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Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system’s
sensitive dependence on initial conditions. For more than a decade, it has been claimed that the
exponents computed from electroencephalog(BEG) or electrocorticograniECoQ signals can

be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose
of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are
employed.(1) We present qualitative arguments suggesting that the Lyapunov exponents generally
are not useful for seizure predictiof2) We construct a two-dimensional, nonstationary chaotic map
with a parameter slowly varying in a range containing a crisis, and test whether this critical event
can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be
regarded as a “control test” for the claimed predictive power of the exponents for seizure. We find
that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents
due to finite time computation and noise from the time series. We show that increasing the amount
of data in a moving window will not improve the exponents’ detective power for characteristic
system changes, and that the presence of small noise can ruin completely the predictive power of the

exponents(3) We report negative results obtained from ECoG signals recorded from patients with

epilepsy. All these indicate firmly that, the use of

Lyapunov exponents for seizure prediction is

practically impossible as the brain dynamical system generating the ECoG signals is more
complicated than low-dimensional chaotic systems, and is noisg0@ American Institute of

Physics. [DOI: 10.1063/1.1777831

The necessity of designing and carrying out controlled
tests to validate a new finding or a new methodology is an
elementary notion in scientific research. For example, to
claim that a new phenomenon has been discovered in a
new material under certain conditions, controls must be
run on some different materials under similar conditions
to show that the phenomenon does not occur. Similarly, if
a new methodology is claimed to be able to predict criti-
cal events based on measured data, the method must be
tested to work for a control system for which some criti-
cal events are designed to occur at known times through
some well understood mechanism. This paper is focused
on seizure prediction with a set of fundamental dynami-
cal invariant quantities, the Lyapunov exponents, com-
puted from measured time series. While there has been a
gradual recognition in the applied nonlinear dynamics
community that these exponents may not be useful for
prediction, efforts have continued that are devoted to uti-
lizing them for prediction in problems of significant inter-
est. In particular, in the area of epilepsy, it has been
claimed for more than a decade that by monitoring the
evolution of the largest Lyapunov exponent calculated
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from electroencephalogram(EEG) or electrocorticogram
(ECo0G) data, epileptic seizures can be predicted minutes
or even tens of minutes in advance of their clinical onset
(the most recent claim being that this time can be longer
than 80 min).1* This claim, if true, would clearly have
significant implications. Our concern is that so far, there
appears to be no systematic effort to assess the predictive
power of Lyapunov exponents. The purpose of this paper
is to report our results of such a study through three
approaches: (1) qualitative arguments, (2) controlled
tests, and (3) tests using real data. All these indicate
strongly that the Lyapunov exponents are generally not
useful for predicting or detecting epileptic seizures. For
the control test, we construct a two-dimensional chaotic
map with a time-varying parameter p(t). The system is
thus nonstationary and we assume that the range of the
parameter variation contains a crisis at which the chaotic
attractor suddenly increases its size. Assuming that start-
ing from an initial value py the parameter varies slowly
with time and passes through the critical pointp. at a
later time and eventually comes back top,. A typical
time series thus consists of segments of small-amplitude
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chaotic oscillations for p<p. and a segment of large- sion and the Lyapunov exponents, have been utilized to
amplitude oscillations for p=p., mimicking EEG or  study the EEG or ECoG signafé:®1%115with various
ECoG signals containing a seizure. Lyapunov exponents claims that epileptic seizures can be predicted in
are then computed from a moving window across the advance4101
time series to test whether the system change gt=p. The focus of this paper is on Lyapunov exponents, which
reflects itself in the computed time-varying exponents are fundamental invariant quantities characterizing the ex-
and whether this gradual parameter drift can be detected  pansion or contraction of infinitesimal vectors in the phase
in advance of the crisis in order to predict the impending  space of nonlinear dynamical systems. The existing reports
crisis event. This class of control systems is the simplest of prediction of seizures through measures that rely on
that we can imagine to test the predictive power of Lyapunov exponents* prompt us to systematically investi-
Lyapunov exponents. Our analysis and computations in- gate their seizure prediction power on ECoG time series.
dicate that there are two major factors that can prevent  Unfortunately, our results suggest that this power is quite
the exponents from being effective tools to predict char- sensitive to factors such as random noise.
acteristic system changes: statistical fluctuations and There have been reports in the literature of a pre-seizure
noise. As can be expected intuitively, even for low- state characterized a change in the Lyapunov expdfiént,
dimensional, deterministic chaotic systems, the power of no consensus on this topic seemed to have been re&thed.
the Lyapunov exponents to detect parameter drift into  Assuming the existence of this preseizure state, we investi-
crisis holds only in noiseless or extremely low-noise situ- gate whether the Lyapunov exponents are sufficiently robust
ations. In a realistic situation, especially in a system as to noise and sensitive for detecting subtle changes in the
high-dimensional and noisy as the brain, it appears un- system state that may precede seizures. The goal of this pa-
likely that the Lyapunov exponents, or related quantities  per is to investigate the predictive power of Lyapunov expo-
from nonlinear dynamics such as the correlation dimen-  nents for nonstationary dynamical systems in the presence of
sion, can be useful for predicting or detecting epileptic  noise with direct application to epilepsy brief account of
Seizures. this work has been published recerflywe use the general
setting of a time series evaluated through data in a moving
window in order to simulate the situation of on-line analysis.
From each window’s data, a phase space is reconstructed by
An outstanding problem in biomedical sciences is to de-using the delay-coordinate embedding methbif,and the
vise techniques to detect and to predict epileptic seizures thapectrum of all Lyapunov exponents is computed. Variations
affect about 1% of the population. Seizures are accompanieif the values of these exponents are examined, with particu-
by abnormal electrical activities in different regions of thelar attention to statistically significant changes which may
brain, and can be monitored by electroencephalogi&&G)  indicate a precursor of a critical event such as the seizure
recorded via electrodes attached to the scalp, or by electr@nset.
corticogram(ECoG from electrodes in direct contact with To run the controls, we construct a low-dimensional,
the cortex. These recordings provide a window, perhaps theonstationary chaotic system, with temporal parameter varia-
only practically accessible window at present, through whiction to produce nonstationarity, which allows the predictive
the origin and dynamics of epilepsy can be investigatedpower of the Lyapunov exponents to be addressed in a con-
Analysis of EEG or ECoG has thus become a topic of paratrollable way. We design the parameter variation to be a
mount importance. gradual transition to a critical event with significant changes
An approach that is gaining increasing attention in dealin the system characteristics. Before the onset of the critical
ing with these signals is to use techniques from time seriesvent, there are no noticeable, characteristic changes in the
analysis developed in nonlinear dynamics and chatfs. system state. The critical event is analogous to the occur-
Early evidence suggested that the brain activity generatingence of a seizure, and the slow parameter change to the
the EEG or ECoG signals can be described by low-possible preictal precursor to the seizure. Successful detec-
dimensional dynamical systems’ which implies that detec- tion of the transition to a preictal state through the Lyapunov
tion and even dynamical control of epilepsy are possiblegxponents would indicate their predictive power for the sei-
since predictiof?~??and controt®>?*of low-dimensional cha-  zure.
otic systems are indeed achievable. However, re-examination We have identified two major factors that critically in-
of these early claims indicated a lack of low-dimensionalfluence the detective and hence the predictive powers of the
dynamical structure in brain signaf$?® Whether a low- Lyapunov exponents computed from time seri€: their
dimensional, deterministic interpretation of the EEG orstatistical fluctuations in finite times arié) the presence of
ECoG signals is appropriate remains to be a debated issuegise. Counterintuitively, increasing the size of the moving
with no consensus in sight. Intuitively, the EEG or ECoGwindow (and thus the amount of data contained therganm-
signals represent the collective behavior of a large numbegrally will not improve the detective power of the Lyapunov
[approximately 18-10° (Ref. 27)] of neurons with compli- exponents in the noiseless case. We also find that the predic-
cated interconnections, and it is quite unlikely that the resulttive power of the exponents is destroyed completely by noise
ing behavior would be generally low-dimensional. Despiteof amplitude as small as 1% of the typical variation of the
this uncertainty, measures useful for characterizing lowiime series. We also tested ECoG data segments recorded
dimensional chaotic systems, such as the correlation dimerirom patients with epilepsy, systematically varying the key

I. INTRODUCTION
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parameters in the algorithm, but found no indication that thehis measure, while having the capability of tracking sei-
evolving behaviors are capable of predicting or detecting seizures, generally is not useful for seizure prediction. We have
zure. Our basic conclusion is that if the brain’s dynamicalshown that it is not superior to simple methods based on
system generating the ECoG signals is more complicateduantities from linear stochastic analysis such as the autocor-
than a low-dimensional, deterministic system, and if there igelation. Since the fractal-dimension spectrum and the
an appreciable but reasonable amount of noise present, it iyapunov exponents of a dynamical system are fundamen-
extremely unlikely that the Lyapunov exponents will be tally related, it is reasonable to suspect that the exponents
more valuable for seizure prediction than simple, linear techwill perform no better than the correlation dimension for the
nigues. prediction of seizures.

In Sec. Il, we provide some intuitive reasonings for the  The last point can be seen more explicitly, as follows.
inability of Lyapunov exponents to predict epileptic seizures.Let N\;=\,=---=\4 be the spectrum of Lyapunov expo-
In Sec. Il we describe the implementation of our algorithmnents of ad-dimensional dynamical system. It is an elemen-
for computing all Lyapunov exponents from time series andary notion in nonlinear dynamics that the information di-
justify its validity by using time series from low-dimensional mension is an upper bound for the correlation dimension. In
chaotic systems for which the Lyapunov exponents araypical situations, the values of these two dimensions are
known. In Sec. IV, we report results of control tests from ourclose. The information dimensidd,, on the other hand, is
low-dimensional chaotic model and compare them withconjectured by Kaplan and Yorketo be the same as the
those from a simple autocorrelation method. In Sec. V, wd.yapunov dimensiorD, , which is defined in terms of the
present results of systematic computations of Lyapunov extyapunov spectrum, as follows:
ponents from test ECoG data sets containing seizures and
address the effects of varying the size of the moving window. D =J+ *_" (1
A discussion is presented in Sec. VI. INgtal

where I=J=<d is an integer that satisfies

Il. DIFFICULTIES ASSOCIATED WITH LYAPUNOV

EXPONENTS AS A PREDICTIVE TOOL FOR EPILEPTIC J ol
SEIZURES ;1 >\i>0>§1 A

There are several technical difficulties associated withr, Kaplan—Yorke conjecture was shown to be exact for
the predigtive power of the Lyapunov exponents in the COMyandom dynamical systents.g., deterministic system under
text of epilepsy. — noise by Ledrappiet* and Yound® SinceD,<D; and since
. @) P'ff'cu'ty In estimating Lyapunov exponepts from there is evidend@ that D, is ineffective for early detection
time seriesThe spectrum of Lyapunov exponents is among ¢ <aizures Eq(1) suggests that the Lyapunov exponents
the most difficult to compute from dynamical systems, P&, 0uld not b’e useful for predicting seizures.
ticularly from time series when the system equations are not
available. Despite the existence of numerical algoritAtng’
important issues such as the distribution of spurious
exponent® and uncertainties in the estimates of thelll. LYAPUNOV EXPONENTS FROM TIME SERIES

exponent® have begun to be addressed only recently. In .
b g y y The Lyapunov exponents characterize how a set of or-

general, the uncertainties can be sevérahich can have h | infinitesimal dist | der the d
some effect on the predictive power of the exponents in re: onormal, Infinitesimal distances evolve under the dynam-

alistic situations. |Lcs. For ad—dlmentsmrll_'al dynars_ca:clI systgm,trt]here ate
If one intends to compute only the largest Lyapunov ex- yapunov exponents. Here we Drietly review the 1ssues as-

ponent, the situation is “better” in the sense that the diffi- sociated W'th COmp““r?g them from tlme_ SEeres.

culty with spurious exponents does not exist. Indeed, there Consider a dynamical system described by

are methods for this task even in the presence of measure- dx

ment noise of a few percent in magnitu@eg., by Rosen- a:F(X): 2

steinet al*® and by Kant2Y). Although the methods appear

to be robust for data from maps, difficulties can arise for datavherexe R? is ad-dimensional vector. Taking the variation

from flows such as the Lorenz systém. of both sides of Eq(2) yields an equation governing the
(2) Complexity of the brain dynamical systeffihe evolution of infinitesimal vectox in the tangent space at

Lyapunov exponents may be useful for prediction if they canx(t),

be computed reliably and accurately from short time series.  qs¢x  gF

This can hopefully be accomplished if the underlying dy- ar - x 3
namical system is primarily deterministic and relatively

low-dimensionaf®3° These requirements typically are not Solving for Eq.(3) gives

met by the brain dynamical system that generates the EEG or Sx(1) = Alox(0), @

ECoG signals.

(3) Fundamental relationship between fractal dimensionwhere A is a linear operator that evolves an infinitesimal
and Lyapunov spectrun®ur recent analysis of the correla- vector from time O to timg. The mean exponential rate of
tion dimension for ECoGQRef. 42 suggests strongly that divergence of the tangent vector is then given by
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1 x| from time series, thgseudo-Lyapunov spectrurior low-
A[x(0),0x(0)]= “mTInW’ (5 dimensional dynamical systenfsr specific choice of mand
e in a noise-free case there are criteria for distinguishing the
where|-|| denotes the length of the vector inside with respecspurious exponents from the true orisor instance, for a
to a Riemannian metric. In typical situations there exists a se@ne-dimensional chaotic map where there is a positive

of d-dimensional basis vectofg} (i=1,...d), in the fol-  Lyapunov exponenih>0, the (m—1) spurious exponents
lowing sense: are 2\,...,m\. For a two-dimensional mafor equivalently,
a three-dimensional flowwhere there is a positive and a
N=A[x(0).&]. ©) negative exponent);>0>\, and for m=5, the pseudo-
These\’s define the Lyapunov spectrum, which can be or-Lyapunov spectrum iss§~2X\;, N3=~N\1, Ag=A;+X\z, \]
dered, as follows: ~N\,, and\g~2\,. Unfortunately, at present there are no

general criteria for determining the distribution of spurious

Lyapunov exponents for an arbitrary system with arbitrary

Values of\; do not depend on the choice of the initial con- €mbedding dimension. The existing specific criteria can,
dition x(0), insofar as it is chosen randomly in a properhowever, be used to test whether the algorithm is coded cor-
phase-space region. rectly.

Computationally, there exist several methods for com-  Based on the procedure described, we have developed a
puting the Lyapunov spectrum from time serfés®’ while ~ code for computing all Lyapunov exponents from a time se-
details of these methods are different, they share the sanii€s. To demonstrate that the code is reliable, we use two
basic principle. We have implemented the one developed byumerical examples(l) the logistic map® x,,;=4x,(1
Eckmannet al®® The key is to find approximate Jacobian —Xn) for which the only positive Lyapunov exponent is
matrices along the trajectory in the reconstructed,=!n2, and(2) the two-dimensional IHJMIkeda—Hammel—
m-dimensional phase space by using the delay-coordinatéones—Moloneymay'’ that models the dynamics of a non-
embedding technique, whene>2d.313? The matrices gov- linear optical cavity:
ern the evolution of infinitesimal vectors in the tangent
space. Given a trajectory poinf, we locate a point in a
small e-neighborhood ok; and monitor how it evolves under
dynamics, in order to figure out how a small vecéx at x;
evolves. Suppose after one time unit the small vector bewhere A=0.85, B=0.9, k=0.4, z=x+iy is a complex
comesdx; 1. We then have number, andp is a parameter. Fop=7.25, the two

8% 1~T(X)- %, Lyapur_lov exppnents ane1~o.36. and\,~ —0.57. .

i+l : " A time series from the logistic map was computed using
whereT(x;) is themx m Jacobian matrix ax;. In order to  an observed variablg,=sin’(5x,). Three exponents were
uniquely determine the matrixn independent, orthonormal found usingm=3, delay timer=1, and moving window
vectors in the neighborhood of are required. Thus it is lengthN=10000:\{~2.3,\5~1.5, and\5~0.74, of which
necessary to collect a number of points aroMpdAfter the  the third is approximately the true exponent, while the first
Jacobian matrices are computed, a QR-decomposition procewo are spurious and follow the distribution of spurious ex-
dure can be used to vyield the spectrum of Lyapunowonents for one-dimensional mafiszor the IHJM map, we
exponents>30 set the system parameter 7.25, embedding dimensian

Because the Jacobian matrices are meaningful only irc5, delay time r=1, and moving window lengthN
the linear neighborhoods of trajectory points, the sizes of the= 10000. The pseudoexponents are approximatéky 0.71
neighborhoods must be small enough to ensure that the dy=2\;, A\5~0.33~\;, A5~—0.18>\;+\,, N3~—0.59
namics within are approximately linear. While smaller sizes~X\,, and\g~ —1.11=2\,, which are the correct ones for
in general can yield more accurate matrices, the length of thavo-dimensional map® These results indicate that the algo-
time series required will be greater. Roughly, in order to haveithm can correctly compute the Lyapunov exponents using
a fixed number of points in a small region, as its siziss  finite time series from low-dimensional chaotic systems.
decreased, the required length of the time series increases. While our algorithm has been tested for maps, difficul-
Experience with time series from low-dimensional chaoticties can arise if the data are from flow with unknown sam-
systems suggests thashould be about a few percent of the pling rate. In this case, the Jacobian matrices can be such that
size of the attractor. That is, if the time series is normalizedhe stretching rate per sampling interval is small, causing
to the unit interval, the choice of should be less than 5% different eigendirections in the tangent space to have almost
(usually between 1% and 5%and greater than the error due degenerate expansion/contraction factors. This can lead to
to the digitization precision of the data. inaccurate estimates of the Lyapunov exponents or spurious

Another issue in the computation of Lyapunov expo-exponents. However, the relevant issue here is how any
nents from time series is the inevitable occurrence of thehanges in the exponent can possibly be used to predict or
spuriousexponents. If the invariant set@sdimensional, and detect critical events in the system. In this sense, whether the
an m-dimensional embedding space is usett{2d), there  estimated exponents are true ones is less important. As we
will be m—d spurious Lyapunov exponents. For conve-will show, even for data from map, the Lyapunov exponents
nience, we call\{ (i=1,...m), all m exponents computed are in general not useful for prediction. EEG or ECoG sig-

M= No=0 =)y, (7)

ip
1+[z,|*

: ®

Zn+1=A+Bz, ex;{ik—
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FIG. 1. For the IHIM map in Eq8), (a) a relatively small chaotic attractor /G- 2. For the IHJM map in Eq8), () parameter variation as described

before the interior crisis fop=7.25, (b) the larger attractor after the crisis PY Ed-(9), and(b) a typical time series which mimics a segment of ECoG
for p=7.4. data with a seizure.

po, n<t|:20000

nals are considered flow data. Thus it is reasonable to expect Po+N(p;—Po)/5000, t;<n<t,=25000
that the exponents will have no predictive power for sei-  Pn pP1—N(p1—Po)/5000, t,=n<t;=30000 ©
zures.
Po n>ts,

where pg=7.25 andp,=7.55, are shown in Fig.(3). A

typical time seriegx,} is shown in Fig. 2), where we see
IV. PREDICTIVE POWER OF LYAPUNOV EXPONENTS a different behavior for 20069n=<30000 during which the
IN' LOW-DIMENSIONAL, DETERMINISTIC parameter variation occurs. The time series in Fig) thim-
SYSTEMS ics a segment of ECoG data with a seizure. The average
A. Discrete-time map model values of the two Lyapunov exponents in this “ictal” phase

To assess the predictive power of Lyapunov exponentgre)\lwo'42 and)\2~70.63_. :
We then choose a moving window and explore the pre-

computed from time series in a controllable way, we seek a,. o
model of deterministic chaotic system with parameter varia—d ictability of the parameter change bas_e_d on the ps_eudo-
. . . - Lyapunov spectrum computed from the finite data set in the
tions to simulate the nonstationary nature of ECoG data with”.
seizure. We choose the IHIM map in E§) and allow tem- window.
poral variation in the parametpr To mimic ECoG data with
seizure®® we choosep from an interval about the nominal
valuep,~7.27, at which there is an interior crigi&Specifi- If the numberN of data points in the moving window is
cally, for p<p., there is a chaotic attractor of relatively small, the computed pseudo-Lyapunov exponents will have
small size in the phase space, as shown in Fg) fbor p large fluctuations, as shown in Figgag-3(f) for m=5 and
=7.25. At p=p., the small attractor collides with a pre- N=630, where Fig. @& shows the nonstationary time series
existing, nonattracting chaotic sethaotic saddlg® to form  and Figs. 8)-3(f) are the evolutions off (i=1,...,m). We

a larger attractor, as shown in Fig(bl for p=7.4. Forp
=p., a trajectory spends most its time in the phase-space
region where the original small attractor resides, with occa-
sional visits to the region in which the original chaotic saddle
lies. A typical time series then consists of chaotic behavior of
smaller amplitude most of the time, with occasional, ran-
domly occurring bursts of relatively larger amplitude. As-
sumepy=<p. so that the system is in a precrisis state but it is

about to undergo a crisis. Then, the parameter changes < SlwAmhami iyt Abyimpiyibel o)

through the critical valug@,.., after sometime it comes back _0.4 : !

to the original, precrisis valug,. During the time interval in G:JOB‘WWWVMMWM@
which the parameter changes, we expect to observe charac- ° u:)oia : : :
teristically different behaviofe.g., random motion of larger < "WFNWWMWWM“)

B. Size of moving window and detectability

amplitude, as in the ictal phase in ECoG dafto be con- 0 1 2 3 4 5

crete, for the IHIM map we choose a time interval of 50000 n x 10
iterations, and assume the following variation of the parameg. 3. For the IHIM map in Eq8), m=5 andN=630, (a) nonstationary
eterp: time series(b—f) temporal evolution of? for i=1,...,5,respectively.
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FIG. 5. For the IHJM map in Eq8), m=5 andN= 1995, (a) nonstationary

FIG. 4. (a,b Blow-ups of Figs. &) and Je), respectively. time series(b—f) temporal evolution oh{ for i=1,...,5,respectively.

. . . iy i H
see that, comparing with the asymptotic values of the twovherex()(i) is the time-one Lyapunov exponent fort; .
Lyapunov exponents\;~0.42 and\ ,~ —0.63), the second NOW consider a moving time window across the critical time
and the fourth X and\$) are approximately the true expo- i, WhereN; points are before;, N points are after, and
nents, while the remaining are spurious ones. The verticdN1TN2=N. The computed exponent is

dashed line indicatets, the time when the control parameter 1[N N
p starts to change. The parameter change is somewhat re- )\,’\,zﬁ > A+ > Ay |, (13
flected in\§ . For the average changeXf to be statistically =1 =1

Significant, where the Change should be greater than the aWherg)\(z)O) E the time-one Lyapuno\/ exponent fm>t| .
erage amount of fluctuation, the time required is ahbtit Let A and\(® be the asymptotic values of the Lyapunov

~700 aftert; for A7, as can be seen in Fig(&, a blowup of oy et fort<t; andt>t;, respectively. IfN;>1, Np>1,
part of Fig. 3b) aroundt;. Other exponents show no statis- N;~N, andN,~N, we can write

tically discernible changes aftdy, as represented by the
behavior ofA§ in Fig. 4(b), which is a blowup of part of Fig. -
. . ' . . WiHy=NA®

3(e). One question is whether increasihgwould help re- 241 AB([)=NAB+O(1VN), (14)
duceAt. \

Consider the situation wheis is large. Given this finite ! 1. I o
time N, we imagine choosing a large number of initial con- ;1 A =N+ O( 1/\/I\‘_l)”“'\ll)‘( )+O(1/\/N)’
ditions and compute the Lyapunov spectra for all the result-
ing trajectories of lengtiN. The exponents computed in fi- 2 ) - —
nite time are effectively random variables whose histograms Z’l N®(i) =N\ )+ O(1N,) ~N,A B+ O(1WN),
can be constructed. For trajectories on a chaotic attractor, the _
typical distribution of a finite-time Lyapunov exponenf, ~ Where O(1/YN) is a number on the order of \N. The

is®1 change in the computed timé-exponent is thus
_ ANN=AN— A}
PO {NG”()\) 1/2 % NG,,(I)()\ r)z} N N N
NN T EXp — 5 N ) 1
2 2 ~ —[NAD=NAD=NAD]+O(1HN)
(10 N
—. . . - N, N,
where\ is the asymptotic value o)t_N in the |Imlt N— o0, = W()\(1)_)\(2))4_(9(1/\/ﬁ)~W_ (15)
and G(x) is a function satisfyings(\)=0, G’'(\)=0, and
G”(\)>0. For largeN, the standard deviation ofy, is For the change in the Lyapunov exponent to be statistically
significant and thus detectable, we requirey= Ty which
1 gives the time required to detect the change,
o ~—. 11
WoOUN 1y At=N,=N. (16)

We see that increasing the size of the moving window in fact

causes an increase in the time required to detect a change in

the Lyapunov exponent. The increase is, however, incremen-

N tal as compared to the increaseNrand therefore may not be

i () easily observed. In numerical experiments, we will not see
> N, (12 er

Ni=1 an apparent decrease &t whenN is increased.

If the moving time window is located completely tr<t;,
the average Lyapunov exponent is

)\N:
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(a)

FIG. 6. (a,b Enlargements of Figs.(b) and Fe), respectively. The respec-
tive detection times arAt;~100 andAt,~700.

Figures %b)—5(f) show, for m=5 and N=1995, the

Lai et al.

[ZEN
=
&

W A =
T

N

(23 T SN~ I N
X = X =

log, ,At; log, At, log, At, log, At, log, ,At,
(4]

28 3 32 34 3.6 38 4
log X 0N

FIG. 7. For the IHIM map in Eq8) andm=5, (a—e detection times\t;
for \{ (i=1,...,5, respectivejyversusN.

temporal evolution of\® (i=1,...,5), respectively. A dis- est_is taken to be 4(_)000 it_erations._ If we measure the time
cernible change in the exponents can be seetdr, par- SEries before the cr!t|cal point there is no a}pparent character-
ticularly in A& and\$. Figures €a) and &b) show enlarge- Stic change, despite the slow change in paranéters _
ments of the evolution k¢ and\S aroundt;, respectively, SnoOwn in Fig. 80). This setting thus represents an appropri-
where we see that the time required for detection of the sys3t€ test bed for the predictive power of pseudo-Lyapunov
tem change is\t;~100 for \¢ andAt,~700 for\S. AsN  €xponents for critical events.

is increased, the level of fluctuations in the Lyapunov expo-

We proceed by choosing a moving window containihg

nents is reduced but the detection time is not reduced, &&f@ points and examining any possible changes in the
shown in Figs. 7a)—7(e), numerically determined detection PS€udo-Lyapunov spectrum. Whisnis small, the large fluc-

times versusN for \{ (i=1,...,5), respectively. In all cases,
the detection time shows a slight increaseNais increased,
which is consistent with our analysis.

tuations in the exponents render undetectable the slow pa-
rameter changes preceding the onset of crisis. This indicates
that the crisis cannot be predicted whdris small. AsN is

increased, the fluctuations are reduced so that the system

C. Predictive power of Lyapunov exponents

change preceding the crisis can be detected, as shown in the
behaviors ofA{ in Figs. 9b)-9(f), respectively, form=5

Our results in Sec. IV B indicate that while the critical gndN=3981. The change indeed can be detected at time
change of the system state can be detected through the10000, which far precedes the crishile this seems to
pseudo-Lyapunov spectrum from time series, it is not cleaindicate that the exponents have the predictive power for

whether the change can lpeedictedin advance. To goal of crisis, we find that the presence of small noise can wipe out
our control test is to assess, for the model system, whethehis power completely

Lyapunov exponents possess any predictive power for criti-
cal change of the system state.

We conceive that the onset of seizure corresponds to the
transition of the system through a critical state. In order to be
able to predict the seizure in advance, it may be assumed that
the state of system undergoes slow changes before seizure
onset. The question is whether any state change before the
critical point (onset of the seizujecan be detected through
the pseudo-Lyapunov exponents. Motivated by this, we con-
sider the following relatively simple situation: Suppose a
critical event occurs in which the system bifurcates to a char-
acteristically different state. However, before the event, the
parameter changes smoothly toward the critical bifurcation,
although perhaps not at the same rate as that at which it
passes through the critical point. For the IHJIM map, we thus
consider the scheme of parameter change, as shown in Fig.
8(a), where initially the parametep is fixed at a constant

76 (a)

7.4

o

4
4

n

x 10

value (p=7.1) below the critical pointp,. As p passes FIG. 8. Our scheme for testing the predictive power for critical event of

throughp, at aboutn=20000, a critical eventinterior cri-

Lyapunov exponents from time series, utilizing the IHIM m@p.Param-
eter variation with time, where it changes slowly before the interior-crisis

sis) occurs. Before thisp is assum_ed t(_) Change ata §Iower point, and(b) a typical time series that shows no characteristic change
rate for 10008<n<<20000. The entire time interval of inter- before the crisis, despite the parameter change.
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FIG. 9. (a) Scheme of parameter variation with timé—f) Temporal evo-  FIG. 11. (a) Scheme of parameter variation with tim{e~f) temporal evo-

lutions of\{ (i=1,...,5) form=5 andN=3981, in the absence of noise. In lutions of A? (i=1,...,5) for m=5, N=3981, and noise amplitud®

this case, the parameter change preceding the crisis can be detected through0=2° (corresponding to about 0.5% of the amplitude of the measured

the pseudo-Lyapunov exponents. datg. At this noise level the crisis cannot be predicted in advance because
the parameter change preceding the crisis cannot be detected.

To simulate noise, we add two ters; andD&; tothe  small noise is inevitable, one should not expect the
x- andy-equations of the IHJM map, whef2 is the noise | yapunov exponents computed from time series to have any
amplitude, ands; and &; are independent random variables pregictive power, as it appears unlikely that their variations
uniformly distributed in [—1,1]. Figures 100)-10f),  are statistically significant enough to allow for detection of
11(b)-11f), and 12Zb)-12Af) show, for m=5 and N system change preceding a critical event.
=3981, temporal evolutions of the five pseudo-Lyapunov
exponents for noise level®=10"25 D=102° andD
=10 1C respectively. Note that the range of the time series _ _ _
from the IHIM map is about 2.0, so these noise leveld: Comparison with autocorrelation
roughly correspond to 0.1%, 0.5%, and 5% of the variation Tg provide a means for comparison of the Lyapunov
of the dynamical variable, which can be considered as smalkxponents’ predictive abilities, we compute from time series
We observe that there is a progressive deterioration of the(t) an approximation of the decay of the autocorrelation
predictive power of the exponents, as the parameter changgelope’®
preceding the crisis can no longer be detected at the noise
level of aboutD=102° For relatively larger noisé D "
=10 1%in Figs. 12b)—12f)], even the critical ever(crisis) 1 D 1K
itself cannot be detected through the variation of these expo- “- M &4 IR,
nents. These results suggest that in practical situations where

(17)

where
a 75 [(@) E ' a 75 F(a)
: : | . . .
05 ® : y : " " - 0.35
“3_<‘" 0.4} WW q3< - os Q)
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o B T e 2 oosf®
01 ; 7 : , . . . 0
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FIG. 10. (8) Scheme of parameter variation with tin{e—f) temporal evo-  FIG. 12. () Scheme of parameter variation with tin{e—f) temporal evo-
lutions of \{ (i=1,...,5) form=5, N=3981, and noise amplitud® lutions of A} (i=1,...,5) for m=5, N=3981, and noise amplitud®
=10"2® (corresponding to about 0.1% of the variation of the time spries =100 At this noise level, which is about 5% of the amplitude of the

At this noise level the crisis arguably can be predicted in advéhceugh,  measured time series, even the crisis itself cannot be detected through the
for example \§, A5, andAg). exponents.
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76 , . , T T T y E. Continuous-time model

(@)

While we used a discrete-time map model to illustrate
the predictive and detective powers of the Lyapunov expo-
) ) ) ) ) ) ) nents, a question is what happens to continuous-time sys-
o o5 1t 15 2 25 3 35 4 tems. A related issue concerns the nature of the bifurcation.

' ' ' ' ' ' ' In particular, in our discrete-time map model, the critical
event that we used to model seizure is interior crisis, which
is a global bifurcation. One might argue that epileptic sei-
zures may be a local bifurcation. Indeed, for an interior cri-
sis, the properties of the attractor before the bifurcation are
generally not affected by the fact that the crisis will happen.

0'8- - e . . . .
807_(0) In particular, the sensitivity of the dynamical invariants of
a o'e- the attractor such as the dimensions, Lyapunov exponents,
‘50'5_ and entropies to the control parameter is about the same in

the parameter regime before the crisis. For a local bifurca-
, . , . , . . tion, for instance, a Hopf bifurcation at which a stable steady
~~081(d) ] state becomes unstable and a stable limit cycle is born, the

[}

(=] - . . .
- 07 Lyapunov exponent may be a stronger indicator for the bi-
a %8 furcation. To address these issues we now consider a
S 05F

continuous-time model with a Hopf bifurcation and investi-
. gate the sensitivity of Lyapunov exponents to parameter
changes in the presence of noise.

We use the following two-dimensional canonical model

FIG. 13. (a) Parameter variation in timéb) Time series ok in the absence for Hopf bifurcation, under white noise of amplitucﬂte
of noise ©=0). (c) Plot of @ computed in 4000 point windows, overlapped

by 3960 points computed on the time seriegbi (d) The same as ific)

except that there is a noise of amplitube=10"1.

dx
—=—y+x[a(t) = x?—y*]+D&(t),

dt
3 EX()x(t+7)
T ROt + 1) 18 dy
E=X+y[a(t)—x2—yz]+D§z(t), (19

andM = 6. Using the same model as in Fig. 8, we compute

on sliding windows of length 4000 points with an overlap of wherea(t) is a control parameter that can vary with time,
3960 points. The noise-free case is shown in FigclBoth  and;(t) and&,(t) are independent Gaussian random vari-
the parameter drift preceding the crisis and the crisis itselables of zero mean and unit variance with the following
are clearly visible in thex time series. In contrast to the properties: (&1(t)&1(t"))=08(t—t"), (&x(t)&(t"))=5(t
Lyapunov exponents, the autocorrelation’s ability to detect-t’), and(&,(t)&,(t"))=0. Whena(t) is constant, the sto-
this drift appears robust even under moderate nol3e ( chastic processegt) andy(t) are stationary; otherwise they
=10"", or 5%, as shown in Fig. 1@®). For this noise value, are nonstationary. For the deterministic system=0), if

the Lyapunov spectrum could not even detect the crisis 8§, the attractor of the sytem is a steady state defined by
shown in Fig. 12. x=0 andy=0. The Hopf bifurcation occurs at,=0 where

. We recently perf_orme_d a comparison of the autocorrela:for a>0, the steady state becomes unstable and a limit-cycle
tion and the correlation dimensidhand found that the two . _ .
attractor, given byx(t)=acost and y=asint, becomes

measures tend to track each other in seizure, though nelthg{able. The period of the oscillatio{=2) thus defines

demonstrated any predictive ability. Before and after the sei- X - .

zure, the value of the correlation dimension is approximatel)}he ngtural t'|me .scale of the system. To m|m|9 a ise|zure3 we
constant, but it fluctuates significantly during the seizure&X@mine a time interval of 9000 cycles of oscillation, which
which we showed indicates a dramatic loss and gain of th&0rreésponds to actual time gf=9000T,, and divide this
autocorrelation, alternating in time. The implication, as in thetime into three intervals: (T4), (T1,T>), and (T, T). The
present case, is that traditional analyses of stochastic prd@arameter variations in these intervals are chosen such that in
cesses or linear time-frequency analyses may be as effectiyge first and third intervals the attractor of the system is the
(if not more effective for analysis of ECoG signals, includ- steady statex=0 andy=0) but in the middle interval the

ing seizure prediction. attractor is the limit-cycle oscillator. In particular, we assume
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apt(a;—ag)t/T; for 0<t<T,,
a;t2(a,—a)(t—=T/(T,—Ty) for T;<t<T;+(T,—Ty)/2,

A= ay—2(a,—a)[t—T—(To,—T)/2)/(To—Ty) for T+ (T,—T1)/2<t<T,, (20
a;—(a1—ag)(t=To)/(T—Ty) for T,<t<T,

as shown in Fig. 14 for ap=—0.25, a;=0.0, a,=1.0, 14(d). However, as indicated in these plots, in the ictal phase
T,=4000r,, and T,=5000T,. A typical time series from where theoretically the largest exponent is zero, the algo-
this nonstationary system is shown in Fig.(l14 where the rithm seems to be able to capture the correct value. There is
noise amplitude i© =10 2. Analogous to the terms of epi- thus a relatively sharp change in the estimated value of the
lepsy, the three intervals of time can be conveniently callegexponents shortly after the onset of the ictal phase, indicating
preictal, ictal, and postictal phases, respectively. For the stahat the exponents are capable of detecting the local, Hopf
tionary systenfa(t) =a=constant, the theoretical values of bifurcation in spite of the presence of noise. Note that, how-
the two Lyapunov exponents fa<<0 are\;=\,=a<0. ever, the noise level for Figs. (@ and 14d) are relatively
After the limit-cycle attractor is born via the Hopf bifurca- small: about 1% of the amplitude of the oscillation in the
tion ata., the exponents arg;=0 and\,= —2a<0. Thus, ictal phase. As the time series becomes more noisy, as shown
for the nonstationary system as in Figs(d4and 14b), the  in Fig. 15b) for D= 0.1 (about 10% of the oscillation in the
theoretical value of the largest Lyapunov exponent is negaictal phasg the ability for the Lyapunov exponents to detect
tive for the preictal and postictal phases, while it is zero foreven this local bifurcation deteriorate, as shown in Figs.
the ictal phase. 15(c) and 1%d).

To obtain time series from the mod€l9), we use the Our results thus demonstrate that Lyapunov exponents
standard second-order, Heun’s method for solving stochastitom time series are capable of detecting simple, local bifur-
differential equations? In particular, for the system in Figs. cations in the presence of noise. However, as we described,
14(a) and 14b), we use the step size=0.01 in numerical this task of detection can also be accomplished by using
integration and generate time serids$) [or y(t)] using the  measures from traditional stochastic analysis such as the au-
sampling interval ofts=40h, corresponding to approxi- tocorrelation. Taking into account the computational com-
mately 16 points per oscillating period. Lyapunov exponentglexity, Lyapunov exponents are arguably disadvantageous
are then computed from the time series using moving timdor detection. On the other hand, ECoG signals typically
window of width At~636T,, spaced at,~12.7T,. The come from a large number of neurorfgpproximately
delay time used is~0.95T, (approximately one cycle of 10°—1C (Ref. 27]. It may not be suitable to regard epileptic
the natural oscillationand the embedding dimension is cho- seizures as being caused by some local bifurcations. This
sen to bem=3 (considering that the steady-state and limit- again suggests that Lyapunov exponents are not useful for
cycle attractors are only zero- and one-dimensional, respegredicting or detecting seizures.
tively). Due to noise, for the preictal and postictal phases, the
first two Lyapunov exponents from the moving windows are\; TESTS USING ECoG DATA

positive, which are spurious, as shown in Figs(cl4nd
The data used here were collected from patients with

pharmaco-resistant seizures who underwent evaluation for

x(t) aft)
- L [=) - o g -
x(t) a(tl

0 1 2 3 t 4 5
° 05 1 ; - = : :
< L
LICH . . . - o o
’ : 2 ER T > ost © : : . ]
0.2r v 0 1 2 3 t 4 5
q3<(\|og_ 4 oof T T T T T
o4l @ . . . . . oar ]
) 1 2 3t 4 5 or (@ . . . . . ]
x10* 0 1 2 3 1 4 5

FIG. 14. For the nonstationary, continuous-time model) with a local

Hopf bifurcation under noise of amplitud®=0.01, (a) the parameter varia- FIG. 15. (a—d The same as in Figs. @-14(d), respectively, except that
tion, (b) the noisy time seriex(t), and(c,d) the first two Lyapunov expo- the noise level is noD=0.1. The ability for the Lyapunov exponents to
nents computed from moving window over the time series, which appear taletect even this local bifurcation apparently deteriorate, as compared with
be able to detect the bifurcation. See text for simulation parameters. the case of lower noise in Fig. 14.
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FIG. 16. (a) A segment of ECoG time series containing a seizure WhIChFIG. 17. (b—f) For m=5 and At~13.18 s (corresponding toN=10%

starts at approximateli=300 s and lasts for about 80 h—f) For m=5 _ . :
andAt~4.17 s(corresponding tdN= 1000 data poinys the five computed 3162), the five computed Lyapunov exponents versus time.
Lyapunov exponents versus time, where time is counted as the end of the

moving window.
16(f) show, for a moving window of lengthht~4.17 s(cor-

responding toN=1000 data poinjs the five computed

epilepsy surgery at the University of Kansas ComprehensivéYapunov exponents versus time, where the time is recorded
Epilepsy Center. The data were recorded via depth electrodé¥ the right edge of the window. All exponents exhibit sig-
(Ad-Tech, implanted stereotaxically into the amygdalo- nificant fluctuations, which are reducedMss increased, as
hippocampal region. Correctness of the placement is aghown in Figs. 1)-17f) for At~13.18 s(corresponding
sessed with MRI. The signal is sampled at a rate of 240 HZA0 N=10*°=3162), in Figs. 1@)-18f) for At~52.5s
amplified to a dynamic range of 300 1V, and digitized to ~ (corresponding toN=10"'=12589), and in Figs. 18)-

10 bits precision with 0.5@V/bit using commercially avail- 19(f) for At~131.8 s(corresponding td\=10"°=31623).
able devices(Nicolet, Madison, WJ. The recording was Despite the reduction in the fluctuations of the pseudo-
deemed of good technical quality and suitable for analysiskyapunov exponents, there is no indication that any statisti-
For convenience, the data set is linearly normalized to th&ally significant change in these exponents occur before, dur-
unit interval. We have tested 11 seizures from two patientsnd, and after the seizure, suggesting that the computed
all indicating a lack of predictive power of the Lyapunov €xponents are not capable of distinguishing among presei-
exponents. In the following we present results with one seiZure, seizure, and postseizure phases, let alone being able to
zure. predictthe occurrence of the seizure in advance.

When computing the pseudo-Lyapunov exponents from There is thus no indication that the temporal behavior of
ECoG time series, there are several computational paranit€ pseudo-Lyapunov exponerifsigs. 16—19 predicts the
eters that can affect the results. These are: the lexgththe ~ S€lzure.
moving window, the embedding dimension the delay time
7, and the size of the linear neighborhood. We find that the VI. DISCUSSIONS

computed exponents are relatively robust against variations Successful and robust prediction of epileptic seizures is

in 7ande, insofar as they are chosen properly. The choice OEhaIIenging. Our experience suggests that a systematic and

thg de_lay timer_is quite_ straightforward. The empirical cri- generally applicable methodology for seizure prediction is
terion is that adjacent time-delayed components should serve

as independent variables. #fis too small, the adjacent com-

ponents will be too correlated for them to serve as indepen- o oat2 : : - : : |
dent coordinates. It is too large, then neighboring compo- §4:MWMW
nents are too uncorrelated. Empirically, given an ECoG | ' ' ! |

signal x(t), one chooses such thatR,=1/e.>® We fix = e ]° WNMMWWWW

=1/12 s. Fore, we find that computational results vary little . . : :

when it is chosen to be around 0.02% of the amplitude of T Wwwn
the ECoG signal We thus fixe=0.02. In what follows, we o : : : : : '
will systematically examine the effects of varying the two oo 01" 'VMMWWMW

key parametersN andm. o !

Intuitively, shorter time series result in larger fluctua- N WMWMWWMMN

tions in the computed Lyapunov exponents. As we increase '

the length of the moving window, we expect to see an appar- o0 *] " WWWWMMWWWM#
100 200 300 00 500
t

ent decrease in the level of fluctuations. To demonstrate this r i
effect, we fix the embedding dimension at=>5. Figure

16(a) shows the segment of ECoG time series of 600 S CONgG, 18. (b—f) For m=5 and At~52.5 s (corresponding toN=10"1
taining a seizure, which occurs & 300 s. Figures 1®)— =12589), the five computed Lyapunov exponents versus time.
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02}# b [ © Lyapunov exponents can exhibit random fluctuatidis|.
' UMMM (10)], which present a serious obstacle to their predictive

el MMI«)N o power because any changes in the exponents must be larger
Il

0 than the fluctuations in order for them to be indicative of
og 0 Ao AN system changes. Increasing the size of a moving window will
not decrease the detection time for system changes, as we
ool L@ have shown in this paper. This implies that any characteristic
change of the system must be significant enough for it to be

om 03 WAt BN A () detected through the Lyapunov exponents, regardless of the

size of the finite data set contained in the moving window,

e o] WWWWM"‘WHP': 0 insofar as it is statistically meaningful.
0 2(')0 360 t 460 5(I)0 600

0 100 We have also demonstrated that relatively small param-
eter changes in the system, which precede a critical event,
FIG. 19. (b—f) For m=5 and At~131.8 s(corresponding toN=10*>  can indeed be detected through the changes in the Lyapunov
=31623) the five computed Lyapunov exponents versus time. exponents. Thus, if the small system changes are regarded as
“precursors” of the critical event, its occurrence can indeed
be predicted in advance. However, this predictive power of

still lacking, despite existing clains*1% This is espe- the Lyapunov exponents can be ruined completely by noise

cially true when techniques designed for low-dimensionalVith magnitude as small as less than 1% of the variation of
nonlinear dynamical systems are used. There are two funddhe system variable. As the noise level is increased to about
mental reasons for thigl) EEG or ECoG signals are com- 5% of the variation, even the detective power of the expo-

plicated, nonlinear, nonstationary, high-dimensional and'€nts is lost. . o
noisy: (2) the techniques may not be sufficiently sensitive to We have obtained these results through a deterministic

discriminate random behaviors with subtle differencesChaotic systems modeled by the two-dimensional, IHJM

though they are highly effective in distinguishing between™aP- Since the map has been a paradigm to address many

regular and chaotic behaviors. From this viewpoint, it is un-fundamental issues in chaotic dynamics, we believe our re-

certain whether nonlinear-dynamics based techniques woufHItS are fairly general, at least for low-dimensional chaotic

perform better than the techniques from random signal proSyStems. The basic message is that even for such low-

cessing or linear time-frequency-energy techniques. predidimensional, relatively controllable systems, the predictive

tion of seizure based on EEG or ECoG signals thus remain0Wer of the Lyapunov exponents holds only in noiseless or
largely an open problem. extremely low-noise situations. In realistic situations where

Lyapunov exponents are fundamental invariant quanti@" appreciable but reasonable amount of noise is present, the

ties characterizing a dynamical system. They measure tH&XPOnents are useless for predictions even for low-
exponential growth rates of orthonormal, infinitesimal vec-dimensional, deterministic dynamical systems. _
tors in the phase space. To determine them from time series, | h€ Prain dynamical systems responsible for the epilep-

when the underlying mathematical model is unknown, is ond!C Seizures are much more complicated than low-
of the most challenging tasks in nonlinear dynamics. Whilgdimensional - chaotic  systems or even idealized high-
imensional systems such as coupled map lattices. In

algorithms based on phase-space reconstruction by dela9 ' . > 2"
coordinate embedding have existed for about two decade&Pil€Psy; all information is from a few quen probes, each
ately $610° neuroné’ into the corre-

issues such as the distribution of spurious exponents in lows€NSiNg approxim / _ ,
dimensional chaotic systeffisand the accuracy of the esti- SPOnding neuron ensemble in the brain about which rela-

mated exponenitShave been addressed only recently. In de-ively little is known. The signals so obtain¢&CoG are
terministic chaotic systems, the Lyapunov exponents depen@€Vitably noisy. These considerations suggest that the
on parameter values. This is perhaps one of the main facty@Punov exponents do not appear to have any predictive or
that motivate researchers to explore the possibility of utiliz-d€tective powers for epileptic seizures.

ing the Lyapunov exponents for significant applications in Ve are certainly hopeful that nonli%eaGr dynamics can
biomedical sciences and engineering, despite the comput&ifer useful methodology for understand g°and possibly
tional difficulty. predicting seizures, but the tools would perhaps be based on
In realistic situations Lyapunov exponents can be Com_spatiotemporal information as can be Oﬁere?‘ by mulltichan-
puted only in finite time windows. This is particularly rel- M€l EC0G recordings. E’ogglble candidates include
evant to applications concerning prediction, where a movingYnchronization-based technigiethat has been successful
time window containing a finite number of data points is " dete;gtlng very subtle correlations between biomedical
used and the exponents are computed from this finite daf89na!s:
set. This paper addresses the predictive power of the
Lyapunov exponents in a systematic way. Our results indi-
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