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Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system’s
sensitive dependence on initial conditions. For more than a decade, it has been claimed that the
exponents computed from electroencephalogram~EEG! or electrocorticogram~ECoG! signals can
be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose
of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are
employed.~1! We present qualitative arguments suggesting that the Lyapunov exponents generally
are not useful for seizure prediction.~2! We construct a two-dimensional, nonstationary chaotic map
with a parameter slowly varying in a range containing a crisis, and test whether this critical event
can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be
regarded as a ‘‘control test’’ for the claimed predictive power of the exponents for seizure. We find
that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents
due to finite time computation and noise from the time series. We show that increasing the amount
of data in a moving window will not improve the exponents’ detective power for characteristic
system changes, and that the presence of small noise can ruin completely the predictive power of the
exponents.~3! We report negative results obtained from ECoG signals recorded from patients with
epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is
practically impossible as the brain dynamical system generating the ECoG signals is more
complicated than low-dimensional chaotic systems, and is noisy. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1777831#

The necessity of designing and carrying out controlled
tests to validate a new finding or a new methodology is an
elementary notion in scientific research. For example, to
claim that a new phenomenon has been discovered in a
new material under certain conditions, controls must be
run on some different materials under similar conditions
to show that the phenomenon does not occur. Similarly, if
a new methodology is claimed to be able to predict criti-
cal events based on measured data, the method must be
tested to work for a control system for which some criti-
cal events are designed to occur at known times through
some well understood mechanism. This paper is focused
on seizure prediction with a set of fundamental dynami-
cal invariant quantities, the Lyapunov exponents, com-
puted from measured time series. While there has been a
gradual recognition in the applied nonlinear dynamics
community that these exponents may not be useful for
prediction, efforts have continued that are devoted to uti-
lizing them for prediction in problems of significant inter-
est. In particular, in the area of epilepsy, it has been
claimed for more than a decade that by monitoring the
evolution of the largest Lyapunov exponent calculated

from electroencephalogram„EEG… or electrocorticogram
„ECoG… data, epileptic seizures can be predicted minutes
or even tens of minutes in advance of their clinical onset
„the most recent claim being that this time can be longer
than 80 min….1–4 This claim, if true, would clearly have
significant implications. Our concern is that so far, there
appears to be no systematic effort to assess the predictive
power of Lyapunov exponents. The purpose of this paper
is to report our results of such a study through three
approaches: „1… qualitative arguments, „2… controlled
tests, and „3… tests using real data. All these indicate
strongly that the Lyapunov exponents are generally not
useful for predicting or detecting epileptic seizures. For
the control test, we construct a two-dimensional chaotic
map with a time-varying parameter p„t…. The system is
thus nonstationary and we assume that the range of the
parameter variation contains a crisis at which the chaotic
attractor suddenly increases its size. Assuming that start-
ing from an initial value p0 the parameter varies slowly
with time and passes through the critical point pc at a
later time and eventually comes back top0 . A typical
time series thus consists of segments of small-amplitude
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chaotic oscillations for pËpc and a segment of large-
amplitude oscillations for pÐpc , mimicking EEG or
ECoG signals containing a seizure. Lyapunov exponents
are then computed from a moving window across the
time series to test whether the system change atpÄpc
reflects itself in the computed time-varying exponents
and whether this gradual parameter drift can be detected
in advance of the crisis in order to predict the impending
crisis event. This class of control systems is the simplest
that we can imagine to test the predictive power of
Lyapunov exponents. Our analysis and computations in-
dicate that there are two major factors that can prevent
the exponents from being effective tools to predict char-
acteristic system changes: statistical fluctuations and
noise. As can be expected intuitively, even for low-
dimensional, deterministic chaotic systems, the power of
the Lyapunov exponents to detect parameter drift into
crisis holds only in noiseless or extremely low-noise situ-
ations. In a realistic situation, especially in a system as
high-dimensional and noisy as the brain, it appears un-
likely that the Lyapunov exponents, or related quantities
from nonlinear dynamics such as the correlation dimen-
sion, can be useful for predicting or detecting epileptic
seizures.

I. INTRODUCTION

An outstanding problem in biomedical sciences is to de-
vise techniques to detect and to predict epileptic seizures that
affect about 1% of the population. Seizures are accompanied
by abnormal electrical activities in different regions of the
brain, and can be monitored by electroencephalogram~EEG!
recorded via electrodes attached to the scalp, or by electro-
corticogram~ECoG! from electrodes in direct contact with
the cortex. These recordings provide a window, perhaps the
only practically accessible window at present, through which
the origin and dynamics of epilepsy can be investigated.
Analysis of EEG or ECoG has thus become a topic of para-
mount importance.

An approach that is gaining increasing attention in deal-
ing with these signals is to use techniques from time series
analysis developed in nonlinear dynamics and chaos.1–18

Early evidence suggested that the brain activity generating
the EEG or ECoG signals can be described by low-
dimensional dynamical systems,5–7 which implies that detec-
tion and even dynamical control of epilepsy are possible,
since prediction19–22and control23,24of low-dimensional cha-
otic systems are indeed achievable. However, re-examination
of these early claims indicated a lack of low-dimensional
dynamical structure in brain signals.25,26 Whether a low-
dimensional, deterministic interpretation of the EEG or
ECoG signals is appropriate remains to be a debated issue,
with no consensus in sight. Intuitively, the EEG or ECoG
signals represent the collective behavior of a large number
@approximately 105– 108 ~Ref. 27!# of neurons with compli-
cated interconnections, and it is quite unlikely that the result-
ing behavior would be generally low-dimensional. Despite
this uncertainty, measures useful for characterizing low-
dimensional chaotic systems, such as the correlation dimen-

sion and the Lyapunov exponents, have been utilized to
study the EEG or ECoG signals1–4,8,10,11,15 with various
claims that epileptic seizures can be predicted in
advance.1–4,10,11

The focus of this paper is on Lyapunov exponents, which
are fundamental invariant quantities characterizing the ex-
pansion or contraction of infinitesimal vectors in the phase
space of nonlinear dynamical systems. The existing reports
of prediction of seizures through measures that rely on
Lyapunov exponents1–4 prompt us to systematically investi-
gate their seizure prediction power on ECoG time series.
Unfortunately, our results suggest that this power is quite
sensitive to factors such as random noise.

There have been reports in the literature of a pre-seizure
state characterized a change in the Lyapunov exponent,28 but
no consensus on this topic seemed to have been reached.29

Assuming the existence of this preseizure state, we investi-
gate whether the Lyapunov exponents are sufficiently robust
to noise and sensitive for detecting subtle changes in the
system state that may precede seizures. The goal of this pa-
per is to investigate the predictive power of Lyapunov expo-
nents for nonstationary dynamical systems in the presence of
noise with direct application to epilepsy.~A brief account of
this work has been published recently.30! We use the general
setting of a time series evaluated through data in a moving
window in order to simulate the situation of on-line analysis.
From each window’s data, a phase space is reconstructed by
using the delay-coordinate embedding method,31,32 and the
spectrum of all Lyapunov exponents is computed. Variations
in the values of these exponents are examined, with particu-
lar attention to statistically significant changes which may
indicate a precursor of a critical event such as the seizure
onset.

To run the controls, we construct a low-dimensional,
nonstationary chaotic system, with temporal parameter varia-
tion to produce nonstationarity, which allows the predictive
power of the Lyapunov exponents to be addressed in a con-
trollable way. We design the parameter variation to be a
gradual transition to a critical event with significant changes
in the system characteristics. Before the onset of the critical
event, there are no noticeable, characteristic changes in the
system state. The critical event is analogous to the occur-
rence of a seizure, and the slow parameter change to the
possible preictal precursor to the seizure. Successful detec-
tion of the transition to a preictal state through the Lyapunov
exponents would indicate their predictive power for the sei-
zure.

We have identified two major factors that critically in-
fluence the detective and hence the predictive powers of the
Lyapunov exponents computed from time series:~1! their
statistical fluctuations in finite times and~2! the presence of
noise. Counterintuitively, increasing the size of the moving
window ~and thus the amount of data contained therein! gen-
erally will not improve the detective power of the Lyapunov
exponents in the noiseless case. We also find that the predic-
tive power of the exponents is destroyed completely by noise
of amplitude as small as 1% of the typical variation of the
time series. We also tested ECoG data segments recorded
from patients with epilepsy, systematically varying the key
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parameters in the algorithm, but found no indication that the
evolving behaviors are capable of predicting or detecting sei-
zure. Our basic conclusion is that if the brain’s dynamical
system generating the ECoG signals is more complicated
than a low-dimensional, deterministic system, and if there is
an appreciable but reasonable amount of noise present, it is
extremely unlikely that the Lyapunov exponents will be
more valuable for seizure prediction than simple, linear tech-
niques.

In Sec. II, we provide some intuitive reasonings for the
inability of Lyapunov exponents to predict epileptic seizures.
In Sec. III we describe the implementation of our algorithm
for computing all Lyapunov exponents from time series and
justify its validity by using time series from low-dimensional
chaotic systems for which the Lyapunov exponents are
known. In Sec. IV, we report results of control tests from our
low-dimensional chaotic model and compare them with
those from a simple autocorrelation method. In Sec. V, we
present results of systematic computations of Lyapunov ex-
ponents from test ECoG data sets containing seizures and
address the effects of varying the size of the moving window.
A discussion is presented in Sec. VI.

II. DIFFICULTIES ASSOCIATED WITH LYAPUNOV
EXPONENTS AS A PREDICTIVE TOOL FOR EPILEPTIC
SEIZURES

There are several technical difficulties associated with
the predictive power of the Lyapunov exponents in the con-
text of epilepsy.

(1) Difficulty in estimating Lyapunov exponents from
time series. The spectrum of Lyapunov exponents is among
the most difficult to compute from dynamical systems, par-
ticularly from time series when the system equations are not
available. Despite the existence of numerical algorithms,33–37

important issues such as the distribution of spurious
exponents38 and uncertainties in the estimates of the
exponents39 have begun to be addressed only recently. In
general, the uncertainties can be severe,39 which can have
some effect on the predictive power of the exponents in re-
alistic situations.

If one intends to compute only the largest Lyapunov ex-
ponent, the situation is ‘‘better’’ in the sense that the diffi-
culty with spurious exponents does not exist. Indeed, there
are methods for this task even in the presence of measure-
ment noise of a few percent in magnitude~e.g., by Rosen-
steinet al.40 and by Kantz41!. Although the methods appear
to be robust for data from maps, difficulties can arise for data
from flows such as the Lorenz system.41

(2) Complexity of the brain dynamical system. The
Lyapunov exponents may be useful for prediction if they can
be computed reliably and accurately from short time series.
This can hopefully be accomplished if the underlying dy-
namical system is primarily deterministic and relatively
low-dimensional.33–39 These requirements typically are not
met by the brain dynamical system that generates the EEG or
ECoG signals.

(3) Fundamental relationship between fractal dimension
and Lyapunov spectrum. Our recent analysis of the correla-
tion dimension for ECoG~Ref. 42! suggests strongly that

this measure, while having the capability of tracking sei-
zures, generally is not useful for seizure prediction. We have
shown that it is not superior to simple methods based on
quantities from linear stochastic analysis such as the autocor-
relation. Since the fractal-dimension spectrum and the
Lyapunov exponents of a dynamical system are fundamen-
tally related, it is reasonable to suspect that the exponents
will perform no better than the correlation dimension for the
prediction of seizures.

The last point can be seen more explicitly, as follows.
Let l1>l2>¯>ld be the spectrum of Lyapunov expo-
nents of ad-dimensional dynamical system. It is an elemen-
tary notion in nonlinear dynamics that the information di-
mension is an upper bound for the correlation dimension. In
typical situations, the values of these two dimensions are
close. The information dimensionD1 , on the other hand, is
conjectured by Kaplan and Yorke43 to be the same as the
Lyapunov dimensionDL , which is defined in terms of the
Lyapunov spectrum, as follows:

DL5J1
( i 51

J l i

ulJ11u
, ~1!

where 1<J<d is an integer that satisfies

(
i 51

J

l i.0. (
i 51

J11

l i .

The Kaplan–Yorke conjecture was shown to be exact for
random dynamical systems~e.g., deterministic system under
noise! by Ledrappier44 and Young.45 SinceD2&D1 and since
there is evidence42 that D2 is ineffective for early detection
of seizures, Eq.~1! suggests that the Lyapunov exponents
would not be useful for predicting seizures.

III. LYAPUNOV EXPONENTS FROM TIME SERIES

The Lyapunov exponents characterize how a set of or-
thonormal, infinitesimal distances evolve under the dynam-
ics. For a d-dimensional dynamical system, there ared
Lyapunov exponents. Here we briefly review the issues as-
sociated with computing them from time series.

Consider a dynamical system described by

dx

dt
5F~x!, ~2!

wherexPRd is a d-dimensional vector. Taking the variation
of both sides of Eq.~2! yields an equation governing the
evolution of infinitesimal vectordx in the tangent space at
x(t),

ddx

dt
5

]F

]x
•dx. ~3!

Solving for Eq.~3! gives

dx~ t !5Atdx~0!, ~4!

where At is a linear operator that evolves an infinitesimal
vector from time 0 to timet. The mean exponential rate of
divergence of the tangent vector is then given by
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l@x~0!,dx~0!#5 lim
t→`

1

t
ln

idx~ t !i
idx~0!i , ~5!

wherei•i denotes the length of the vector inside with respect
to a Riemannian metric. In typical situations there exists a set
of d-dimensional basis vectors$ei% ( i 51,...,d), in the fol-
lowing sense:

l i[l@x~0!,ei #. ~6!

Thesel i ’s define the Lyapunov spectrum, which can be or-
dered, as follows:

l1>l2>¯>ld . ~7!

Values ofl i do not depend on the choice of the initial con-
dition x~0!, insofar as it is chosen randomly in a proper
phase-space region.

Computationally, there exist several methods for com-
puting the Lyapunov spectrum from time series.33–37 While
details of these methods are different, they share the same
basic principle. We have implemented the one developed by
Eckmannet al.36 The key is to find approximate Jacobian
matrices along the trajectory in the reconstructed,
m-dimensional phase space by using the delay-coordinate
embedding technique, wherem.2d.31,32 The matrices gov-
ern the evolution of infinitesimal vectors in the tangent
space. Given a trajectory pointxi , we locate a point in a
smalle-neighborhood ofxi and monitor how it evolves under
dynamics, in order to figure out how a small vectordxi at xi

evolves. Suppose after one time unit the small vector be-
comesdxi 11 . We then have

dxi 11'T~xi !•dxi ,

whereT(xi) is them3m Jacobian matrix atxi . In order to
uniquely determine the matrix,m independent, orthonormal
vectors in the neighborhood ofxi are required. Thus it is
necessary to collect a number of points aroundxi . After the
Jacobian matrices are computed, a QR-decomposition proce-
dure can be used to yield the spectrum of Lyapunov
exponents.35,36

Because the Jacobian matrices are meaningful only in
the linear neighborhoods of trajectory points, the sizes of the
neighborhoods must be small enough to ensure that the dy-
namics within are approximately linear. While smaller sizes
in general can yield more accurate matrices, the length of the
time series required will be greater. Roughly, in order to have
a fixed number of points in a small region, as its sizee is
decreased, the required length of the time series increases.
Experience with time series from low-dimensional chaotic
systems suggests thate should be about a few percent of the
size of the attractor. That is, if the time series is normalized
to the unit interval, the choice ofe should be less than 5%
~usually between 1% and 5%!, and greater than the error due
to the digitization precision of the data.

Another issue in the computation of Lyapunov expo-
nents from time series is the inevitable occurrence of the
spuriousexponents. If the invariant set isd-dimensional, and
an m-dimensional embedding space is used (m.2d), there
will be m2d spurious Lyapunov exponents. For conve-
nience, we calll i

e ( i 51,...,m), all m exponents computed

from time series, thepseudo-Lyapunov spectrum. For low-
dimensional dynamical systems,for specific choice of m, and
in a noise-free case there are criteria for distinguishing the
spurious exponents from the true ones.38 For instance, for a
one-dimensional chaotic map where there is a positive
Lyapunov exponentl.0, the (m21) spurious exponents
are 2l,...,ml. For a two-dimensional map~or equivalently,
a three-dimensional flow! where there is a positive and a
negative exponent,l1.0.l2 and for m55, the pseudo-
Lyapunov spectrum is:l1

e'2l1 , l2
e'l1 , l3

e'l11l2 , l4
e

'l2 , and l5
e'2l2 . Unfortunately, at present there are no

general criteria for determining the distribution of spurious
Lyapunov exponents for an arbitrary system with arbitrary
embedding dimension. The existing specific criteria can,
however, be used to test whether the algorithm is coded cor-
rectly.

Based on the procedure described, we have developed a
code for computing all Lyapunov exponents from a time se-
ries. To demonstrate that the code is reliable, we use two
numerical examples:~1! the logistic map:46 xn1154xn(1
2xn) for which the only positive Lyapunov exponent isl
5 ln 2, and~2! the two-dimensional IHJM~Ikeda–Hammel–
Jones–Moloney! map47 that models the dynamics of a non-
linear optical cavity:

zn115A1Bzn expF ik2
ip

11uznu2G , ~8!

where A50.85, B50.9, k50.4, z5x1 iy is a complex
number, andp is a parameter. Forp57.25, the two
Lyapunov exponents arel1'0.36 andl2'20.57.

A time series from the logistic map was computed using
an observed variableyn5sin3(5xn). Three exponents were
found usingm53, delay timet51, and moving window
lengthN510000:l1

e'2.3, l2
e'1.5, andl3

e'0.74, of which
the third is approximately the true exponent, while the first
two are spurious and follow the distribution of spurious ex-
ponents for one-dimensional maps.38 For the IHJM map, we
set the system parameterp57.25, embedding dimensionm
55, delay time t51, and moving window lengthN
510000. The pseudoexponents are approximatelyl1

e'0.71
'2l1 , l2

e'0.33'l1 , l3
e'20.18'l11l2 , l4

e'20.59
'l2 , andl5

e'21.11'2l2 , which are the correct ones for
two-dimensional maps.38 These results indicate that the algo-
rithm can correctly compute the Lyapunov exponents using
finite time series from low-dimensional chaotic systems.

While our algorithm has been tested for maps, difficul-
ties can arise if the data are from flow with unknown sam-
pling rate. In this case, the Jacobian matrices can be such that
the stretching rate per sampling interval is small, causing
different eigendirections in the tangent space to have almost
degenerate expansion/contraction factors. This can lead to
inaccurate estimates of the Lyapunov exponents or spurious
exponents. However, the relevant issue here is how any
changes in the exponent can possibly be used to predict or
detect critical events in the system. In this sense, whether the
estimated exponents are true ones is less important. As we
will show, even for data from map, the Lyapunov exponents
are in general not useful for prediction. EEG or ECoG sig-
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nals are considered flow data. Thus it is reasonable to expect
that the exponents will have no predictive power for sei-
zures.

IV. PREDICTIVE POWER OF LYAPUNOV EXPONENTS
IN LOW-DIMENSIONAL, DETERMINISTIC
SYSTEMS

A. Discrete-time map model

To assess the predictive power of Lyapunov exponents
computed from time series in a controllable way, we seek a
model of deterministic chaotic system with parameter varia-
tions to simulate the nonstationary nature of ECoG data with
seizure. We choose the IHJM map in Eq.~8! and allow tem-
poral variation in the parameterp. To mimic ECoG data with
seizure,48 we choosep from an interval about the nominal
valuepc'7.27, at which there is an interior crisis.49 Specifi-
cally, for p&pc , there is a chaotic attractor of relatively
small size in the phase space, as shown in Fig. 1~a! for p
57.25. At p5pc , the small attractor collides with a pre-
existing, nonattracting chaotic set~chaotic saddle!50 to form
a larger attractor, as shown in Fig. 1~b! for p57.4. For p
*pc , a trajectory spends most its time in the phase-space
region where the original small attractor resides, with occa-
sional visits to the region in which the original chaotic saddle
lies. A typical time series then consists of chaotic behavior of
smaller amplitude most of the time, with occasional, ran-
domly occurring bursts of relatively larger amplitude. As-
sumep0&pc so that the system is in a precrisis state but it is
about to undergo a crisis. Then, the parameter changes
through the critical valuepc , after sometime it comes back
to the original, precrisis valuep0 . During the time interval in
which the parameter changes, we expect to observe charac-
teristically different behavior~e.g., random motion of larger
amplitude, as in the ictal phase in ECoG data!. To be con-
crete, for the IHJM map we choose a time interval of 50000
iterations, and assume the following variation of the param-
eterp:

pn55
p0 , n,t i520000

p01n~p12p0!/5000, t i<n,tm525000

p12n~p12p0!/5000, tm<n,t f530000

p0 , n.t f ,

~9!

where p057.25 andp157.55, are shown in Fig. 2~a!. A
typical time series$xn% is shown in Fig. 2~b!, where we see
a different behavior for 20000,n<30000 during which the
parameter variation occurs. The time series in Fig. 2~b! mim-
ics a segment of ECoG data with a seizure. The average
values of the two Lyapunov exponents in this ‘‘ictal’’ phase
arel1'0.42 andl2'20.63.

We then choose a moving window and explore the pre-
dictability of the parameter change based on the pseudo-
Lyapunov spectrum computed from the finite data set in the
window.

B. Size of moving window and detectability

If the numberN of data points in the moving window is
small, the computed pseudo-Lyapunov exponents will have
large fluctuations, as shown in Figs. 3~a!–3~f! for m55 and
N5630, where Fig. 3~a! shows the nonstationary time series
and Figs. 3~b!–3~f! are the evolutions ofl i

e ( i 51,...,m). We

FIG. 1. For the IHJM map in Eq.~8!, ~a! a relatively small chaotic attractor
before the interior crisis forp57.25, ~b! the larger attractor after the crisis
for p57.4.

FIG. 2. For the IHJM map in Eq.~8!, ~a! parameter variation as described
by Eq. ~9!, and~b! a typical time series which mimics a segment of ECoG
data with a seizure.

FIG. 3. For the IHJM map in Eq.~8!, m55 andN5630, ~a! nonstationary
time series,~b–f! temporal evolution ofl i

e for i 51,...,5,respectively.
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see that, comparing with the asymptotic values of the two
Lyapunov exponents (l1'0.42 andl2'20.63), the second
and the fourth (l2

e andl4
e) are approximately the true expo-

nents, while the remaining are spurious ones. The vertical
dashed line indicatest i , the time when the control parameter
p starts to change. The parameter change is somewhat re-
flected inl1

e . For the average change inl1
e to be statistically

significant, where the change should be greater than the av-
erage amount of fluctuation, the time required is aboutDt1

'700 aftert i for l1
e , as can be seen in Fig. 4~a!, a blowup of

part of Fig. 3~b! aroundt i . Other exponents show no statis-
tically discernible changes aftert i , as represented by the
behavior ofl4

e in Fig. 4~b!, which is a blowup of part of Fig.
3~e!. One question is whether increasingN would help re-
duceDt.

Consider the situation whereN is large. Given this finite
time N, we imagine choosing a large number of initial con-
ditions and compute the Lyapunov spectra for all the result-
ing trajectories of lengthN. The exponents computed in fi-
nite time are effectively random variables whose histograms
can be constructed. For trajectories on a chaotic attractor, the
typical distribution of a finite-time Lyapunov exponentlN

is51

P~lN ,N!'FNG9~ l̄ !

2p
G1/2

expF2
N

2
G9~ l̄ !~lN2l̄ !2G ,

~10!

where l̄ is the asymptotic value oflN in the limit N→`,
and G(x) is a function satisfyingG(l̄)50, G8(l̄)50, and
G9(l̄).0. For largeN, the standard deviation oflN is

slN
;

1

AN
. ~11!

If the moving time window is located completely int,t i ,
the average Lyapunov exponent is

lN5
1

N (
i 51

N

l (1)~ i !, ~12!

wherel (1)( i ) is the time-one Lyapunov exponent fort,t i .
Now consider a moving time window across the critical time
t i , whereN1 points are beforet i , N2 points are after, and
N11N25N. The computed exponent is

lN8 5
1

N F(
i 51

N1

l (1)~ i !1(
i 51

N2

l (2)~ i !G , ~13!

wherel (2)( i ) is the time-one Lyapunov exponent fort.t i .

Let l (̄1) andl (̄2) be the asymptotic values of the Lyapunov
exponent fort,t i and t.t i , respectively. IfN1@1, N2@1,
N1;N, andN2;N, we can write

(
i 51

N

l (1)~ i !5Nl (̄1)1O~1/AN!, ~14!

(
i 51

N1

l (1)~ i !5N1l (̄1)1O~1/AN1!'N1l (̄1)1O~1/AN!,

(
i 51

N2

l (2)~ i !5N2l (̄2)1O~1/AN2!'N2l (̄2)1O~1/AN!,

where O(1/AN) is a number on the order of 1/AN. The
change in the computed time-N exponent is thus

DlN5lN2lN8

'
1

N
@Nl (1)2N1l (1)2N2l (2)#1O~1/AN!

5
N2

N
~l (1)2l (2)!1O~1/AN!;

N2

N
. ~15!

For the change in the Lyapunov exponent to be statistically
significant and thus detectable, we requireDlN*slN

, which
gives the time required to detect the change,

Dt5N2*AN. ~16!

We see that increasing the size of the moving window in fact
causes an increase in the time required to detect a change in
the Lyapunov exponent. The increase is, however, incremen-
tal as compared to the increase inN and therefore may not be
easily observed. In numerical experiments, we will not see
an apparent decrease inDt whenN is increased.

FIG. 4. ~a,b! Blow-ups of Figs. 3~b! and 3~e!, respectively.
FIG. 5. For the IHJM map in Eq.~8!, m55 andN51995,~a! nonstationary
time series,~b–f! temporal evolution ofl i

e for i 51,...,5,respectively.
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Figures 5~b!–5~f! show, for m55 and N51995, the
temporal evolution ofl i

e ( i 51,...,5), respectively. A dis-
cernible change in the exponents can be seen fort*t i , par-
ticularly in l1

e andl4
e . Figures 6~a! and 6~b! show enlarge-

ments of the evolution ofl1
e andl4

e aroundt i , respectively,
where we see that the time required for detection of the sys-
tem change isDt1'100 for l1

e andDt4'700 for l4
e . As N

is increased, the level of fluctuations in the Lyapunov expo-
nents is reduced but the detection time is not reduced, as
shown in Figs. 7~a!–7~e!, numerically determined detection
times versusN for l i

e ( i 51,...,5), respectively. In all cases,
the detection time shows a slight increase asN is increased,
which is consistent with our analysis.

C. Predictive power of Lyapunov exponents

Our results in Sec. IV B indicate that while the critical
change of the system state can be detected through the
pseudo-Lyapunov spectrum from time series, it is not clear
whether the change can bepredictedin advance. To goal of
our control test is to assess, for the model system, whether
Lyapunov exponents possess any predictive power for criti-
cal change of the system state.

We conceive that the onset of seizure corresponds to the
transition of the system through a critical state. In order to be
able to predict the seizure in advance, it may be assumed that
the state of system undergoes slow changes before seizure
onset. The question is whether any state change before the
critical point ~onset of the seizure! can be detected through
the pseudo-Lyapunov exponents. Motivated by this, we con-
sider the following relatively simple situation: Suppose a
critical event occurs in which the system bifurcates to a char-
acteristically different state. However, before the event, the
parameter changes smoothly toward the critical bifurcation,
although perhaps not at the same rate as that at which it
passes through the critical point. For the IHJM map, we thus
consider the scheme of parameter change, as shown in Fig.
8~a!, where initially the parameterp is fixed at a constant
value (p57.1) below the critical pointpc . As p passes
throughpc at aboutn*20000, a critical event~interior cri-
sis! occurs. Before this,p is assumed to change at a slower
rate for 10000,n,20000. The entire time interval of inter-

est is taken to be 40000 iterations. If we measure the time
series before the critical point there is no apparent character-
istic change, despite the slow change in parameter,52 as
shown in Fig. 8~b!. This setting thus represents an appropri-
ate test bed for the predictive power of pseudo-Lyapunov
exponents for critical events.

We proceed by choosing a moving window containingN
data points and examining any possible changes in the
pseudo-Lyapunov spectrum. WhenN is small, the large fluc-
tuations in the exponents render undetectable the slow pa-
rameter changes preceding the onset of crisis. This indicates
that the crisis cannot be predicted whenN is small. AsN is
increased, the fluctuations are reduced so that the system
change preceding the crisis can be detected, as shown in the
behaviors ofl i

e in Figs. 9~b!–9~f!, respectively, form55
andN53981. The change indeed can be detected at timen
*10000, which far precedes the crisis.While this seems to
indicate that the exponents have the predictive power for
crisis, we find that the presence of small noise can wipe out
this power completely.

FIG. 6. ~a,b! Enlargements of Figs. 5~b! and 5~e!, respectively. The respec-
tive detection times areDt1'100 andDt4'700.

FIG. 7. For the IHJM map in Eq.~8! andm55, ~a–e! detection timesDt i

for l i
e ( i 51,...,5, respectively! versusN.

FIG. 8. Our scheme for testing the predictive power for critical event of
Lyapunov exponents from time series, utilizing the IHJM map.~a! Param-
eter variation with time, where it changes slowly before the interior-crisis
point, and ~b! a typical time series that shows no characteristic change
before the crisis, despite the parameter change.
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To simulate noise, we add two termsDjn
x andDjn

y to the
x- and y-equations of the IHJM map, whereD is the noise
amplitude, andjn

x andjn
y are independent random variables

uniformly distributed in @21,1#. Figures 10~b!–10~f!,
11~b!–11~f!, and 12~b!–12~f! show, for m55 and N
53981, temporal evolutions of the five pseudo-Lyapunov
exponents for noise levelsD51022.6, D51022.0, and D
51021.0, respectively. Note that the range of the time series
from the IHJM map is about 2.0, so these noise levels
roughly correspond to 0.1%, 0.5%, and 5% of the variation
of the dynamical variable, which can be considered as small.
We observe that there is a progressive deterioration of the
predictive power of the exponents, as the parameter change
preceding the crisis can no longer be detected at the noise
level of about D51022.0. For relatively larger noise@D
51021.0 in Figs. 12~b!–12~f!#, even the critical event~crisis!
itself cannot be detected through the variation of these expo-
nents. These results suggest that in practical situations where

small noise is inevitable, one should not expect the
Lyapunov exponents computed from time series to have any
predictive power, as it appears unlikely that their variations
are statistically significant enough to allow for detection of
system change preceding a critical event.

D. Comparison with autocorrelation

To provide a means for comparison of the Lyapunov
exponents’ predictive abilities, we compute from time series
x(t) an approximation of the decay of the autocorrelation
envelope,53

a5
1

M (
k51

M

uRku1/k, ~17!

where

FIG. 9. ~a! Scheme of parameter variation with time.~b–f! Temporal evo-
lutions ofl i

e ( i 51,...,5) form55 andN53981, in the absence of noise. In
this case, the parameter change preceding the crisis can be detected through
the pseudo-Lyapunov exponents.

FIG. 10. ~a! Scheme of parameter variation with time,~b–f! temporal evo-
lutions of l i

e ( i 51,...,5) for m55, N53981, and noise amplitudeD
51022.6 ~corresponding to about 0.1% of the variation of the time series!.
At this noise level the crisis arguably can be predicted in advance~through,
for example,l3

e , l4
e , andl5

e ).

FIG. 11. ~a! Scheme of parameter variation with time,~b–f! temporal evo-
lutions of l i

e ( i 51,...,5) for m55, N53981, and noise amplitudeD
51022.0 ~corresponding to about 0.5% of the amplitude of the measured
data!. At this noise level the crisis cannot be predicted in advance because
the parameter change preceding the crisis cannot be detected.

FIG. 12. ~a! Scheme of parameter variation with time,~b–f! temporal evo-
lutions of l i

e ( i 51,...,5) for m55, N53981, and noise amplitudeD
51021.0. At this noise level, which is about 5% of the amplitude of the
measured time series, even the crisis itself cannot be detected through the
exponents.
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Rt5
(x~ t !x~ t1t!

A(x2~ t !(x2~ t1t!
, ~18!

andM56. Using the same model as in Fig. 8, we computea
on sliding windows of length 4000 points with an overlap of
3960 points. The noise-free case is shown in Fig. 13~c!. Both
the parameter drift preceding the crisis and the crisis itself
are clearly visible in thea time series. In contrast to the
Lyapunov exponents, the autocorrelation’s ability to detect
this drift appears robust even under moderate noise (D
51021, or 5%!, as shown in Fig. 13~d!. For this noise value,
the Lyapunov spectrum could not even detect the crisis as
shown in Fig. 12.

We recently performed a comparison of the autocorrela-
tion and the correlation dimension,42 and found that the two
measures tend to track each other in seizure, though neither
demonstrated any predictive ability. Before and after the sei-
zure, the value of the correlation dimension is approximately
constant, but it fluctuates significantly during the seizure,
which we showed indicates a dramatic loss and gain of the
autocorrelation, alternating in time. The implication, as in the
present case, is that traditional analyses of stochastic pro-
cesses or linear time-frequency analyses may be as effective
~if not more effective! for analysis of ECoG signals, includ-
ing seizure prediction.

E. Continuous-time model

While we used a discrete-time map model to illustrate
the predictive and detective powers of the Lyapunov expo-
nents, a question is what happens to continuous-time sys-
tems. A related issue concerns the nature of the bifurcation.
In particular, in our discrete-time map model, the critical
event that we used to model seizure is interior crisis, which
is a global bifurcation. One might argue that epileptic sei-
zures may be a local bifurcation. Indeed, for an interior cri-
sis, the properties of the attractor before the bifurcation are
generally not affected by the fact that the crisis will happen.
In particular, the sensitivity of the dynamical invariants of
the attractor such as the dimensions, Lyapunov exponents,
and entropies to the control parameter is about the same in
the parameter regime before the crisis. For a local bifurca-
tion, for instance, a Hopf bifurcation at which a stable steady
state becomes unstable and a stable limit cycle is born, the
Lyapunov exponent may be a stronger indicator for the bi-
furcation. To address these issues we now consider a
continuous-time model with a Hopf bifurcation and investi-
gate the sensitivity of Lyapunov exponents to parameter
changes in the presence of noise.

We use the following two-dimensional canonical model
for Hopf bifurcation, under white noise of amplitudeD:

dx

dt
52y1x@a~ t !2x22y2#1Dj1~ t !,

dy

dt
5x1y@a~ t !2x22y2#1Dj2~ t !, ~19!

wherea(t) is a control parameter that can vary with time,
andj1(t) andj2(t) are independent Gaussian random vari-
ables of zero mean and unit variance with the following
properties: ^j1(t)j1(t8)&5d(t2t8), ^j2(t)j2(t8)&5d(t
2t8), and^j1(t)j2(t8)&50. Whena(t) is constant, the sto-
chastic processesx(t) andy(t) are stationary; otherwise they
are nonstationary. For the deterministic system (D50), if
a,0, the attractor of the sytem is a steady state defined by
x50 andy50. The Hopf bifurcation occurs atac50 where
for a.0, the steady state becomes unstable and a limit-cycle
attractor, given byx(t)5a cost and y5a sint, becomes
stable. The period of the oscillation (T0[2p) thus defines
the natural time scale of the system. To mimic a seizure, we
examine a time interval of 9000 cycles of oscillation, which
corresponds to actual time ofT59000T0 , and divide this
time into three intervals: (0,T1), (T1 ,T2), and (T2 ,T). The
parameter variations in these intervals are chosen such that in
the first and third intervals the attractor of the system is the
steady state (x50 andy50) but in the middle interval the
attractor is the limit-cycle oscillator. In particular, we assume

FIG. 13. ~a! Parameter variation in time.~b! Time series ofx in the absence
of noise (D50). ~c! Plot of a computed in 4000 point windows, overlapped
by 3960 points computed on the time series in~b!. ~d! The same as in~c!
except that there is a noise of amplitudeD51021.
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a~ t !55
a01~a12a0!t/T1 for 0,t,T1 ,

a112~a22a1!~ t2T1!/~T22T1! for T1,t,T11~T22T1!/2,

a222~a22a1!@ t2T12~T22T1!/2#/~T22T1! for T11~T22T1!/2,t,T2 ,

a12~a12a0!~ t2T2!/~T2T2! for T2,t,T,

~20!

as shown in Fig. 14~a! for a0520.25, a150.0, a251.0,
T154000T0 , and T255000T0 . A typical time series from
this nonstationary system is shown in Fig. 14~b!, where the
noise amplitude isD51022. Analogous to the terms of epi-
lepsy, the three intervals of time can be conveniently called
preictal, ictal, and postictal phases, respectively. For the sta-
tionary system@a(t)5a5constant#, the theoretical values of
the two Lyapunov exponents fora,0 are l15l25a,0.
After the limit-cycle attractor is born via the Hopf bifurca-
tion atac , the exponents arel150 andl2522a,0. Thus,
for the nonstationary system as in Figs. 14~a! and 14~b!, the
theoretical value of the largest Lyapunov exponent is nega-
tive for the preictal and postictal phases, while it is zero for
the ictal phase.

To obtain time series from the model~19!, we use the
standard second-order, Heun’s method for solving stochastic
differential equations.54 In particular, for the system in Figs.
14~a! and 14~b!, we use the step sizeh50.01 in numerical
integration and generate time seriesx(t) @or y(t)] using the
sampling interval of ts540h, corresponding to approxi-
mately 16 points per oscillating period. Lyapunov exponents
are then computed from the time series using moving time
window of width Dt'636T0 , spaced attw'12.7T0 . The
delay time used ist'0.95T0 ~approximately one cycle of
the natural oscillation! and the embedding dimension is cho-
sen to bem53 ~considering that the steady-state and limit-
cycle attractors are only zero- and one-dimensional, respec-
tively!. Due to noise, for the preictal and postictal phases, the
first two Lyapunov exponents from the moving windows are
positive, which are spurious, as shown in Figs. 14~c! and

14~d!. However, as indicated in these plots, in the ictal phase
where theoretically the largest exponent is zero, the algo-
rithm seems to be able to capture the correct value. There is
thus a relatively sharp change in the estimated value of the
exponents shortly after the onset of the ictal phase, indicating
that the exponents are capable of detecting the local, Hopf
bifurcation in spite of the presence of noise. Note that, how-
ever, the noise level for Figs. 14~c! and 14~d! are relatively
small: about 1% of the amplitude of the oscillation in the
ictal phase. As the time series becomes more noisy, as shown
in Fig. 15~b! for D50.1 ~about 10% of the oscillation in the
ictal phase!, the ability for the Lyapunov exponents to detect
even this local bifurcation deteriorate, as shown in Figs.
15~c! and 15~d!.

Our results thus demonstrate that Lyapunov exponents
from time series are capable of detecting simple, local bifur-
cations in the presence of noise. However, as we described,
this task of detection can also be accomplished by using
measures from traditional stochastic analysis such as the au-
tocorrelation. Taking into account the computational com-
plexity, Lyapunov exponents are arguably disadvantageous
for detection. On the other hand, ECoG signals typically
come from a large number of neurons@approximately
105– 108 ~Ref. 27!#. It may not be suitable to regard epileptic
seizures as being caused by some local bifurcations. This
again suggests that Lyapunov exponents are not useful for
predicting or detecting seizures.

V. TESTS USING ECoG DATA

The data used here were collected from patients with
pharmaco-resistant seizures who underwent evaluation for

FIG. 14. For the nonstationary, continuous-time model~19! with a local
Hopf bifurcation under noise of amplitudeD50.01, ~a! the parameter varia-
tion, ~b! the noisy time seriesx(t), and~c,d! the first two Lyapunov expo-
nents computed from moving window over the time series, which appear to
be able to detect the bifurcation. See text for simulation parameters.

FIG. 15. ~a–d! The same as in Figs. 14~a!–14~d!, respectively, except that
the noise level is nowD50.1. The ability for the Lyapunov exponents to
detect even this local bifurcation apparently deteriorate, as compared with
the case of lower noise in Fig. 14.
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epilepsy surgery at the University of Kansas Comprehensive
Epilepsy Center. The data were recorded via depth electrodes
~Ad-Tech!, implanted stereotaxically into the amygdalo-
hippocampal region. Correctness of the placement is as-
sessed with MRI. The signal is sampled at a rate of 240 Hz,
amplified to a dynamic range of6300 mV, and digitized to
10 bits precision with 0.59mV/bit using commercially avail-
able devices~Nicolet, Madison, WI!. The recording was
deemed of good technical quality and suitable for analysis.
For convenience, the data set is linearly normalized to the
unit interval. We have tested 11 seizures from two patients,
all indicating a lack of predictive power of the Lyapunov
exponents. In the following we present results with one sei-
zure.

When computing the pseudo-Lyapunov exponents from
ECoG time series, there are several computational param-
eters that can affect the results. These are: the lengthN of the
moving window, the embedding dimensionm, the delay time
t, and the sizee of the linear neighborhood. We find that the
computed exponents are relatively robust against variations
in t ande, insofar as they are chosen properly. The choice of
the delay timet is quite straightforward. The empirical cri-
terion is that adjacent time-delayed components should serve
as independent variables. Ift is too small, the adjacent com-
ponents will be too correlated for them to serve as indepen-
dent coordinates. Ift is too large, then neighboring compo-
nents are too uncorrelated. Empirically, given an ECoG
signal x(t), one choosest such thatRt51/e.53 We fix t
51/12 s. Fore, we find that computational results vary little
when it is chosen to be around 0.02~2% of the amplitude of
the ECoG signal!. We thus fixe50.02. In what follows, we
will systematically examine the effects of varying the two
key parameters:N andm.

Intuitively, shorter time series result in larger fluctua-
tions in the computed Lyapunov exponents. As we increase
the length of the moving window, we expect to see an appar-
ent decrease in the level of fluctuations. To demonstrate this
effect, we fix the embedding dimension atm55. Figure
16~a! shows the segment of ECoG time series of 600 s con-
taining a seizure, which occurs att'300 s. Figures 16~b!–

16~f! show, for a moving window of lengthDt'4.17 s~cor-
responding toN51000 data points!, the five computed
Lyapunov exponents versus time, where the time is recorded
at the right edge of the window. All exponents exhibit sig-
nificant fluctuations, which are reduced asN is increased, as
shown in Figs. 17~b!–17~f! for Dt'13.18 s~corresponding
to N5103.553162), in Figs. 18~b!–18~f! for Dt'52.5 s
~corresponding toN5104.1512589), and in Figs. 19~b!–
19~f! for Dt'131.8 s~corresponding toN5104.5531623).
Despite the reduction in the fluctuations of the pseudo-
Lyapunov exponents, there is no indication that any statisti-
cally significant change in these exponents occur before, dur-
ing, and after the seizure, suggesting that the computed
exponents are not capable of distinguishing among presei-
zure, seizure, and postseizure phases, let alone being able to
predict the occurrence of the seizure in advance.

There is thus no indication that the temporal behavior of
the pseudo-Lyapunov exponents~Figs. 16–19! predicts the
seizure.

VI. DISCUSSIONS

Successful and robust prediction of epileptic seizures is
challenging. Our experience suggests that a systematic and
generally applicable methodology for seizure prediction is

FIG. 16. ~a! A segment of ECoG time series containing a seizure which
starts at approximatelyt5300 s and lasts for about 80 s.~b–f! For m55
andDt'4.17 s~corresponding toN51000 data points!, the five computed
Lyapunov exponents versus time, where time is counted as the end of the
moving window.

FIG. 17. ~b–f! For m55 and Dt'13.18 s ~corresponding toN5103.5

53162), the five computed Lyapunov exponents versus time.

FIG. 18. ~b–f! For m55 and Dt'52.5 s ~corresponding toN5104.1

512589), the five computed Lyapunov exponents versus time.
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still lacking, despite existing claims.1–4,10,11 This is espe-
cially true when techniques designed for low-dimensional
nonlinear dynamical systems are used. There are two funda-
mental reasons for this:~1! EEG or ECoG signals are com-
plicated, nonlinear, nonstationary, high-dimensional and
noisy; ~2! the techniques may not be sufficiently sensitive to
discriminate random behaviors with subtle differences,
though they are highly effective in distinguishing between
regular and chaotic behaviors. From this viewpoint, it is un-
certain whether nonlinear-dynamics based techniques would
perform better than the techniques from random signal pro-
cessing or linear time-frequency-energy techniques. Predic-
tion of seizure based on EEG or ECoG signals thus remains
largely an open problem.

Lyapunov exponents are fundamental invariant quanti-
ties characterizing a dynamical system. They measure the
exponential growth rates of orthonormal, infinitesimal vec-
tors in the phase space. To determine them from time series,
when the underlying mathematical model is unknown, is one
of the most challenging tasks in nonlinear dynamics. While
algorithms based on phase-space reconstruction by delay-
coordinate embedding have existed for about two decades,
issues such as the distribution of spurious exponents in low-
dimensional chaotic systems38 and the accuracy of the esti-
mated exponents39 have been addressed only recently. In de-
terministic chaotic systems, the Lyapunov exponents depend
on parameter values. This is perhaps one of the main facts
that motivate researchers to explore the possibility of utiliz-
ing the Lyapunov exponents for significant applications in
biomedical sciences and engineering, despite the computa-
tional difficulty.

In realistic situations Lyapunov exponents can be com-
puted only in finite time windows. This is particularly rel-
evant to applications concerning prediction, where a moving
time window containing a finite number of data points is
used and the exponents are computed from this finite data
set. This paper addresses the predictive power of the
Lyapunov exponents in a systematic way. Our results indi-
cate that there are two major factors that can prevent the
Lyapunov exponents from being effective to predict charac-
teristic system changes:statistical fluctuations and noise.

It is known51 in nonlinear dynamics that finite-time

Lyapunov exponents can exhibit random fluctuations@Eq.
~10!#, which present a serious obstacle to their predictive
power because any changes in the exponents must be larger
than the fluctuations in order for them to be indicative of
system changes. Increasing the size of a moving window will
not decrease the detection time for system changes, as we
have shown in this paper. This implies that any characteristic
change of the system must be significant enough for it to be
detected through the Lyapunov exponents, regardless of the
size of the finite data set contained in the moving window,
insofar as it is statistically meaningful.

We have also demonstrated that relatively small param-
eter changes in the system, which precede a critical event,
can indeed be detected through the changes in the Lyapunov
exponents. Thus, if the small system changes are regarded as
‘‘precursors’’ of the critical event, its occurrence can indeed
be predicted in advance. However, this predictive power of
the Lyapunov exponents can be ruined completely by noise
with magnitude as small as less than 1% of the variation of
the system variable. As the noise level is increased to about
5% of the variation, even the detective power of the expo-
nents is lost.

We have obtained these results through a deterministic
chaotic systems modeled by the two-dimensional, IHJM
map. Since the map has been a paradigm to address many
fundamental issues in chaotic dynamics, we believe our re-
sults are fairly general, at least for low-dimensional chaotic
systems. The basic message is that even for such low-
dimensional, relatively controllable systems, the predictive
power of the Lyapunov exponents holds only in noiseless or
extremely low-noise situations. In realistic situations where
an appreciable but reasonable amount of noise is present, the
exponents are useless for predictions even for low-
dimensional, deterministic dynamical systems.

The brain dynamical systems responsible for the epilep-
tic seizures are much more complicated than low-
dimensional chaotic systems or even idealized high-
dimensional systems such as coupled map lattices. In
epilepsy, all information is from a few dozen probes, each
sensing approximately 105– 108 neurons27 into the corre-
sponding neuron ensemble in the brain about which rela-
tively little is known. The signals so obtained~ECoG! are
inevitably noisy. These considerations suggest that the
Lyapunov exponents do not appear to have any predictive or
detective powers for epileptic seizures.

We are certainly hopeful that nonlinear dynamics can
offer useful methodology for understanding55,56and possibly
predicting seizures, but the tools would perhaps be based on
spatiotemporal information as can be offered by multichan-
nel ECoG recordings. Possible candidates include
synchronization-based techniques57 that has been successful
in detecting very subtle correlations between biomedical
signals.58
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FIG. 19. ~b–f! For m55 and Dt'131.8 s ~corresponding toN5104.5

531623) the five computed Lyapunov exponents versus time.
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