-devices can be designed with

voltage-control geometry, it may be possible to harness

quantum system similar to controlling chaos. For example,

one can change the effective geometry of the dot structure in

a continuous manner so as to make the escape rate, a basic

quantity characterizing transient chaos, to increase, and this

could lead to significantly smoother quantum-conductance

fluctuations.

There are two recent studies in the area of exploiting

chaos for harnessing quantum behaviors: (1) the work of

Pecora et al. in which fully developed Hamiltonian chaos

was utilized to suppress the spread in the tunneling rate for

any small energy interval (typically seen in classically inte-

grable systems), or to regularize quantum tunneling dynam-

ics,3 and (2) our recent brief note that transient chaos can be

exploited to modulate conductance-fluctuation patterns in

quantum dots.4 Here, we will provide a detailed analysis of

the transient-chaos based quantum modulation paradigm. In

particular, beyond the brief results in Ref. 4, extensive com-

putational results will be presented to demonstrate the effec-

tiveness of the paradigm and a comprehensive theory based

on the generalized, non-Hermitian device Hamiltonian and

the properties of its eigenstates will be developed to provide

a solid foundation for the quantum-modulation strategy.

It is pertinent to discuss the issue of whether fully chaotic

scattering dynamics is generic. When transient chaos coexists

with stable periodic orbits, the corresponding dynamics is non-

hyperbolic. Fully chaotic transient dynamics is hyperbolic in

the sense that all periodic orbits are unstable. In a typical Ham-

iltonian system, when a parameter changes, nonhyperbolic

dynamics can arise, followed by a transition to hyperbolic

dynamics. However, both nonhyperbolic and hyperbolic dy-

namics can occur in finite parameter intervals. This was dem-

onstrated in 1992 in a paradigmatic model of transition to

chaotic scattering by Ding et al.12 Regarding hyperbolic dy-

namics, there can even be direct transition from regular

dynamics via the route of “abrupt bifurcation.”13 In any case,

the typical feature is that hyperbolic dynamics exists in finite
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parameter regime, indicating that hyperbolic transient chaos

(or chaotic scattering) is generic. In our quantum-dot system,

the basic geometry is that of an open Sinai billiard, which

exhibits hyperbolic dynamics insofar as the radius of the cen-

tral circle is non-zero. Transient chaos is in fact hyperbolic for

all non-zero radius, and is thus generic. We note that even in

dissipative dynamical systems, both nonhyperbolic and hyper-

bolic transient chaos can have finite measures in the parameter

space.14

In Sec. II, we present the basic idea of chaos-based har-

nessing of quantum transport, propose an experimentally fea-

sible scheme, and describe a layer-based non-equilibrium

Green’s function (NEGF) method that we optimize to com-

pute the conductance through any quantum dot. Detailed

simulation results are then presented in Sec. III using both

traditional semiconductor 2DEG and graphene15 systems to

demonstrate that transient chaos can effectively eliminate

resonances associated with quantum transmission and make

the conductance-fluctuation pattern markedly smoother. In

Sec. IV, we provide a semiclassical argument based on exist-

ing works on quantum chaotic scattering to explain, qualita-

tively, why classical chaos can smooth out the quantum

conductance fluctuations. Quantitatively, we develop a

theory based on the concept of self-energies and the complex

eigenvalue spectrum of the underlying generalized non-

Hermitian Hamiltonian and obtain an explicit formula to pre-

dict the form of the narrow resonance. The analysis enables

us to develop a self-consistent theoretical argument to fully

explain our chaos-based harnessing scheme. A conclusion is

presented in Sec. V.

II. PROPOSED EXPERIMENTAL SCHEME AND
COMPUTATIONAL METHOD

Quantum-dot systems are a paradigm for investigating

many kinds of quantum transport phenomena through nano-

structures. Such a system typically consists of a finite device

region of certain geometrical shape, such as a square, a

circle, or a stadium, and a number of leads connected with

the device region. To realize quantum harnessing by using

chaos, we conceive generating a region about the center of

the device or structure with high potential so that it is

impenetrable to classical particles. For example, consider a

rectangular quantum dot, a prototypical model in semicon-

ductor 2DEG systems. When the dot is closed, the corre-

sponding classical dynamics is integrable so that extremely

narrow resonances can arise in the quantum transport dy-

namics of the open-dot system. Now imagine applying a gate

voltage to generate a circular, classically forbidden region

about the center of the dot, as shown schematically in Fig. 1.

In general, the potential profile will be smooth in space.

However, qualitatively, the scattering behavior is similar to

that from an infinite potential well. Thus, in our simulation,

we shall adopt the infinite potential-well assumption for the

central region, which defines a “forbidden” region. Varying

the voltage V0 can change the effective radius R of the for-

bidden region. Classically, the closed system is thus a Sinai

billiard,16 which is fully chaotic, insofar as the radius of the

central potential region R is not zero. When leads are

connected to the device region so as to open the system,

chaos becomes transient. The dynamical characteristics of

the underlying chaotic invariant set can be adjusted in a con-

tinuous manner by increasing the radius R.17 Quantum

mechanically we thus expect to observe increasingly smooth

variations in the conductance with, e.g., the Fermi energy,

which we will demonstrate using both semiconductor 2DEG

and graphene systems.

We use the standard tight-binding framework to calcu-

late the conductance/transmission and the local density of

states (LDS). The tight-binding Hamiltonian is

Ĥ ¼ �t
X
jiihjj þ

X
i

Uðxi; yiÞjiihij;

where the first summation is over all pairs of nearest-

neighboring atoms, and the second term describes the deplet-

ing potential. At low temperatures, the conductance G of a

quantum dot is proportional to the quantum transmission T,

as given by the Landauer formula5,18

GðEÞ ¼ ð2e2=hÞTðEÞ; (1)

where E denotes the Fermi energy. Transmission is usually

calculated by the NEGF method. For a quantum dot system

consisting of a device region and two semi-infinite leads (left

lead and right lead), the transmission can be calculated

through the self-energies.5 In particular, let HD (“D” denotes

device) be the finite Hamiltonian matrix describing the de-

vice in the tight-binding framework. The Green’s function of

the device is given by

GD ¼ ðEI � HD � RL � RRÞ�1; (2)

FIG. 1. Schematic illustration of a possible experimental scheme to harness

transport through a semiconductor 2DEG quantum-dot system, where 2DEG

is formed at the GaAs/Al0.3Ga0.7As hetero-interface. The heterostructure sits

on a nþSi substrate (purple), covered by 300 nm SiO2 (blue) and contacted

by Au/Cr (yellow). By applying a suitable gate voltage to generate a circular
forbidden region (for classical orbits) at the center of the device, the result-

ing closed system is a Sinai billiard. Open quantum-dot system can be

formed by attaching leads to the billiard system. In this paper we place the

leads in the middle of the dot, as shown in the second row. Similar idea can

be applied to graphene systems.
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where I is the identity matrix of the same size of HD, RL, and

RR are the self-energies associated with the left and right

leads, respectively. Let UL;R be the coupling matrix between

the left (right) lead with the device, the self-energies RL;R for

the left and right leads can be calculated self-consistently by

the following Dyson’s equations:19

RL;R ¼ U
†

L;RðE� HD � RL;RÞ�1UL;R: (3)

The transmission is then given by

TðEÞ ¼ TrðCLGDCRG
†

DÞ; (4)

where CL;R � iðRL;R � R
†

L;RÞ. The LDS for the device is

qj ¼ �
1

p
Im½diagðGDÞ�: (5)

Although the above procedure is standard, for quantum dots

of large sizes (e.g., size of 100 nm), the size of the device

Hamiltonian matrix HD will be large, making the computa-

tion extremely demanding even using computers with large

memory capacity. We are thus led to develop a layer-by-

layer type of recursive Green’s function (RGF) method to

calculate the transmission and the local density of states. The

basic idea is to divide a given (large) device into smaller

units or layers. The specific way to choose the division can

be highly flexible, depending on the geometrical shape of the

device region. A well-designed, physically meaningful divi-

sion scheme can help accelerate the computation. Say, we

divide the device into N layers. The left and right leads can

be conveniently labeled as layer 0 and layer Nþ 1, respec-

tively. In our RGF method, each layer j (j¼ 1,…, N) is con-

sidered as a separated device and its nearest neighboring

layers j� 1 and jþ 1 are regarded as the local left and right

“leads” connecting to the device j, respectively. The Green’s

function Gj of the layer j is determined by the Fermi energy

and the self-energies from its “leads.” Carrying out the cal-

culation of the Green’s function layer-by-layer, we can

assemble the Green’s function for the original (large) device.

The merits of our RGF method lie in its time and mem-

ory efficiency for large device simulations, its high accuracy,

and the flexibility to treat device of arbitrary geometrical

shape. The method is not limited to the calculation of trans-

port properties for open systems. In fact, by imposing the

zero-contact condition at the boundaries of the leads, our

RGF method can be adopted to closed system calculations.

Extensive tests indicate that our RGF method outperforms

the conventional NEGF method in the computational effi-

ciency by up to three orders of magnitude.

III. NUMERICAL RESULTS

To demonstrate the working of our scheme, we compute

and compare the conductance-fluctuation patterns of four dif-

ferent quantum-dot geometries: rectangular dot, rectangular

dot with a rectangular forbidden region, which is mainly for

comparison, and two Sinai dots. The classical dynamics are

integrable for the first two cases and fully chaotic for the latter

two cases. For all the geometries, we assume that the dot

systems are of either semiconductor 2DEG or graphene, and

we calculate the quantum transmission as a function of the

Fermi energy, as shown in Fig. 2(a) for semiconductor 2DEG

quantum dots and in Fig. 2(b) for graphene dots. Qualitatively,

we observe the appearance of sharp resonances in the trans-

mission curves for the integrable dots, while the curves appear

smoother in the chaotic cases. To quantify and compare the

transmission fluctuations, we calculate the number N of sharp

resonances associated with each curve, which are defined as

those whose energy width is smaller than some threshold

value e. We use e ¼ 5� 10�3 meV in this paper. Figure 2(c)

shows the values of N for the four semiconductor 2DEG quan-

tum dots in Fig. 2(a). By comparing the top two rectangular

symbols, that denote the two integrable quantum dots, we

observe a small difference in the sense that the numbers of

sharp resonances are approximately the same. However, for

the chaotic Sinai quantum dots, denoted by the circles, there

are markedly fewer sharp resonances. These results illustrate

that, generating a forbidden region at the center of the rectan-

gular dot is not necessarily effective in removing the narrow

resonances in the quantum transmission curve (e.g., compar-

ing the two integrable cases: the top red rectangular symbols).

It is chaos which is effective in eliminating the resonances

(e.g., comparing the middle rectangular and circle symbols).

Similar behaviors have been observed for the graphene quan-

tum dots.

In our simulation, we have checked the effect of varying

lead sizes. When keeping the quantum dot unchanged and

increasing the width of the leads, the conductance fluctua-

tions will be smoother, i.e., with fewer sharp resonances.

While this appears to have a similar effect to that due to

chaos, the physical mechanism is quite different. In this case,

FIG. 2. (a) Conductance versus Fermi energy for four semiconductor 2DEG

quantum-dot systems (bottom to top): rectangular dot, rectangular dot with a

rectangular forbidden region of area 0:25 lm� 0:25 lm, and Sinai dots of

radii R ¼ 0:14 lm and R ¼ 0:28 lm. The area of the original rectangular dot

is 1 lm� 1 lm and the lead width is 0:22 lm. (b) Conductance fluctuation

patterns for graphene quantum dots of the same geometry as in (a).20 The

curves in (a) and (b) have been shifted vertically by some arbitrary values to

facilitate visualization. (c) Normalized number of sharp resonances, which

is defined (see text) to quantify the degree of transmission fluctuations, cor-

responding to the four cases in (a), i.e., the top two rectangular symbols rep-

resent two rectangular quantum dots while the bottom two circles

correspond to two Sinai quantum dots.
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the effect is due to the stronger coupling between the lead

and the dot when the leads become larger, as we will discuss

in the theory part regarding the self-energy rR. However, for

any given lead size, when varying the dots, we can observe

the similar effect that Sinai billiards with larger forbidden

region exhibit fewer sharp resonances.

Figure 3 shows, for semiconductor 2DEG quantum dots

with a circular central forbidden region, N versus the radius

R, which is normalized by the number of sharp resonances in

the R¼ 0 case. We check systematically the effect of the ra-

dius on conductance fluctuations, i.e., the number of sharp

resonances for a certain energy interval, and observe an

approximately linear relation between N and R. We see that,

as the radius of the forbidden region is increased, there is

continuous improvement in the smoothness of the fluctuation

patterns since the number of sharp resonances decreases con-

tinuously and drastically. In the corresponding classical cha-

otic Sinai billiard system, we find that the escape rate of the

underlying non-attracting chaotic set increases with the ra-

dius, as shown in Fig. 4, a contour plot of the escape rate in

the parameter plane of W and R, where W is the width of the

leads. For a fixed value of W, we see that the escape rate

increases with R.17 There is thus strong correspondence

between the quantum and classical behaviors in Figs. 3 and

4, respectively, through the escape rate, the most fundamen-

tal characterizing quantity in the theory of transient chaos.11

These results show that our chaos-based method provides

one possible solution to systematically harness or regularize

quantum transport, which could potentially be implemented

and observed in experiments.21

IV. THEORY

Qualitatively, the occurrence of shape resonances in the

conductance versus the Fermi energy can be understood by

the emergence of quantum pointer states.7 A closed integra-

ble system possesses a large number of stable periodic

orbits in the classical limit. As resulting from quantum

interference, eigen-wavefunctions are expected to be highly

non-uniform in the physical space in that they concentrate

around the classically stable periodic orbits. When leads are

connected to the system (device), so that it becomes open,

some of the eigenstates are destroyed but many can survive.

If the size of the opening is small compared with the size of

the device, the coupling between it and the leads is weak.

These surviving eigenstates are the pointer states.7 As the

Fermi energy is changed, electrons encounter various pointer

states. When a pointer state emerges, the electron wavefunc-

tion tends to be localized in the device, causing a sharp

change in the conductance. Thus we expect the conductance

versus energy curve to exhibit a large number of sharp

resonances. However, when the classical dynamics in the

closed system becomes fully chaotic, almost all periodic

orbits are unstable.22 In this case, while quantum scars can

still form around some of the unstable periodic orbits,10 they

are less likely to “survive” when the system becomes open.

As a result, it is more difficult for pointer states to form in an

open chaotic system, leading to smoother conductance

fluctuations.

Insights into why classical chaos can smooth out quantum

conductance fluctuations can also be gained from semiclassi-

cal theory of quantum chaotic scattering.23,24 In particular, in

the semiclassical regime, it was established by Bl€umel and

Smilansky that the energy autocorrelation function of the

quantum transmission fluctuation is proportional to the Fou-

rier transform of the particle-decay law in the classical limit.23

For fully developed chaotic transport through a quantum dot,

the decay law is exponential with the rate j. As a result, the

quantum energy correlation function decays as a Lorentzian

function with the width given by �hj. In the theory of transient

chaos,11 j is the escape rate associated with the underlying

non-attracting chaotic set. As the radius of the central poten-

tial region is increased, j also increases.17 As a result, the

energy autocorrelation function decays more slowly,

FIG. 3. Normalized number of sharp resonances versus radius of the central

circular forbidden region [Fig. 1]. The area for original rectangular quantum

dot is 1 lm� 1 lm.

FIG. 4. Contour plot of escape rate in the parameter plane of W and R. For

each parameter combination, 106 random particles, each of unit velocity, are

used to calculate the escape rate. For each particle, its path length in the scat-

tering region (the Sinai billiard region) is calculated. The distribution of the

path length is observed to decay exponentially, and the escape rate is the ex-

ponential rate.
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signifying less fluctuations, i.e., less number of sharp resonan-
ces in the quantum transmission. This semiclassical argument

suggests that the degree of quantum transmission fluctuations

can be harnessed by classical chaos.

To understand quantitatively the mechanism of chaos-

based harnessing of quantum transport, we now develop a

physical theory by focusing on the transmission resonances

and the coupling25 between the eigenstates in the quantum

dot and leads. Under the tight-binding paradigm, the scatter-

ing region can be regarded as a closed system of Hamiltonian

matrix HD and the effect of the leads can then be treated

using the retarded self-energy matrices

RR ¼ RR
L þ RR

R: (6)

The matrix HD is Hermitian with a set of real eigenenergies

and eigenfunctions fE0a;w0ag, where fw0aja ¼ 1; � � � ;Ng
form a complete and orthogonal basis set. However, RRðE0Þ
is in general not Hermitian and depends on the Fermi energy

E0. The effective Hamiltonian matrix HD þ RRðE0Þ thus has

a set of complex eigenenergies with the eigenfunctions

½HD þ RRðE0Þ�wa ¼ Eawa; (7)

where

Ea ¼ E0a � Da � ica; (8)

Da is a shift in the eigenenergy of the closed system induced

by RR, and ca characterizes the energy scale of the transmis-

sion resonance caused by wa.5,26

We can use the perturbation theory, similar to Eq. (8), to

obtain a better understanding of the behavior of the key

quantity ca. In particular, we can express the eigenfunctions

of the open system as

wa ¼ w0a � drwar � idiwai; (9)

where drðiÞ represents a small perturbation on the real (imagi-

nary) part of wa induced by the self energy RR, and war and

wai can be represented by the eigenfunction basis set w0b of

the Hamiltonian matrix HD for the closed system, i.e.,

war ¼
X

b

Cbrw0b;

wai ¼
X

b

Cbiw0b;

8>><
>>:

(10)

where Cbðr;iÞ are the expansion coefficients for state b.

Substituting Eqs. (8) and (9) back into Eq. (7), we have

ðHD þ RRÞðw0a � drwar � idiwaiÞ
¼ ðE0a � Da � icaÞðw0a � drwar � idiwaiÞ:

Keeping the first-order terms on both sides and taking into

account the fact that, for the closed system, the relation

HDw0a ¼ E0aw0a holds, we get

HDðdrwar � idiwaiÞ þRRw0a � ðDaþ icaÞw0a

þE0aðdrwar þ idiwaiÞ: (11)

Substituting Eq. (10) into this equation, multiplying hw0aj�i
on both sides, and using hw0ajw0bi ¼ dab, we obtain

Da þ ica � �hw0ajRRjw0ai: (12)

We thus have

Ea ¼ E0a � Da � ica � E0a þ hw0ajRRjw0ai: (13)

The resonance width is given by

ca � �Imðhw0ajRRjw0aiÞ ¼ �hw0ajImðRRÞjw0ai; (14)

which is determined by the imaginary part of the self-energy

RR and the corresponding eigen-wavefunction w0a of the

closed system. In general, RR can be expressed as5

RR ¼ �t
X

L

X
m2L

vm;L expðikmaÞv†

m;L; (15)

where L is the lead index and vm;L is the eigenfunction of

mode m in lead L. The energy dependence is contained in

kmðEÞ. Since RR only has nonzero elements at the boundary

points of the device connecting with the leads, only the val-

ues of w0a on the same set of discrete points, w0a;L, contrib-

ute to ca. Since fvm;Lg form a complete and orthogonal

basis, w0a;L can be expanded as w0a;L ¼
P

m cmvm;L. Substi-

tuting this back into Eq. (13) and noting that the system has

left-right mirror symmetry, we obtain

Ea � E0a � 2t
X

m

jcmj2 expðikmaÞ: (16)

To validate our first-order approximation analysis, we

take one small rectangular QD as an example, as shown in

Fig. 5, where the dot area is 0:2 lm� 0:2 lm and the number

of discrete points used in the simulation is 218. Since RR

depends on E0, Da and ca are also functions of E0. Thus our

FIG. 5. (a) Conductance versus energy for one small quantum dot of area

0:2 lm� 0:2 lm, where the number of discrete points used in the simulation

is 218; (b) the corresponding imaginary parts versus real parts of eigenenergy

Ea of HD þ RRðE0Þ (cross), calculated from Eq. (13) (square) and Eq. (16)

(circle). The Fermi energy is E0 ¼ 2:5293 meV, as indicated by the arrow.
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theory is valid only for eigenstates whose values of ReðEaÞ
are close to E0.5 In Fig. 5(b), we use E0 ¼ 2:5293 meV. We

observe a good correspondence of the positions of the trans-

mission resonances and their width to the real and imaginary

parts of the eigenenergies of HD þ RRðE0Þ (crosses), respec-

tively. The eigenstates whose values of ca are approximately

10�1 meV contribute to the smooth, background conductance

variations. However, eigenstates whose ca values are in the

range 10�3 meV to 10�2 meV correspond to localized states,

for example, the five states indicated by the dashed-dotted

lines. Our results based on Eq. (13) (square) and Eq. (16)

(circle) agree with the simulation results (crosses) reasonably

well, especially for ReðEaÞ near E0.

Our analysis of the complex eigenvalues of the general-

ized Hamiltonian leads to two observations. First, since ca
characterizes the energy scale of the conductance resonance,

the degree of the conductance fluctuations can be inferred

from the distribution of ca values. In particular, smaller ca
values indicate more severe conductance fluctuations. Sec-

ond, the values of ca mainly depend on the projection of the

eigenfunction coupled to the lead onto the eigenfunction of

the lead itself, i.e., cm in Eq. (16). As a result, the morphol-

ogy of the eigenfunction, especially the amplitude at the lead

region, plays an important role in determining ca and the

conductance fluctuations. These observations can be used to

elucidate the physical origin of chaos-based harnessing of

conductance fluctuations, as follows.

First, Fig. 6 shows the distribution of ca in a proper

energy range, where RR is evaluated at E0 ¼ 2:7862 meV.

We see that in Fig. 6(a), the values of ca spread out far below

5� 10�4 meV, even to 10�6 meV. The corresponding eigen-

states are thus the localized states in the rectangular quantum

dot, leading to sharp resonances on the energy scale of

10�4 meV. However, for the chaotic Sinai quantum dots,

most values of ca are concentrated above 5� 10�4 meV, as

shown in Figs. 6(c) and 6(d). This indicates the disappear-

ance of sharp conductance resonances. Note that the integra-

ble quantum dot with a central rectangular forbidden region

[Fig. 6(b)] has approximately the same number of eigenstates

as the chaotic Sinai quantum dot with R ¼ 0:14 lm, but the

distributions of ca values are different for the two cases in

that there are significantly more points below the reference

line in the integrable dot than in the chaotic dot, indicating

more severe conductance fluctuations in the integrable case.

Consequently, the number of sharp resonances will be

smaller for the chaotic quantum dots. As R is increased, the

classical escape rate becomes larger; there is a progressive

disappearance of eigenvalues with extremely small imagi-

nary parts. The number of resonances of extremely narrow

width decreases, leading to smoother fluctuation patterns.

Second, since RR is calculated from the leads, it only

depends on the width of the leads and the Fermi energy. It is

thus the same for all the quantum dots we have considered

above for a fixed energy E0. The difference in the values of

ca is solely determined by the quantity cm, which is the pro-

jection of the eigenfunction coupled to the lead, w0a;L, onto

the eigenfunction of the lead itself, vm;L. For the integrable

quantum dots, there are localized states corresponding to the

stable orbits. As a result, these states couple to the leads only

weakly, leading to smaller values of cm. For the chaotic

quantum dots with relatively large escape rates, unstable per-

iodic orbits dominate, so the resonant states are not as pro-

nounced as for the integrable dots, leading to a larger

component on the leads and hence larger values of cm. These

considerations can be demonstrated directly from the LDS

patterns, as shown in Fig. 7. For the integrable QDs without

the central forbidden region [Fig. 7(a)], the LDS patterns

associated with the resonant states are well localized. The

FIG. 6. Imaginary and real parts of the eigenenergies Ea for (a) rectangular quantum dot, (b) rectangular dot with a rectangular forbidden region at the center,

(c) Sinai quantum dot with R ¼ 0:14 lm, and (d) Sinai dot with R ¼ 0:28 lm, where E0 ¼ 2:7862 meV for all cases. Each eigenenergy is represented by one

blue circle. The red dashed lines indicate ca ¼ 5� 10�4 meV and they are just for eye guidance.
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patterns are mainly those corresponding to the classical

“bouncing-ball” orbits. One can see that the values of the

LDS on the leads are indeed quite small. When a rectangular

forbidden region is present in the central region, the system

is still classically integrable, which has no significant effect

on the LDS patterns, as shown in Fig. 7(b). For the chaotic

Sinai dots, the LDS patterns are strongly affected by the

central circular forbidden region in that they appear much

less localized and relatively more uniform than those in the

integrable dots, as can be seen from Figs. 7(c) and 7(d). This

typically leads to much larger LDS values on the leads,

resulting in larger values of the wavefunction at the bounda-

ries of the quantum dot and, hence, strong coupling with the

leads.

V. CONCLUSIONS

We have proposed and demonstrated that classical tran-

sient chaos can be used to effectively harness quantum trans-

port fluctuations both in the non-relativistic quantum regime,

where the dot is a semiconductor 2DEG system, and in the

relativistic quantum regime, where the whole system is made

up of graphene. The key underlying physics is that chaos in

the classical limit has a profound effect on the emergence of

resonant states in the corresponding quantum transport sys-

tem. As the escape rate associated with transient chaos is

increased, pointer states, which are ubiquitous in open inte-

grable systems, become increasingly difficult to survive, and

they tend to be less localized with shorter lifetimes. This

effect significantly enhances the coupling between the eigen-

states in the device and in the leads.

We have developed a physical theory to unveil the rela-

tions between the characteristic energy scale of the conduct-

ance resonance and the eigenstates in the corresponding

closed system, showing that integrable quantum dots possess

highly localized states, leading to very weak coupling to the

leads and resulting in extremely narrow conductance

resonances. When the classical dynamics becomes fully cha-

otic, the opposite effects arise, namely, less localized (more

dispersive) states, stronger coupling to the leads, and broad-

ened conductance resonance. These theoretical insights

suggest that, by applying a gate voltage generating the inac-

cessible regions so that the originally integrable system

changes to being chaotic, quantum conductance fluctuations

can be made smoother. Continuous modulation or harnessing

of the conductance-fluctuation patterns is possible by

increasing the gate voltage systematically. As a result, con-

ductance fluctuations, a key characteristic associated with

quantum transport, can be regularized via transient chaotic

dynamics in the classical limit. Our chaos-based quantum

harnessing scheme is conceptually appealing and experimen-

tally feasible, and further interest and effort are warranted to

explore this concept for significant applications in nano-

science and nanotechnology where quantum transport is

fundamental.

Finally, we remark that, in the OGY paradigm of con-

trolling chaos,1 small parameter changes are used to stabilize

the system about some desirable unstable periodic orbit. An

appealing feature is to take advantage of chaos to control the

system toward some desirable performing state. This is in

fact the spirit of our work, i.e., to use chaos to do “good.” In

particular, we have proposed an experimentally feasible

method to regularize quantum transport, i.e., to broaden the

transmission resonances and make the transmission curve

smooth. The common feature with the OGY method is that

in both cases, chaos is exploited for a purpose. For example,

it is possible to apply small perturbations to stabilize a cha-

otic system about any desirable state. In our case, chaotic

scattering is utilized to reduce the sharpness in conductance

fluctuations, although the “perturbation” occurs in the system

structure and is not necessarily small.
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