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Noise-induced enhancement of chemical reactions in nonlinear flows
Zonghua Liu, Ying-Cheng Lai,a) and Juan M. Lopez
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Motivated by the problem of ozone production in atmospheres of urban areas, we consider chemical
reactions of the general type:A1B→2C, in idealized two-dimensional nonlinear flows that can
generate Lagrangian chaos. Our aims differ from those in the existing work in that we address the
role of transient chaos versus sustained chaos and, more importantly, we investigate the influence of
noise. We find that noise can significantly enhance the chemical reaction in a resonancelike manner
where the product of the reaction becomes maximum at some optimal noise level. We also argue that
chaos may not be a necessary condition for the observed resonances. A physical theory is formulated
to understand the resonant behavior. ©2002 American Institute of Physics.
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The interplay between noise and nonlinear dynamics has
long been a topic of tremendous interest in statistical
physics. While noise can be detrimental in many situa-
tions, it can also be beneficial through, for example, the
mechanisms of stochastic and coherence resonances. R
cently, a new area of interdisciplinary science has
emerged: active processes in nonlinear flows. Such pro
cesses can be chemical or biological, and are believed
be relevant to a large number of important problems in a
variety of areas. Our work focuses on the role of noise in
active nonlinear processes. In particular, we investigate
how noise influences a general type of chemical reaction
supported on a chaotic flow. To be as realistic as possible
we take into consideration important physical effects
such as particle inertia and finite size. Our finding is that
noise can enhance the rate of a chemical reaction, in a
manner similar to that of stochastic resonance. We pro-
vide numerical results and also a physical theory, sug-
gesting that at a fundamental level, the resonant behavior
is due to the interaction between noise and nonlinearity
of the particle „Lagrangian… dynamics. It is hoped that
this preliminary work will stimulate further research in
the exciting area of stochasticity and active nonlinear dy-
namics.

I. INTRODUCTION

In this paper we investigate the role of noise in the d
namics of chemical reactions in bounded flows that can g
erate Lagrangian chaos. Our motivation comes from the
sire to understand and quantify the dynamical proces
governing the conversion of pollutants, such as those em
from road traffic or industrial plants in major urban areas,
toxic agents that post a significant threat to public hea
The conversion process is generally accomplished by a c
of chemical reactions supported on atmospheric flows

a!Also at Departments of Electrical Engineering and Physics, Arizona S
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can be either regular, chaotic, or even turbulent. A deta
account of the problem, which includes an accurate mode
of the atmospheric flows under various boundary conditio
and assessment of the physical chemistry associated with
reactions, is extraordinarily sophisticated and is beyond
scope of this study. To gain understanding, our approach
investigate the dynamics of anidealizedclass of chemical
reactions using anidealizedmodel of nonlinear flow in a
simplified manner. In particular, we will investigate chemic
reactions of the form

A1B→2C, ~1!

where bothA andB are reactants,C is the product, and the
reactions are assumed isothermal and to occur on a
scribed nonlinear flow in two dimensions that can supp
Lagrangian chaos, specifically containing chaotic attract
or nonattracting chaotic saddles in the phase space. The
goal of this paper is to understand how the concentration
the productC is affected when the Lagrangian dynamics
the flow are regular or chaotic,under the influence of noise.
Our principal result is that noise can significantly enhan
the chemical reaction, in a resonancelike manner where
product of the reaction increases and then decreases a
noise amplitude is increased, and reaches a maximum
some optimal noise level. In fact, the resonancelike beha
can occur regardless of whether the asymptotic attracto
chaotic or regular. Thus, in a realistic situation where nois
present, to distinguish between chaotic and regular moti
is not important for the particular problem of chemical rea
tion in flows.

The physical-chemistry background of our problem is
follows.1 When fossil fuels are burned, a variety of pollutan
are emitted into the Earth’s troposphere, i.e., from grou
level up to about 15 km. The pollutants emitted are of tw
classes, hydrocarbons~e.g., unburned fuel! and nitric oxides.
Nitrogen oxides are formed during high-temperature co
bustion processes from the oxidation of nitrogen in the air
fuel. The principal source of nitrogen oxides is road traffi
and their concentrations are therefore greatest in urban a

te
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where traffic is heaviest. When these pollutants build up
sufficiently high levels, a chain reaction occurs from th
interaction with sunlight, producing photochemical pollu
ants such as ozone. Ozone is a powerful oxidizing agent,
a toxic gas. Since ozone itself is photodissociated~split up by
sunlight! to form free radicals, it promotes the oxidatio
chemistry, and so catalyses its own formation~i.e., it is an
autocatalyst!. Consequently, high levels of ozone are gen
ally observed during hot, still, sunny summer-time weat
in locations where the air mass has previously collec
emissions of hydrocarbons and nitrogen oxides~e.g., urban
areas with traffic!. Because of the time required for chemic
processing, ozone formation tends to be downwind of po
tion centers. The resulting ozone pollution or summer-ti
smog may persist for several days and be transported
long distances.

Here, we do not attempt to model the complicat
chemical reactions described above, but rather impleme
very idealized model of the chemistry. The air pollutio
problem involves dozens of species and reactions, here
only consider three species and a single reaction. The co
spondence between the chemicals in the model reaction~1!
and the air pollution problem may be viewed as the follo
ing: A, B, and C represent nitrogen oxides, hydrocarbon
and ozone, respectively, and the reaction simulates the
cess of ozone production via the reaction between nitro
oxides and hydrocarbons.

Chemical reactions, or active processes,2 in chaotic hy-
drodynamic flows were first addressed in the pioneer
works by Muzzio and Ottino3 and by Metcalfe and Ottino.4

The problem has since attracted an increasing amoun
attention.5–10 Recent studies9,10 hint that active processes i
chaotic flows may be highly relevant to the problem of ozo
depletion associated with chlorine deactivation, which can
caused by hydrodynamic stirring and mixing.11,12The studies
by Toroczkaiet al.9 on active processes in open chaotic h
drodynamic flows indicate that the underlying fractal stru
ture of the chaotic invariant set may account for the obser
filamental intensification of activity in environmenta
flows.11,12Active processes in chaotic flows are also conj
tured to be relevant to the important problem of species
existence in ecology.13 In all these works, the reactants a
assumed to be massless passive point particles. More
cently, the effects of inertia and finite size on active parti
dynamics in bounded hydrodynamic flows with tim
periodic forcing have been investigated14 for the coalescence
type of reaction:B1B→B. Because of the coalescent natu
of the reaction, the number of particles decreases in tim
principal result from Ref. 14 is that the decay in the parti
density n(t) obeys the universal scaling law:n(t);t21.
Technically, our study differs from previous studies in th
we focus on the influence of noise on a more general typ
chemical reaction~1!, and incorporate both particle inerti
and finite size.

It should be noted that noise-induced resonance has
well known in nonlinear dynamics and statistical physi
There are two major phenomena: stochastic resonance15–17

and coherence resonance.18–21 Broadly speaking, stochasti
resonance means that performances of the system, su
Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
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the response to periodic signals, can be enhanced by
noise and be made optimal at certain nonzero noise lev
This phenomenon is rather counterintuitive, but the mec
nism lies in the complex interplay between nonlinearity a
stochasticity.15–17 Coherence resonance, on the other ha
means that the temporal regularity of signals from a non
ear system can be enhanced by noise. The enhanceme
chemical production by noise investigated in this paper
thus a stochastic resonant phenomenon. As we will desc
later, the mechanism responsible for the enhancement
fact a coherence resonance with respect to the dynam
behavior of particle trajectories. Our work thus represents
interesting example where a coherence resonance lead
stochastic resonances.

The rest of the paper is organized as follows. In Sec.
we describe our model of deterministic flow. In Sec. III, w
present numerical results demonstrating the role of noise
the resonant behavior. Section IV gives a physical theory
the observed resonance. A discussion is presented in Se

II. MODEL

The chemical reaction~1! gives a low-order simulation
of ozone production via the reaction between nitrogen oxi
and hydrocarbons. To gain insight, here we consider
simple situation where these active processes take p
within a prescribed time-periodic flow. A common theoretic
approach is to assume that the reactants are massless
particles advected by the flow, and as such the propertie
the flow are unchanged by the particles.9 More realistically,
the reactants have both inertia and buoyancy. These phy
effects can be summarized as the force exerted on the r
tants by the undisturbed flow~the buoyancy force!, the
Stokes drag, the added mass effect, and ot
corrections.22–24 A mathematical model incorporating a
these effects will in general be quite sophisticated.

To make analysis and numerical computation feasib
we consider two-dimensional flows. Letu be the velocity of
a fluid element, it can be described by a stream funct
c(x,y,t) as u5¹3C, where C5(0,0,c). The day/night
cycle in the process of ozone production can be modele
an external periodic temporal forcing. We choose the follo
ing stream function that has been utilized as a simple mo
to describe the distribution of plankton caused by the cellu
motion induced by winds in lakes and oceans:25

c~x,y,t !5~11k0 sin~v0t !!U0L sin~x/L ! sin~y/L !,
~2!

whereU0 is the velocity amplitude,L is the size of the vor-
tex cell,k0 andv0 are the amplitude and angular frequen
of the temporal oscillation of the flow field~corresponding to
the day/night forcing!, respectively. Here the axes labeled
x and y are taken in the horizontal and vertical direction
respectively, with gravity pointing in the negativey direction.
While the velocity of the fluid element derived from th
stream function in~2! is indeed simple~time-periodic!, par-
ticle trajectories can be extraordinarily complicated in t
sense that chaos is commonly expected, which is the
called Lagrangian chaos.26 Let V be the velocity of the re-
acting particles~in units of U0). Then, taking into accoun
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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419Chaos, Vol. 12, No. 2, 2002 Enhancement of chemical reactions
both inertia and buoyancy, one can show thatV obeys the
following set of ordinary differential equations:22–24,27

dV

dt
5G~u2V1W!1RS u1

V

2 D¹u1
3R

2

]u

]t
, ~3!

whereu@Y(t)# is the velocity field~in units of U0) at the
position Y(t) @Y[(x,y)# of the reacting particles~in units
of L). The dimensionless parametersG, R, and W can be
expressed in terms ofL, U0 , radiusa of the reacting particle,
its massmr , the fluid viscositym, the mass of the fluidmf

displaced by the reactant, and the gravitational accelera
g. In particular, parameterG represents the inertia effect an
it is given by

G~mr !56pamL/~U0~mr1mf /2!!,

where larger values imply smaller inertia effects, and

R~mr !5mf /~mr1mf /2!

is the buoyancy parameter. The regimeR.2/3 describes
bubbles andR,2/3 corresponds aerosols. The vector

W~mr !5~mr2mf !g/~6pam!

is the terminal velocity of the particle in still fluid.
Substituting the stream function~2! into the general flow

model ~3! yields the following set of five first-order differ
ential equations governing the trajectories of each chem
species advected by the flow:

dx

dt
5u,

dy

dt
5v,

du

dt
52Gu1~G~11k0 sin f!

1 3
2Rk0v0 cosf!sin x cosy1 1

2R~11k0 sin f!

3~u cosx cosy2v sin x sin y!

1R~11k0 sin f!2 sin x cosx,

dv
dt

52Gv2~G~11k0 sin f!

1 3
2Rk0v0 cosf!cosx sin y1 1

2R~11k0 sin f!

3~u sin x sin y2v cosx cosy!

1R~11k0 sin f!2 sin y cosy1GW,
~4!

df

dt
5v0 .

We remark that Eq.~4! is a highly simplified model for
active particles advected by a nonlinear flow. In principle,
the air pollution problem it is necessary to study flows ba
on the solutions of the atmospheric fluid equations subjec
boundary conditions that describe the geometry of the reg
of interest, and to incorporate the advection and diffusion
chemical reactants into the flow. To give a concrete exam
we briefly describe the air pollution problem in Phoen
USA. The atmospheric boundary layer in the Phoenix ba
is typically well mixed to a height of several kilomete
above the surface. The mixing results from destabilization
Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
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the lowest layers of the atmosphere by solar heating of
basin floor and the action of the resulting buoyant edd
The mixing results in quantities such as the potential te
perature being constant through the layer and the vert
shear of the horizontal wind being negligible. The layer
also capped by a stably stratified atmosphere. To capture
fundamental dynamics of the atmospheric boundary la
under the influence of localized heating, small scale terr
and differential surface friction in the basin, the shallo
water equation with proper boundary conditions may be e
ployed to yield the flow velocity fieldu.28–30 Chemical re-
actions can then be studied by using Eq.~3!. Such a detailed
study is nevertheless quite sophisticated but necessary
future better understanding of active processes in real
flows. In this paper we take the simple approach by assum
a particular flow fieldu for understanding the influence o
noise on active processes. We stress that, in a more rea
model, while the flow field is typically described by solu
tions of nonlinear partial differential equations such as
Navier–Stokes equations or the shallow-water equation,
temporal evolution of physical particles advected by the fl
is still described by ordinary differential equations such
Eq. ~3!.

The spatially periodic structure of the velocity field a
lows for the dynamics of the reactants to be considered
restricted to a basic cell@0,2p#3@0,2p# with periodic
boundary conditions in bothx andy. We find that chaos can
occur commonly in the corresponding five-dimension
phase space. Typically, in such a case, particles tend to
cumulate onto a fractal set.27 To visualize the fractals, we
make use of the idea of snapshot attractors.31 Specifically, an
ensemble of particles initialized randomly in a phase sp
region is evolved simultaneously in time and the locations
these particles at a later instant are recorded to yield a s
shot attractor of all particles. If the underlying dynamics
chaotic, the fractal structure can be seen even in the pres
of random noise.31 Figure 1 shows two examples of snapsh
attractors obtained from the model Eq.~4!, where the projec-
tions of the attractors in the (x,y) plane att5100 are shown
for the forcing amplitudek052.72 andk053.10 ~other pa-
rameters used areR51.0, G53.2, W50.8, andv05p). To
obtain Figs. 1~a! and 1~b!, 43104 particles are uniformly
distributed in the two-dimensional phase-space regi
22p<@x,y#<2p with zero initial velocities. The particles
are apparently concentrated on fractal sets.

The reason why it is necessary to use snapshot attrac
to visualize the fractal structure of a chaotic attractor in
presence of noise can be seen, as follows. In a noise
situation, a chaotic attractor typically exhibits a fractal stru
ture. Under the influence of small random perturbations,
fractal pattern moves randomly in the phase space from t
to time. As such, if one examines a long trajectory produc
by the dynamics, one usually observes that the fractal st
ture is smeared out to a distance that scales with the stre
of the perturbations. In order to see the fractal structure
the underlying chaotic attractor, a remedy is to ‘‘freeze’’ t
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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time and examine the snapshot pattern formed by an
semble of trajectories. Starting with a cloud of uniform
distributed initial conditions, after an initial transient tim
one can indeed see the fractal structure of the snapsho
tractors, provided that the influence of random noise on e
particle is identical at any given instant of time. If the infl
ences of noise on particles in the ensemble are slightly n
uniform, the fractal structure of a chaotic attractor can still
seen by using snapshots, but only for a transient period
time.32

Our goal is to study how the product of the chemic
reaction, namely the concentration ofC particles in~1! sup-
ported on a chaotic flow as described by~4!, is affected by
noise. To simulate the process of the chemical reaction,
fix a region in the two-dimensional physical space a
launch a large number of particle speciesA and B into the
region. The trajectories ofA andB particles are determine
by ~4!, but with different parameters, due to the difference
their masses. A reaction is considered to occur when aA
particle and aB particle are sufficiently close to each othe
say within a predetermined reaction radiusr. As a result of
this reaction, both theA and B particles are destroyed an
two C particles are created. By energy conservation, both
energies of theA andB particles are transferred to that of tw
C particles. Once they have appeared, theC particles evolve
according to~4! with parameters determined by the mass
the C particle. To model noise, we add to each of the eq
tions in ~4! ~except for the last one that represents the p
odic forcing!, terms of the formDj i(t) ( i 51, . . . ,4),where
D is the noise amplitude andj i(t)’s are independent white
noise terms. A standard first-order method is utilized for
tegrating the resulting stochastic differential equations~see
the Appendix!.

III. NUMERICAL RESULTS

To gain insight, we first consider the simple case wh
the masses ofA and B are equal, i.e., the parametersR, G,

FIG. 1. Snapshot attractors at timet5100 for the forcing parameter~a! k0

52.72 and~b! k053.10, where in each case, 43104 particles are initially
uniformly distributed in the region:22p<@x,y#<2p, and the trajectory of
each particle is given by~4!. Other parameters are:R51.0, G53.2, W
50.8, andv05p.
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and W for both particles are the same. We launch 104 A
particles and the same number ofB particles into the spatia
region 22p<(x,y)<2p. Figure 2 shows, forR51.0, G
53.2, W50.8 at three difference noise levels, the time trac
of NA(t) andNC(t), where the reaction radius is chosen
be r 51023; NA(t) and NC(t) are the numbers ofA and C
particles, respectively. For both relatively small and lar
noise levels (D51024 and D5100.2), the production ofC
particles is slower than that in the case of median noise le
(D51021.4) in the initial phase of the reaction dynamic
say, for t&10. At larger times, the concentrations tend
saturate, indicating that most reactions occur for a short t
following the initial mixing of active particles. This sugges
the importance of transient dynamics in the sense that, du
the saturation, the resulting number ofC particles at large
times is mainly determined by their rate of initial productio
That there are moreC particles at the median noise level tha
those at small or large noise levels indicates a resonance
behavior. This behavior can be seen more clearly in Fig
where theA and C particles at different instants of tim
~filled circles: t510; open circles:t520; and stars:t550)
are plotted versus the noise amplitude.

We next consider the more realistic case where
masses ofA and B particles are not equal:mAÞmB . For
convenience, we writemA5m01D andmB5m02D, where
m0 is the average mass of anA and aB particle. Introducing
the following mass-imbalanceparameter:

e5
D

m01mf /2
, ~5!

the parametersR, G, and W for A and B particles in ~4!
become

RA,B5~16e!R~m0!,

GA,B5~16e!G~m0!, ~6!

WA,B5~163e!W~m0!.

FIG. 2. Time histories ofNA(t) and NC(t) for R51.0, G53.2, andW
50.8, with noise amplitudesD51024 ~relatively small noise!, D51021.4

~median noise!, andD5100.2~relatively large noise!. The reaction radius is
r 51023.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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421Chaos, Vol. 12, No. 2, 2002 Enhancement of chemical reactions
For illustrative purpose, we fix the forcing amplitude atk0

52.72 and compute the largest Lyapunov exponent of
asymptotic attractor for one type of particle, sayA, as a func-
tion of e ~the corresponding plot for theB particle can be
obtained simply by making use of the symmetry:e→2e).
The result is shown in Fig. 4~a!, where we see that there a
parameter intervals of both chaotic attractors (l1.0) and
periodic attractors (l150). The periodic attractors typically
coexist with nonattracting chaotic saddles: there is thus t
sient chaos in the corresponding parameter intervals. F
randomly chosen initial condition, the resulting trajectory b
haves chaotically for a transient amount of time before s

FIG. 3. NA(t) and NC(t) versus the noise amplitudeD at t510 ~filled
circles!, t520 ~open circles!, and t550 ~stars!, for R51.0, G53.2, and
W50.8. A resonancelike behavior is seen in the sense that the resu
number ofC particles reaches a maximum at a median noise level.

FIG. 4. ~a! For fixedk052.72, the largest Lyapunov exponentl1 versus the
bifurcation parametere for particleA. The diagram for particleB is obtained
by reversing the sign ofe. Examples of transient chaos for~b! e50.04 and
~c! e520.04, where snapshot attractors obtained att5100 are shown.
Downloaded 20 Jun 2002 to 129.219.51.205. Redistribution subject to AI
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tling into the periodic attractor. Two examples of transie
chaos are shown in Figs. 4~b! and 4~c!, for e520.04 and
e50.04, respectively.

Since chemical reactions occur most intensely during
initial mixing of the reactants, we expect to observe a sim
resonant behavior, regardless of whether the trajectorie
the reactants are sustainedly chaotic or transiently cha
insofar as these reactants are injected into the reaction re
in a time shorter than the average lifetime of the chao
transients. This is verified by considering the following thr
combinations of the dynamics forA andB: ~i! both on cha-
otic attractors,~ii ! one on chaotic attractor and another bei
transiently chaotic, and~iii ! both being transiently chaotic
and by computing the generation ofC particles as a function
of the noise amplitude. The results are shown in Figs. 5
where the numbers ofA particles att510 versus log10 D are
shown in panels~a!, and those ofC particles in panels~b!. In
Fig. 5, the mass-imbalance parameter ise50.02, so both the
A and B trajectories are sustainedly chaotic. In Fig. 6,e

ng

FIG. 5. NA(t) andNC(t) versus the noise amplitudeD at t510 and fore
50.02.

FIG. 6. NA(t) andNC(t) versus the noise amplitudeD at t510 and fore
50.03.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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422 Chaos, Vol. 12, No. 2, 2002 Liu, Lai, and Lopez
50.03 and the trajectories of one reactant is sustainedly
otic and that of the other reactant is transiently chaotic.
Fig. 7, e50.04 and the trajectories of both are transien
chaotic. Apparently, there is a consistent behavior of re
nance, regardless of the nature of the Lagrangian cha
dynamics, where noise of amplitudeD5Dm;1021.5 leads to
a maximum production of the chemicalC.

While Figs. 5–7 illustrate that both sustained and tra
sient chaotic motions yield a similar resonant behavior
chaos necessary for the resonance? Apparently, if there
noise, chaos can facilitate the chemical reaction because
intrinsic ergodicity of chaos can help the reactants to mee
the phase space. If noise is small, this may still be the c
However, for large noise, trajectories of the reactants, eve
they are periodic, will be fattened. Thus, if a resonant beh
ior is observed for large noise, chaos may not necessaril
a contributing factor. To gain insight, we compute the effe
tive reaction area in the physical space for chaotic moti
which is determined by the regions that active particles
visit. Since in phase space, particle trajectories are con
trated near the chaotic invariant set, the geometric struc
of the set, which is typically fractal, determines the react
area. Under the influence of noise, one would expect an a
mented reaction area because the fractal structure is typi
fattened by noise. To see whether the change in the
contributes to the resonant behavior observed in Figs. 5
we initiate 93104 particles in one cell and calculate the tot
reaction area at a later time, sayt550. The result is shown in
Fig. 8, where we see that although the area increases at s
noise levels, in the range of noise amplitude where re
nances occur, the area remains essentially constant, ind
ing that the change in the area with noise is not a contrib
ing factor to the resonant behavior. This result implies t
for our particular model, chaos is not a necessary condi
for the observed resonances. As we will argue later usin
one-dimensional double-well potential model, resonance
occur simply as a direct consequence of the coherent sw
ing of particles between the two wells.

FIG. 7. NA(t) andNC(t) versus the noise amplitudeD at t510 and fore
50.04.
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IV. A PHYSICAL THEORY OF RESONANCE

The production ofC particles through the chemical re
action in ~1! is determined by the probability thatA and B
particles can get sufficiently close together. Intuitively, th
probability is determined by two factors,~i! the effective
reaction area in the physical space~the probability is in-
versely proportional to area!, and ~ii ! the properties of the
underlying chaotic flow, e.g., temporally more regular flow
lead to larger probabilities. Figure 8 demonstrates, howe
that the change in the reaction area due to noise is n
contributing factor to the resonant behavior. The numerica
observed resonances are therefore mainly determined by
dynamical properties of the underlying invariant set.

Among the various dynamical characteristics of an
variant set, temporal regularity is the most relevant one t
can influence the rate of the chemical reaction. To see t
we plot in Fig. 9 time tracesx(t) of the particle trajectories

FIG. 8. Total reaction areaSversus the noise amplitudeD for e50.025. The
area remains approximately constant in the range ofD where resonances ar
observed, indicating that area variation is not a contributing factor to
resonance.

FIG. 9. Time tracesx(t) of the particle trajectories for~a! D51022, ~b!
D51021.5, and~c! D51020.5.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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at three different noise levels aboutDm : D51022, 1021.5,
and 1020.5, respectively, where for Figs. 9~a! and 9~b!, the
range ofx values extends two adjacent 2p cells aboutx
52p. For D51022&Dm , the particles spend most of th
time in the lower cell (0<x<2p), with occasional bursts
into the upper cell (2p<x<4p). For D51021.5'Dm , the
trajectory switches intermittently between the two cells;
switching behavior is apparently induced by noise. ForD
51020.5&Dm , the particle motion becomes diffusive in th
sense that its trajectory crosses many cells. Heuristically,
occurrence of resonance can be reconciled as follows.
tion primarily restricted to one cell, as occurred in Fig. 9~a!,
is temporally highly irregular due to the combination of ch
otic advection and noise. The probability for reaction to o
cur is relatively low. Frequent switching of the trajecto
between adjacent cells, as in Fig. 9~b!, can result in a ‘‘co-
herence’’ in the particle motion. More regular switchings r
sult in more coherent motion of the chemicals advected
the flow, which can potentially lead to a higher probability
reaction. Finally, if the particle motion becomes diffusive,
in Fig. 9~c!, the degree of coherence of the motion is
duced, resulting in a lower probability of reaction. The tim
scale most relevant for the chemical reaction is thus
noise-induced switching timebetween adjacent cells. If th
above picture is correct, we expect to observe a relativ
high degree of temporal regularity of the particle motion n
Dm .

To characterize the temporal regularity of the parti
motion, we compute the Fourier spectra ofx(t) for different
noise levels. Figure 10 shows the spectra forD51022,
1021.5, and 1020.5, respectively. Because of chaos and noi
the spectra are broad banded, but due to periodic forcin
frequencyf 05v0/2p50.5 and nonlinearity, there are spe
tral peaks at frequencies that are rationally related tof 0 . The
peak atf p'0.65, however, appears to be due to the noi
induced switching behavior of the particle trajectory. We th
focus on this spectral peak. The narrower and higher
peak is above the noisy background, the more regular
switching behavior. The temporal regularity can be con

FIG. 10. Power spectra of the particle trajectoriesx(t) for ~a! D51022, ~b!
D51021.5, and~c! D51020.5.
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niently characterized by the following measure:19,20

bS5H f p /D f , ~7!

whereH is the height of the spectral peak beyond the bro
band background andDv is its half-width. Figure 11 shows
for the chaotic flow of~4! at the parameter setting of Figs
5–7, the measurebS versus the noise amplitudeD, which
exhibits a resonant behavior in the sense thatbS reaches
maximum atD'1021.5. The switching behavior is tempo
rally most regular nearDm , which is consistent with the
resonances observed in Figs. 5–7.

To understand the resonant behavior inbS , we consider
a heuristic model. From the point of view of mechanics, t
noise-induced switching behavior of the particle motion
conceptually equivalent to motion in a double-well potenti
Consider then the motion of a particle of unit mass in
one-dimensional, symmetric, double-well potentialV(x) un-
der heavy damping. Suppose the motion is confined to
well without noise. The presence of noise can induce h
ping of the particle from one well to another. For relative
small noise, the hopping events are rare, so the temp
regularity of the motion is determined by that of the noi
motion in an individual well. For median noise, hopping o
curs more frequently and possibly becomes more regular.
large noise, the hopping becomes even more frequent a
is mainly determined by the noise. The motion is thus m
irregular as compared with that at the medium noise. The
point here is that, with respect to hopping, noise can actu
result in temporally more regular motions. As can be se
later, the simple mechanical model leads to a qualitativ
similar resonant behavior to that observed in our fiv
dimensional model Eq.~4!, suggesting that the common fea
ture in both models, stochastic hopping, is the main cont
uting factor to the observed resonances.

We are thus led to consider the following equation
motion for a heavily damped mechanical particle:

dx

dt
52

dV~x!

dx
1Dj~ t !, ~8!

FIG. 11. The measure of temporal regularitybS versusD. The resonant
behavior inbS is consistent with those seen in Figs. 5–7.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



in

ra
-

h

n

ti
d

s

o-

r

ical
al

ta-
ac-
a
to

y/
rat-
s
of

the
her
uc-
be
ere
be
ing
les
ed
ha-
aps
er

an

th
cal
and
d in
le
ra-
stic
.

o.
Y-

th

424 Chaos, Vol. 12, No. 2, 2002 Liu, Lai, and Lopez
whereDj(t) models the noise andj(t) is a white noise term,
and the potential function is assumed to be the follow
double-well type:

V~x!52
a

2
x21

b

4
x4, ~9!

wherea and b are constants. To quantify how the tempo
regularity ofx(t) is modulated by noise, we use the follow
ing measure introduced in Ref. 20 for convenience, which
equivalent tobS :33

bT5
^T&

AVar~T!
, ~10!

whereT is the time interval between two consecutive switc
ings, and̂ T& and Var(T) are the mean and variance ofT(t),
respectively. To obtain̂ T& and Var(T), we consider the
Fokker–Planck equation associated with~8!:

]P

]t
52

]

]x S 2
dV~x!

dx
PD1

D2

2

]2P

]x2
, ~11!

whereP(x,t) is the time-dependent probability distributio
function of the random variablex(t). Noting that the switch-
ing time T is in fact the first-passage time of the stochas
processx(t), we solve~11! for quantities that are require
for characterizing the time regularity ofx(t) under the con-
ditions that there is an absorbing boundary atx5xa and a
reflecting one atx5xb . We obtain,34 for the first and second
moments ofT, the following:

^T~x0!&5
2

D2Ex0

xaE
xb

x

expS 2
V~x!2V~u!

D2 D du dx,

~12!

^T2&5
4

D2Ex0

xaE
xb

x

^T~u!&expS 2
V~x!2V~u!

D2 D du dx,

where x0 is the initial value ofx(t). The quantitybT can
then be obtained from these moments. Figure 12 show

FIG. 12. Theoretically predicted measure of resonancebT versus the noise
amplitudeD. The resonant behavior is consistent with those seen in
numerical experiments.
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l

is

-

c

a

typical behavior ofbT as a function ofD that we obtain by
numerically evaluating the integrals contained in the m
ments for the following parameters~arbitrary!: a5b
51024, x0525, xa50, andxb5220. A resonant behavio
can be seen clearly from Fig. 12, wherebT attains a maxi-
mum value at some optimal noise amplitude. This theoret
prediction is thus qualitatively consistent with the numeric
plot of bS in Fig. 11.

V. DISCUSSION

In this paper, we have developed an idealized compu
tional model to investigate the dynamics of chemical re
tions that produce air pollution. In particular, we utilize
prescribed time-periodic flow, whose vortical nature leads
chaotic particle trajectories~Lagrangian chaos!. The time-
periodic forcing is incorporated in consideration of the da
night diurnal cycle existing generally in the process gene
ing air pollution. Going beyond existing works in thi
direction,3,4,9,10,14we pay particular attention to the nature
chaos, i.e., transient versus sustained, and we focus on
effect of random noise. Our results suggest that whet
chaos is transient or sustained has little effect on the prod
tion of chemical reactions, but the influence of noise can
important. A resonant behavior exists in the sense that th
is a small range of noise in which the production can
maximized. We give a heuristic theory, based on examin
the temporal regularity of the Lagrangian motion of partic
advected by the flow, to explain the numerically observ
resonance behavior. We argue that whether the flow is c
otic has little influence on the resonant behavior. Perh
then, in a realistic situation, it is environmental noise, rath
than the nature of the underlying flow, which may play
important role in the generation of air pollution.

While our model is highly idealized as compared wi
realistic atmospheric flow, we incorporate important physi
effects of particles advected by the flow such as inertia
finite-size. To our knowledge, such effects are considere
only one recent paper14 that addresses the more tractab
problem of advective coalescence in flows with chaotic t
jectories. Investigating active processes in more reali
flow models is an interesting direction for future research
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APPENDIX: INTEGRATION OF STOCHASTIC
DIFFERENTIAL EQUATION

Our general model is a set ofN stochastic differential
equations of the following form:

dxi

dt
5Fi~x!1Gi~x! De~ t !, ~A1!

e

P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



e-

n

h
he

ils
i

es
r,
.

les
th
ve

A

.

hy

d
d

ist
se

fel
.

ss

,

,
.

n,

t-

.

lized
non

, P. I.

.

ev.

ort

s

.

l

ev.

425Chaos, Vol. 12, No. 2, 2002 Enhancement of chemical reactions
wherex5$x1 ,x2 , . . . ,xN%, e(t) is a white noise term. It is
convenient to use the Milshtein method,35 which advances
the solution forward in time according to the following r
cursive relations:

xi~ t1dt !5xi~ t !1dtS Fi~x!1
D2

2
Gi~x!

]Gi~x!

]xi
D

1Gi~x!h i~ t !AD2dt, ~A2!

whereh i(t) is another white-noise term that is independe
of e(t). The inclusion of the term involvingh i(t) is due to
the fact that~A1! should be interpreted in the Stratonovic
sense.36 The Milshtein method is a first-order method, so t
error at each integration step is on the order of (dt)2. For D
on the order of amplitudes of the dynamical variablesx,
which represent all cases considered in this paper, the M
tein method is efficient insofar as the integration step
small.37
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