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Abstract
Quantum Chaos has been investigated for about a half century. It is an old yet vigorous
interdisciplinary field with new concepts and interesting topics emerging constantly. Recent
years have witnessed a growing interest in quantum chaos in relativistic quantum systems,
leading to the still developing field of relativistic quantum chaos. The purpose of this paper is
not to provide a thorough review of this area, but rather to outline the basics and introduce the
key concepts and methods in a concise way. A few representative topics are discussed, which
may help the readers to quickly grasp the essentials of relativistic quantum chaos. A brief
overview of the general topics in quantum chaos has also been provided with rich references.
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1. Introduction

Quantum chaos is a branch of fundamental physics investi-
gating the intercapillary field of quantum mechanics, statis-
tical physics, and nonlinear dynamics [1–8]. Even before the
establishment of quantum mechanics, in 1913, Bohr proposed
quantization rule and used it to successfully predict the energy
spectrum of hydrogen atom, which explained the Balmer
formula obtained from experimental observations well. Later
in 1917, Einstein extended Bohr’s quantization rule to
integrable systems with global torus structure in phase space
[9]. Then he noticed that these quantization rules are only
applicable to integrable systems, and would fail for more
general, non-integrable systems [9, 10]. About a half century
later, in 1970s, inspired by extensive investigations of non-
linear dynamics and chaos, the issue of how to extend the
semiclassical quantization rule to non-integrable systems was
perceived again by the community, leading to the develop-
ment of Gutzwiller’s trace formula that although being
measure zero, the unstable periodic orbits play a crucial
rule in shaping the quantum spectral fluctuation behaviors
[5, 11–23]. There are quantum systems, e.g. quantum

billiards, whose classical counterpart can be chaotic. It is thus
mystical that since the Schrödinger equation is linear and thus
there is no real chaos in the quantum system, how does it
emerge in the semiclassical limit? Note that here ‘quantum
system’ is specifically for the single particle system described
by the Schrödinger equation, where many-body effects are
excluded. Alternatively, how does the nonlinear and chaotic
dynamics that are ubiquitous in the classical world affect
the behavior of the corresponding quantum systems? Are
there any indicators in the quantum system that can be used to
tell whether its semiclassical limit is integrable or chaotic?
The efforts to understand these questions and the results
constitute the field of quantum chaos, which has attracted
extensive attention during the past half century, and has led to
profound understandings to the principles of the classical-
quantum correspondence [3].

An intriguing phenomenon regarding classical orbits in
quantum systems is quantum scar [15, 24–33], where chaotic
systems leave behind scars of paths that seem to be retraced in
the quantum world [34–40]. Classically, a chaotic system has
periodic orbits, but the chaotic nature renders all the orbits
being unstable, i.e. an arbitrarily small perturbation to the
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particle moving along such an orbit could push its motion out
of the orbit completely. A paradigmatic model is the two
dimensional billiard system, where a particle moves freely
inside the billiard, and reflects specularly at the boundary.
Thus the shape of the boundary determines the dynamics of
the billiard system [8, 41, 42]. A quantum billiard can be
constructed similarly, i.e. a two dimensional infinite potential
well whose boundary has the same shape of the corresp-
onding classical billiard. Thus in the short wavelength limit,
wave dynamics become ray dynamics, and the quantum bil-
liard degenerates to the classical billiard. Classically, the
probability to find a particle moving exactly on an unstable
periodic orbit is zero, as the measure of these orbits in the
phase space vanishes. This leads to the ergodicity of the
dynamics. Semiclassically, the averaged Wigner function can
be assumed to take the ‘microcanonical’ form [43], resulting
in a Gaussian random function in the coordinate space. Sur-
prisingly, for the quantum counterpart, some of the eigen-
wavefunctions would concentrate especially around these
orbits, forming the quantum scars. The density of a scar along
the orbit is a constant and does not depend on ÿ sensitively.
But the width of the scars is typically of the order of the
wavelength, as ÿ or the wavelength goes to zero, the scar will
finally disappear in the random background. ‘In this way, the
scar ‘heals’ as  0’ [24]. Scars have been searched and
analyzed in mesoscopic systems [44–54]. Due to the simi-
larity of the equations for different types of waves, scars have
been observed in microwave [55–61], optical fiber and
microcavity [62–66], acoustic and liquid surface wave sys-
tems [67–70]. Quantum scars in phase space could reveal
more information about the classical orbit [24] and have been
discussed in [35, 71–77], with numerical evidence of antiscars
provided in [76]. The statistical properties of scars has been
discussed in [78]. Many-body effects in billiard models have
been investigated using the Kohn and Sham (KS) equations in
the mean-field approximation, i.e. noninteracting particles
moving in some fictitious effective field, and scarring could
take place when the disorder is weak and the electron density
is sufficiently high [30]. For a comprehensive analysis of
quantum scars, please see [79, 80]. Besides the conventional
situations, scars on quantum networks are found to be
insensitive to the Lyapunov exponents [81]. Quantum scars
have also been identified by accumulation of atomic density
for certain energies in spin–orbit-coupled atomic gases [82],
and observed in the two-dimensional harmonic oscillators due
to local impurities [83–85]. Quantum many-body scars
become a hot topic recently due to the weak ergodicity
breaking caused by these states [86–95], which provides a
new route to the departure from the eigenstate thermalization
hypothesis (ETH) scenario other than many-body localization
(MBL). Their analogy in a driven fracton system, namely,
dynamical scar, has also been observed [96]. Note that in
these investigations, scar states do not relate to classical
periodic orbits as in its original setup, but rather a small
number of localized states in an otherwise thermalizing
spectrum, while in contrast to both ETH where most of the
states behave like thermal states, and MBL in which essen-
tially all eigenstates are athermal.

Another cornerstone of quantum chaos is the random
matrix theory (RMT), which was mostly developed in 1950s
by Wigner [97–99] when dealing with the energy spectrum of
complex quantum systems such as the complex nuclei and
later in 1960s by Dyson [100–104]. These works form the
basis for random matrix theory (see [105–111] for an over-
view and recent developments). The idea is such that since the
interactions are so complex, it could be efficient to approx-
imate the Hamiltonian by a random matrix with elements
following certain statistical properties imposed by the sym-
metry of the system [105–112]. Density distributions of the
energy levels are given, and the distributions of the spacings
between nearest neighboring levels are investigated exten-
sively due to the findings that they follow different universal
functional forms, namely, Poisson [113] or Wigner–Dyson
statistics [114], if the corresponding classical dynamics are
integrable or chaotic, respectively. In particular, for systems
corresponding to classically chaotic dynamics with no addi-
tional geometric symmetry, if time reversal symmetry is
preserved, the level spacing statistics would follow RMT with
Gassian orthogonal ensembles (GOE). If time reversal sym-
metry is broken, then Gassian unitary ensembles (GUE)
would apply. Gassian symplectic ensembles (GSE) would
also appear if the system possesses symplectic symmetry.
Long range correlations, i.e. the number variance Σ2 and
spectral rigidity Δ3, and higher order correlations in spectra
are also found to have distinct behavior for quantum systems
with integrable or chaotic classical dynamics [106, 115, 116].
Various numerical and experimental evidences are provided
[117–121]. Through a series of works [115, 122–125], a
connection between classical periodic orbits in chaotic sys-
tems and the spectral correlation of the corresponding
quantum system represented by the form factor was estab-
lished, laid the foundation of the universality of the spectral
statistics for classically chaotic systems in RMT, which has
also been extended into spin 1/2 [126] and many-body
situations [127]. These findings are quite prominent as they
could serve as the quantum indications of their classical
dynamics and symmetry properties. Note that these state-
ments are for generic systems. Non-generic systems, how-
ever, may violate such rules [128]. Level spacing statistics of
quantum quasidengeneracy has been investigated and Shnir-
elman peak was identified [129]. Model for experimental
level spacing distributions with missing and spurious levels
has also been considered [130, 131]. Generalization of the
nearest level spacing statistics to open chaotic wave systems
with non-Hermitian Hamiltonian was demonstrated in [132].
Between integrable and chaotic systems, there are pseudo-
integrable systems [133], and also mixed dynamical systems
with both Kolmogorov–Arnold–Moser (KAM) islands and
chaotic sea in the phase space [134]. Non-universal behaviors
have been noticed [133–138]. In particular, for singular
quantum billiards with a point-like scatterer inside an
integrable billiard [137], the level spacing statistics may
exhibit intermediate statistics, namely, semi-Poisson [139],
that exhibits both level repulsion (in the chaotic case) so the
probability to find closeby levels are small, and exponential
decay for large spacings as in the Poisson distribution (the
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integrable case) [140–146]. This feature also appears in
quantum systems with parameters close to the metal-insulator
transition [147]. While for another class of pseudo-integrable
systems, namely, polygonal (particularly triangular) quantum
billiards that introduce dividing scattering only at the corners
[133, 135], although there are conjectures and numerical
discussions [139], the spectral statistic is rather complex and
is still an open issue for general cases.

There are many other important topics involving quant-
um billiards, such as nodal line structures and wavefunction
statistics [148–157], quantum chaotic scattering [158–166]
with experimental demonstrations on two dimensional elec-
tron gas (2DEG) [50, 167–170] where the electrons are
described by the two dimensional Schrödinger equation,
quantum pointer (preferred) states and decoherence [52,
171–175], universal conductance fluctuations [176–180],
chaos-assisted quantum tunneling [181–195], effects of
electron–electron interaction [30, 195–199], Loschmidt echo
and fidelity [200–236], etc. Being described by the same
Helmholtz equation for the spatial wavefunction, e.g.
( )y + =k 02 2 or its extensions, where ∇2 is the Laplacian
operator and k is the wave number, the quantum billiard can
be simulated with other wave systems, such as microwave
[55, 59–61, 182, 237–254], light in optical fibers [62, 66] and
optical microcavities [255–264], acoustic waves and plate
vibrations [68, 265–270], liquid surface waves [67, 69, 70,
271–273], etc.

Other prototypical models that have been investigated
extensively in the development of the field of quantum chaos
include kicked rotors in terms of diffusion [274–288],
entanglement as signatures of referring classical chaos
[289–291], experimental realizations [292–295], and other
related topics [285, 296–299], and the Dicke model
[300–306] and the Lipkin–Meshkov–Glick model [307–310]
to account for the many-body effects. In particular, in the
phenomena of dynamical localization of kicked rotors with
parameters in the classically chaotic region, the momentum
localization length has an integer scaling property versus the
reduced Planck constant  ; while in the vicinity of the golden
cantori, a fractional ÿ scaling is observed, which was argued
as the quantum signature of the golden cantori [311–316].
However, in a following work with a random-pair-kicked
particle model, it is found that the fractional ÿ scaling can
emerge in systems even without the golden cantori structure
at all [296], thus it is not a quantum signature of the classical
cantori, but has an origin of inherent quantum nature.
Abnormal diffusion in one-dimensional tight-binding lattices
[317–322] is another interesting subject which is related to the
kicked rotor model, as if the diagonal potential is periodic, it
can be mapped into a periodically driven time-dependent
quantum problem [276]. Ionization of Rydberg atoms
[323–344] and dynamics of Bose–Einstein condensation
[197, 345–353] have also been investigated extensively in
quantum chaos. Due to the interdisciplinary nature, phe-
nomena and effects in quantum chaos have broad applications
in nuclei physics [110, 111, 354, 355], cold atom physics
[356–361], controlled laser emission [64, 256, 257, 259,
362–364], quantum information [365–370], etc.

Although being an old field, there are still hot topics and
astonishing findings emerging recently due to deeper under-
standings of the theory, the advances of the computation power
and the experimental techniques, such as quantum graphs and
their microwave network simulations [131, 371–389], universal
quantum manifestations for different classical dynamics
[125, 284, 380, 390–396], many-body localization [397–404],
quantum thermalization [309, 405–417], quantum thermaldy-
namics [304, 418–426], out-of-time-ordered correlator (OTOC)
[427–436], and other related topics [437, 438]. In particular,
there are a number of active groups in China publishing recent
works in Communications in Theoretical Physics [166, 207,
236, 285, 340, 359, 439, 440], Chinese Physics B [254, 320,
341, 343, 369, 398, 403, 441–443], Chinese Physics Letters
[175, 344, 416, 444, 445], and Science China Physics,
Mechanics & Astronomy [288, 446–449].

Among the new developments, one interesting field is to
expand the broadly investigated quantum chaos into relati-
vistic quantum systems, and see what happens when the
relativistic effect cannot be neglected, e.g. what classical
chaos can bring to the relativistic quantum systems. This
resulted in the still developing field of relativistic quantum
chaos. The first study of relativistic quantum chaos was car-
ried out in 1987, by Berry and Mondragon [450], who
invented a two dimensional neutrino billiard by imposing
infinite mass confinement on the boundary, i.e. the MIT bag
model [451], where the neutrino, with spin 1/2, at that time
was believed to be massless, and was described by the
massless Dirac equation. The reason for not choosing the
conventional electric potential for confinement is that the
Klein tunneling for relativistic particles will invalidate such a
confinement. We shall denote such system as massless Dirac
billiards. The intriguing point is that, with the infinite mass
potential, the Hamiltonian breaks the time reversal symmetry,
leading to GUE spectral statistics. In a following work by
Antoine et al [452], a 2D fermionic billiard in a curved space
coupled with a magnetic field is considered. Results were
obtained under a generalized boundary condition, which
confirmed the results by Berry and Mondragon when the
boundary condition reduces to the same one. The general-
ization of the neutrino billiard in a three dimensional cavity
has been investigated in [453], with the finding that the orbital
lengths seem to be the same as in the scalar spinless case.
After Berry and Mondragon’s seminal investigation of neu-
trino (or massless Dirac) billiards [450], there are only a few
works in this topic [452, 453]. Only when graphene and other
2D Dirac materials emerged in 2000s [454–460] rendering
experimental observation of the effects possible, the field
became prosperous and many different aspects have been
investigated extensively, e.g. graphene/Dirac billiards were
proposed [461, 462] and has started the enthusiasm in this
field with either graphene, or microwave artificial graphene
(microwave photonic crystal with honeycomb lattice), or by
directly solving the massless Dirac equation in a confined
region [463, 464].

Since there are different approaches for relativistic
quantum chaos, before we proceed further, we shall define the
boundary of the our discussions clearly to avoid confusion.
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First, it should be distinguished from relativistic chaos, where
the motion of the particle is in relativistic regime, i.e. its speed
is comparable to the speed of light, but is described by the
classical dynamics, not quantum mechanics. There are many
interesting results in this topic [465–479], but it is not con-
sidered as relativistic quantum chaos. Secondly, quantum
chaos has a great motivation regarding classical-quantum
correspondence. While for relativistic quantum systems, there
are quantities such as spin that does not have a classical
correspondence. However, for a relativistic quantum systems
and its ‘corresponding’ classical counterpart by just con-
sidering the ‘trajectory’ of the particle, the properties of the
former can be affected significantly by the classical dynamics,
i.e. whether chaotic or integrable, of the latter. Therefore,
studies of this field are to reveal how classical dynamics may
have influence to the ‘corresponding’ relativistic quantum
systems, not to demonstrate the one-to-one correspondence of
the two limiting cases. In this sense, there are studies of the
relation between entanglement and classical dynamics
[289–291, 353, 443, 445, 480–483], spin transport versus
classical dynamics [484–489], that although there are no
direct one-to-one correspondence, there are significant influ-
ence to the behavior of entanglement and spin transport from
classical dynamics. Thirdly, the term relativistic quantum
chaos is actually not new, but was proposed explicitly about
three decades ago in a paper by Tomaschitz entitled ‘Relati-
vistic quantum chaos in Robertson–Walker cosmologies’
[490]. In this work, Tomaschitz found localized wave fields,
which are solutions of the Klein–Gordon equation, quantized
on the bounded trajectories in the classical geodesic motion.
Actually there is a series of works on this line in quantum
cosmology [490–498] concerning chaotic quantum billiards
in the vicinity of a cosmological singularity in quantum
cosmology, where the local behavior of a part of the metric
functions can be described by a billiard on a space of constant
negative curvature, leading to the formation of spatial chaos.
These results could be helpful to understand the early stages
of the Universe. Another line is to examine the spectral
properties of the quantum chromodynamics (QCD) lattice
Dirac operator [499–507] and Dirac operator on quantum
graphs [508, 509], where agreement with chiral random
matrix theory has been confirmed.

While our focus has been on billiard systems, kicked
rotor was an important model for this field and is still an
active research topic [442, 510–512]. As a side note, looking
for semiclassical treatment of quantum spinor particles has
been a persistent effort from 1930s by Pauli [513] to early of
this century [514–531]. These semiclassical results provide
insights in understanding the spectral fluctuations in graphene
nano-structures [532, 533].

2. Spectral statistics

The main results in level spacing statistics are as follows. For a
system with energy levels {En, n=1, 2, L}, let ( )~

N E be the
number of levels below E. Generally, the density of the spectra

is not uniform, therefore, to make comparison of level spacings
meaningful, the spectra needs to be unfolded: ( )º á ñ

~
x N En n ,

where ( )á ñ
~
N E is the smooth part of ( )~

N E . Then in general the
statistics of xn follow universal rules depending only on the
symmetry of the original quantum system and the corresp-
onding classical dynamics [113, 114], not on the details of the
systems. One important quantity is the level spacing distribution
P(S), which is the distribution function of the nearest-neighbor
spacing, e.g. = -+S x xn n n1 , of the unfolded spectrum {xn}.
Another quantity is the spectral rigidity Δ3(L), for detailed
calculations please refer to page 5 of [534] and references
therein.

2.1. Berry and Mondragon’s result revisited

Berry and Mondragon investigated two dimensional billiard
with the African shape (guaranteeing chaotic dynamics with
no geometric symmetry) of confined massless spin-1/2 par-
ticles, and found GUE statistics [450]. This result is quite
surprising as there is no magnetic field or magnetic flux in the
system which are typically required to break the T-symmetry.
Here the time reversal symmetry is broken by the confinement
boundary. The Hamiltonian is given by

ˆ ˆ · ( ) ˆ ( )s s= - + rH v Vi , 1z

where v is the Fermi velocity for quasiparticles or the speed of
light for a true massless relativistic particle, ˆ ( ˆ ˆ )s s s= ,x y and ŝz

are Pauli matrices, and ( )rV is the infinite-mass confinement
potential, i.e. ( ) =rV 0 for r inside the billiard region D, while

( ) = ¥rV otherwise. The time-reversal operator is given by
ˆ ˆs=T Ki y , where K̂ denotes complex conjugate. It can be

readily verified that ˆ ˆ ˆ ˆ · ( ) ˆ ˆs s= - - ¹-
 rTHT v V Hi z

1 ,
i.e. the free motion of the particle is unchanged, but the con-
finement potential changes sign and breaks T-symmetry.
Microscopically, since the spin is locked with the momentum,
at each reflection there will be an extra phase due to the rotation
of the spin. While for periodic orbits, if the period, or the
number of bouncings at the boundary N, is even, then the
accumulated phase along the orbit counterclockwisely and
clockwisely are the same modulo 2π, thus both orientations will
satisfy the quantization rule simultaneously, i.e. if one orienta-
tion is a solution of the system, the other orientation (time-
reversed) will also be a solution. This is the same for non-
relativistic quantum billiards without magnetic field. However,
if N is odd, then the accumulated phase difference for two
opposite orientations will be π modulo 2π. Thus if one orien-
tation satisfies the quantization condition, i.e. the overall accu-
mulated phase along the complete orbit is integer multiples of
2π, and is thus a solution of the system, the reversed orientation
will have an extra π phase and will not satisfy the quantization
condition, thus will not be a solution. This breaks the
T-symmetry as it requires that the two orientations must be or
be not solutions of the system simultaneously.

Although this effect is quite subtle, it can result in GUE,
instead of GOE, spectral statistics [450], which has also been
verified by solving the system using other numerical techniques
such as direct discretization [536], conformal mapping [535],
and extended boundary integral method [537] (see also figure 1).

4

Commun. Theor. Phys. 72 (2020) 047601 Topical Review



Figure 1 shows the results for three billiards: the circular, the
African, and the heart-shaped billiards. The circular billiard is
integrable, leads to Poisson statistics. The African billiard is
chaotic, leads to GUE. The heart-shaped billiard has a mirror
symmetry, although it is not symmetric under the time-reversal
operation for the corresponding Dirac billiard, it is symmetric
under the joint parity and time-reversal operations. Thus again
the GOE statistics are recovered. Since the pseudoparticles in

graphene follow the same 2D massless Dirac equation as in
[450], it is quite natural to ask whether the graphene billiard
follow the same GUE statistics. In this regard, the experimental
work [462] by counting the resonance peaks in the transport
measurement as approximations of intrinsic energy levels,
obtained GUE statistics. However, subsequent numerical cal-
culations provide concrete results of GOE statistics in chaotic
graphene billiards in the absence of magnetic fields
[534, 538, 539], see figure 2, which lead to further experimental
investigations using artificial graphene with much higher acc-
uracy and confirmed GOE statistics [540].

2.2. Chaotic graphene billiard

Numerically, the graphene billiard is a graphene sheet where the
boundary is cut following a specific shape that carries desired
classical dynamics. This is effectively an infinite potential well
on the graphene sheet: the potential on the boundary is infinite,
and the probability to find an electron on the boundary is zero.
The general tight-binding Hamiltonian is given by

ˆ ( )∣ ∣ ( )∣ ∣ ( )å åe= - ñá + - ñáH i i t i j , 2i ij

where i and j are the indices of the atoms (or lattice sites), the
first summation is over all the atoms within the billiard and the
second summation is over pairs of all necessary neighboring
atoms, which could be the nearest neighboring pairs, or the next
or next–next nearest neighboring pairs, with their respective
hopping energy tijʼs. Note that hopping energies between atoms
close to the boundary may be different from those far from the
boundaries. For clean graphene the onsite energy εi is identical
for all atoms, thus it is convenient to set it to zero. If there are
static electric disorders, εi will be position dependent. In the
atomic (or lattice site) basis ∣ ñj , the Hamiltonian matrix element
can be calculated as ∣ ˆ ∣= á ñH i H jij , which is given by ( )e- i for

Figure 1. Level spacing statistics of the massless Dirac billiards with the boundary being a circle, the Africa shape, the heart shape for left,
middle, and right, respectively. The first row shows the unfolded level-spacing distribution P(S), and the second row shows the spectral
rigidity Δ3(L). The green dashed–dotted line, cyan dashed line, and blue solid line are for Poisson, GOE, and GUE. Red staircase curves and
symbols are numerical results from 13000 energy levels for each shape by diagonalizing the operator Ĥ given by equation (1). Adapted from
[535] with permission.

Figure 2. (a) Chaotic graphene billiard with Africa shape cut from a
graphene sheet. The system has 42 505 carbon atoms. The outline is
determined by the equation + =x y ai 70 ( )+ + pz z z0.2 0.2 e2 3 i 3 ,
where z is the unit circle in the complex plane, a=2.46 Å is the
lattice constant for graphene. The area is A=1117 nm2. (b)–(d) are
the level spacing distribution, integrated level spacing distribution,
and the spectral rigidity, respectively, for 664 energy levels in the
range < <E t0.02 0.4n , where t is the hopping energy between
nearest neighboring atoms. Dashed line is Poisson, solid line is
GOE, and dotted line is GUE. The results show clear evidence of
GOE. Adopted from [539] with permission.
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the diagonal element Hii and ( )-tij for element Hij. Once the
Hamiltonian matrix is obtained, it can be diagonalized to yield
the eigenenergies and the eigenstates. The results of spectral
statistics for the African shaped graphene billiard is shown in
figure 2, which assumes εi=0 and uniform hopping energies
tij=t between only the nearest neighboring atoms. Thus the
energy is in units of t, and it is convenient to use En/t for the
values of the eigenenergies. It is clear that they follow GOE
statistics. Non-idealities such as interactions beyond the nearest
neighbors, lattice orientation, effect of boundary bonds and
staggered potentials caused by substrates, etc. may have influ-
ence to the details of the system, but the GOE statistics are
robust and persistent in these non-ideal situations [534].

This might be counterintuitive as one would expect that the
graphene chaotic billiards should exhibit the same GUE level-
spacing distribution as the massless Dirac billiard [450], since
they obey the same equation. The reasoning is as follows.
Graphene has two non-equivalent Dirac points (valleys). Qua-
siparticles in the vicinity of a Dirac point obey the same
massless Dirac equation, but the abrupt edge termination in
graphene billiard couples the two valleys. As a result, a full set
of equations taking into account the effects of both the two
nonequivalent Dirac points and the boundary conditions are
thus necessary to describe the motion of the relativistic particle.
The time-reversal operation for the massless Dirac particle
interchanges the two valleys. Thus as a whole, the time-reversal
symmetry is preserved [456], resulting in GOE statistics.

Spectral statistics of disordered graphene sheets has also
been investigated extensively with both experiments [541]
and numerical simulations [542–544], where GOE statistics
have been identified in general. Reference [545] examined the
level spacing statistics for the edge states only for energies
close to the Dirac point. Since these states are localized, it was
expected that the statistics may follow that of Poisson, but it
turned out that the level spacing statistics was GOE, which
can be attributed to the chiral symmetry that introduced long-
range correlation between the edge states on different sides,
and thus level repulsion. Indeed, when the symmetry is bro-
ken by non-zero next nearest neighbor hopping energies, the
level spacing statistics becomes Poisson.

Much effort has been devoted to searching for GUE in
graphene billiards, e.g. by decoupling the two valleys. A
smooth varying mass term was added in [538], however, GUE
statistics were not found, which was attributed to the residual
inter-valley scatterings. Indications of GUE statistics were
found in triangular graphene billiards with zigzag edges and
smooth impurity potentials [544], and with an asymmetric strain
[546] due to the induced pseudomagnetic field [547, 548].

In the spectral statistics, there is a series of works
employing microwave artificial graphene, e.g. a manmade
honeycomb lattice not for electrons, but for microwaves
[253, 540, 549–563]. Due to the inherent similarity of the
wave equations, the quasiparticles follow the same massless
Dirac equation and behave similarly as those in graphene.
Especially, the Darmstadt group of A. Richter used super-
conducting microwave cavities filling in photonic crystals,
obtained spectra with unprecedentedly high accuracy, yield-
ing convincing statistics [240, 253, 540, 562, 563].

2.3. Beyond Berry and Tabor’s conjecture

Berry and Tabor [113] proposed that for generically integr-
able systems, the energy levels are uncorrelated and the
resulting statistics would be Poisson. This has been verified
by extensive numerical and experimental studies. However, it
is found that for graphene billiard with a sector shape where
the corresponding classical dynamics are generically integr-
able, for energy levels close to the Dirac point, the spectral
statistics are in general GOE, not Poisson [564]. Only close to
the band edge (E/t=±3) where the pseudoparticles follow
the Schrödinger equation, the statistics become Poisson. The
reason for this abnormal phenomenon is that when the energy
is close to the Dirac point, the edges play an important role.
Even for an ideal situation, say, 60° sector with both straight
edges being armchair, the level spacing statistics could be
Poisson, as figure 3(a) shows, but changing a few atoms
around the tip, or adding or removing one line of atoms along
one edge, as demonstrated in the insets, the level spacing
statistic becomes that of the GOE (figure 3(b)). Thus the
system is extremely sensitive to the imperfections of the
boundary, and for sectors with arbitrary angles, the results are
generally GOE [564]. An interesting question is that, is this
result due to the particular lattice structure of graphene, or due
to relativistic nature? A preliminary examination reveals that
this might be caused by the complex boundary condition
provoked by the multi-component spinor wavefunction.
Concrete conclusion may require further investigation.

3. Quantum scars

Quantum scar has been an important pillar for quantum chaos.
In the development of relativistic quantum chaos, one natural
question is whether scars exist in relativistic quantum sys-
tems, and if so, are there any unique features that can dis-
tinguish them from the conventional quantum scars?

3.1. Relativistic quantum scars

The existence of scars in relativistic quantum systems was
confirmed with a stadium shaped graphene billiard [565].
Scars in the Wimmer system (distorted circular) filled with

Figure 3. Level spacing statistics of graphene billiard with the shape
of a 60° sector with armchair edges. (a) With perfect edges and 227
254 atoms. (b) With one row of atoms removed along one edge so
the structure is no longer symmetric (as indicated by the red dots in
the inset) and 226 315 atoms. The energy range is 0.02<En/
t < 0.2. Dashed line is Poisson, solid line is GOE. Insets show the
magnified view of the lattice structure close to the tip of the sector to
illustrate the differences. Adopted from [564] with permission.
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graphene was also observed [566]. Employing the tight-
binding Hamiltonian equation (2), the eigenstates ψn can be
calculated. By examining the spatial distribution of ∣ ∣yn

2 for
eigenstates close to Dirac point, unequivocal scars on periodic
orbits are observed (figure 4). The scarring state can be
formed when the particle, after traveling the orbit for a
complete cycle, gains a global phase that is an integer mul-
tiple of 2π. Thus when there is a scar occurring at the
wavenumber k0, as the wavenumber (or energy) is changed,
there will be a scar again at (or close to) wavenumber k if

· pD =k L n2 , where D = -k k k L,0 is the length of the
orbit and n is an integer. For two adjacent scarring states, one
has pD =k L2 . This holds for both massless relativistic and
non-relativistic quantum systems. Note that this does not hold
for massive relativistic quantum billiard systems, as when
varying k (or energy E), besides the Δk·L term, there will be
an additional term that would lead to an extra phase
depending on k, which would also need to be taken into
account in the quantization formula. For massless relativistic
and non-relativistic quantum systems, the key difference lies
in the dispersion relation, with E∝k for the former and E∝k2

for the latter. Therefore, in terms of E, it will be either E or
E that will be equally spaced for recurrent scars, corresp-

onding to massless relativistic (graphene) or nonrelativistic
quantum cases. Figure 5 shows that for two representative
scars as shown in the insets, the energy values where they
occur versus the relative index. Despite small fluctuations, the
linear relation is apparent, corroborating the massless relati-
vistic predictions. In particular, for graphene, since
= E v kF , where ( )= v ta3 2F is the Fermi velocity, t is

the hopping energy between the nearest neighbors,
a=2.46Å is the lattice constant, one has
D = D =E v k hv LF F . For the scar shown in the left inset,
the length of the orbit is 263a, yielding ΔE=0.0207t; while
from figure 5, the averageΔE equals to 0.0203t, which agrees
well. For the other scar, the length of the orbit is 275a,

leading to ΔE=0.0198t, agrees well with 0.0195t from
figure 5.

Note that only when the energy is small, the dispersion
relation is homogeneous and the pseudoparticles follow the
massless Dirac equation. When the energy is large, the dis-
persion relation is no longer homogeneous but direction
dependent, and the group velocity  Ek is concentrated in
only three directions according to the symmetry of the hon-
eycomb lattice. In this case, the motion of the pseudoparticles
deviates from the massless Dirac equation. However, along
these three directions, E is still approximately linear to ∣ ∣k
even for E close to t. Since the scars are also constrained on
orbits that are composed by straight lines only in these three
directions, the relation D =E hv LF holds for almost the
whole range from 0 to t. This makes it easier to examine the
scars and to verify this relation in experiments. Indeed, this

Figure 4. (a) A stadium shaped graphene billiard with 11814 atoms. (b) and (c) show ∣ ∣yn
2 with =E t 0.363 58n and 0.576 65, respectively.

Adopted from [565] with permission.

Figure 5. For two representative scars with orbit length 263a (left)
and 275a (right), the energy values where it appears. Vertical axis
shows the relative index of these scars. From [464] with permission.
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feature of equal spacing of E in the recurring scarring states
has been confirmed experimentally in a mesoscopic graphene
ring system [567].

3.2. Chiral scars

Although pseudoparticles close to one Dirac point in gra-
phene and Berry and Mondragon’s ‘neutrino’ follow the same
2D massless Dirac equation, due to the coupling of the two
Dirac points by the boundary, a complete description for the
pseudoparticles in graphene will be different. Thus it is still
intriguing to examine the scars in the ‘neutrino’ billiard and
see how the time-reversal symmetry broken by the infinite
mass boundary condition is revealed in scars. A direct dis-
cretization method was developed to solve the massless Dirac
billiard in a confined region, where scars in an African billiard
and a bow-tie shaped billiard were identified [536], but due to
limited spatial resolution, recurrent rhythm can not be deter-
mined. Later, a conformal mapping method was developed
where a huge number of eigenstates with extremely high
spatial resolution can be obtained [568]. By solving the
eigenproblem of a heart-shaped 2D massless Dirac billiard,
scars on periodic orbits are identified. Furthermore, it is found
that the properties of the scars depend on whether the orbit
has even or odd bounces at the boundary, and the relation

p- =k k n L20 for recurring scars is no longer fulfilled for
the odd orbits. Particularly, for a given reference point k0 with
pronounced scarring patterns, let d p=k L2 and define

( ) ( ) [( ) ]h d d= - - -m k k k k k km m0 0 , where [x] denotes
the integer part of x and km is the eigenwavenumber of the
mth identified scarring state on the same orbit, if the above
relation is satisfied, then numerically, η(m) will take values
that are either close to zero or close to one. As shown in
figure 6, this is indeed the case for period-4 orbits. But for
period-3 orbits, η takes an extra value close to 1/2 [568].

A complete understanding would involve many more
details [569]. Here we would only provide the main argu-
ments. The quantization condition is such that, following the
orbit, after a complete cycle, the total phase accumulation
should be integer multiples of 2π. For the massless Dirac
billiard with a magnetic flux a pF 20 (F º h e0 is the
magnetic flux quanta) at the center of the billiard, the total
accumulated phase after one complete cycle is

sp
bF = - + 


S

1

2
,

where ‘±’ indicates whether the flow of the orbit is coun-
terclockwise or clockwise. b d= å 

i i is the extra phase due
to spin rotation imposed by reflections at the boundary, e.g.
see figure 7. For a given periodic orbit, at each reflection
point, the angle di can be calculated explicitly, which
determines b unsuspiciously [569]. The Maslov index σ is
the number of conjugate points along the orbit and is cano-
nically invariant [17]. For the heart-shaped chaotic billiard,
the value of σ is nothing but the number of reflections along a
complete orbit [19]. The action is

∮ ∮ ∮· · · · a= = + = p q k q A qS e k L Wd d d ,

where W is the winding number of the orbit with respective to
the flux, i.e. how many times it circulates the flux. One thus has

· ( )a
sp

bF =  - + k L W
2

. 3

For semiclassically allowed states, the phase accumula-
tion around one cycle should be an integer multiple of 2π, i.e.

pF = n2 (n=1, 2, L) so as to ensure that the wavefunc-
tion is single-valued. One thus has

( ) ( )p a
sp

b= + - k n W L2
2

. 4

Figure 6. For scars on two representative orbits, period-4 for the left panels, and period-3 for the right panels, the upper panels show the
corresponding eigenenergies of the scars, and the lower panels show η (see text) for these sates. Adopted from [568] with permission.
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This is the quantization rule for a scarring state on periodic
orbit with length L, which tells at (or close to) which value of
wavenumber k (or E) a scar can form. A comparison between
this formula and numerical results for two representative
orbits are shown in figure 8, which shows good agreement.
The time-reversal symmetry is then imprinted with whether
there are integers for both counterclockwise and clockwise
orientations that could satisfy equation (4) simultaneously for
the same value of k, and thus both states with counter-
clockwise and clockwise local current flows are solutions of
the system. This requires DF º F - F =+ - 0 modulo 2π,
or a b+ D =W2 0 modulo 2π, where b b bD = -+ -. For
systems without a magnetic flux, α=0, the condition
becomes Δβ=0. It is surprising that Δβ only depends on
whether the periodic orbit has even or odd number of bounces
at the boundary: Δβ=0 modulo 2π for even orbits—orbits

with even number of bounces, and Δβ=π modulo 2π for
odd orbits. Thus although each reflection breaks the time-
reversal symmetry due to the polarization of the spin and the
tangential current at each reflection point [569], even orbits,
when considering the overall accumulated phase, preserve the
T-symmetry, thus only odd orbits lead to T-symmetry broken.
This provides an understanding of the behaviors of η in
figure 6. For the period-4 orbit, at α=0, the values of k for
scars with different orientation coincide with each other, as
shown in figure 8(a) thus they are both allowed when k
satisfies the quantization rule. The difference in neighboring k
is then 2π/L, leading to η to be either close to 1 or close to 0.
However, at α=0, for the period-3 orbit, the values of k for
scars with different orientation are interlaced, e.g. clockwise,
counterclockwise, clockwise, and so on, as shown in
figure 8(b), while for each orientation, the space between
neighboring k is 2π/L, but if one does not differentiate the
orientations, the difference becomes π/L for the two neigh-
boring k values corresponding to different orientations,
leading to η=1/2. Note that as the magnetic flux is varied,
the system is periodic with α=2π. Furthermore, since

a bDF = + DW2 , for period-4 orbit, Δβ=0, W=1, thus
when α=π/2, as indicated by the vertical lines in figure 8,
Δ Φ will become π, which will be similar as that for period-3
at α=0. On the other hand, for period-3 orbit, Δβ=π, thus
when α=π/2, Δ Φ=2π, or 0 modulo 2π, which is similar
to the case of periodic-4 at α=0. Thus by applying a
magnetic flux of α=π/2, the chirality interchanges for these
two orbits.

3.3. Unification of chiral scar and nonrelativistic quantum scars

Recently we have developed quantization rule for scars in
massive 2D Dirac billiards with infinite mass confinement
[570]. Compare to the massless case, there is a new phase
emerging during each reflection j. For the massless case, the
reflection coefficient Rj is 1. While for the massive case,
although the module of Rj is still 1, it has a non-trivial phase,
i.e. ( )= d w + 

R ej
i 2j j , where ( )d q q= - 

-
 2j j j 1 is the same

as in the massless case (figure 7), but w2 j is a complicated
function of the angles (q q- ,i j1 ), the mass m, and the wave-
number k (or energy E) [570]. Let g w= å 2j j and in the
absence of magnetic flux, i.e. α=0, the total phase accu-
mulation around one complete cycle is then

· ( )sp
b gF = - + +  k L

2
2 . 5

Since mod(Δ 2β,2π)=0, where b d= å 
j , we then have

g g gDF = D º -+ -. Thus for massive Dirac billiards, the
complex behavior can be all attributed to Δγ. We have found
that when m goes to zero, Δγgoes to 2π or π for even or odd
orbits, respectively (see figure 9 when m 0), degenerating
to the massless cases. When the mass m goes to infinity,
Δγgoes to zero for both even and odd orbits (see figure 9
when k 0): hence the difference between even and odd
orbits diminish and the system becomes effectively a non-
relativistic quantum billiard. Thus through the modulation of
the extra phase in the reflection coeffecients, the relativistic

Figure 7. Definition of the angles. ( )d q q= -+
- 2i i i 1 is the extra

phase due to the rotation of the spin, where ‘+’ indicates
counterclockwise orientation. Typically, the phase associated with
the time reversed reflection, e.g. d-i , from -ki to - -ki 1, would be
different from d+i .

Figure 8. Validation of the quantization rule equation (4). Shown are
the relations between wavenumber k and magnetic flux α, for (a) the
period-4 scar in figure 6(a), and (b) the period-3 scar in figure 6(c).
The orange up-triangles indicate scars with a counterclockwise flow,
and the blue down-triangles are those with a clockwise flow. The
gray squares mark the scars whose flow orientations cannot be
identified, which typically occur close to the cross points of the two
orientation cases. The solid lines are theoretical predictions of
equation (4). Vertical lines indicate the position of α=π/2. The
step in the variation of α is 0.01. Adapted from [569] with
permission.
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chiral scar and the nonrelativistic quantum scar can be unified
as the two limiting cases of the massive Dirac billiards.

4. Scattering and tunneling

For open quantum systems, an important topic of quantum
chaos is quantum chaotic scattering [50, 158–170]. In non-
relativistic systems, a general observation is that, for classi-
cally mixed systems, the transmission (or conductance) of the
corresponding quantum system exhibit many sharp reso-
nances caused by the strongly localized states around the
classically stable periodic orbits, while for classically chaotic
system, the peaks are either broadened or removed. That is,
chaos regularizes the quantum transport and makes the
transmission curve smoother. Note that, for closed systems,
such as a quantum billiard, although there are localized
scarring state on the unstable periodic orbits for classically
chaotic system, these states are unstable that once the system
is opened up, due to the spanning chaotic sea in the phase
space, they are typically washed out, leaving few or no
localized states.

Similar investigation has been carried out for graphene/
Dirac quantum dots with different classical dynamics [538,
571–577]. It has been found that, classical dynamics can
indeed influence the quantum transport, e.g. by varying the
boundary of the quantum dot to change the corresponding
classical dynamics from mixed to chaotic, most of the sharp
resonances are broadened or removed, however, there are
residual sharp resonances, with still strong localized states on
classically unstable periodic orbits that would not exist for
nonrelativistic systems [573]. In particular, a cosine billiard
[163] is adopted to demonstrate this phenomenon. The
boundary is given by two hard walls at y=0 and

( )[ ( )]p= + -y W M x L2 1 cos 2 for  x L0 , with two
semi-infinite leads of width W attached at the two openings of
the billiard, whose length is L and the widest part is (W+M).
By changing the geometric parameters M, W, and L, the
classical dynamics can be either mixed, e.g. for W/L=
0.18 and M/L=0.11, or chaotic, e.g. W/L=0.36 and
M/L=0.22. A tight-binding approach is employed, and

Green’s function formalism is used to calculate the trans-
mission and the local density of states (LDS) [578–581].

Assume the isolated dot region (0�x�L) has Hamil-
tonian Hc with a set of eigenenergies and eigenfuctions
{ ∣ }y a =a aE , 1, 2,0 0 . The effects of the semi-infinite leads
can be incorporated into the retarded self-energy matrices,
S = S + SR

L
R

R
R, with the lower indices indicate whether it is

due to the left or right leads. Then the whole Hamiltonian
with the effects of the leads is + SHc

R. Since ΣR in general
can be complex, and it is small that it can be regarded as a
perturbation, the new set of eigenenergies becomes

g= - D -a a a aE E i0 , where Δα and γα are generally small.
Δα represents a shift in aE0 , and γα is the width of the
resonance for the αʼs state. 1/γα can be regarded as the life-
time of the state [578]. For detailed formulas of calculating γ

and the determining factors, please refer to [582].
The values of γα for four cases with mixed or chaotic

dynamics and 2-dimensional electron gas (2DEG) or gra-
phene quantum dots are shown in figure 10. Note that smaller
γα will result in sharper transmission resonances. For 2DEG
quantum dots with mixed dynamics (figure 10(a)), there are
many cases that γα takes very small values, in the order of
10−4, indicating extremely sharp resonances. When the
classical dynamics change from mixed to chaotic, beside the
envelope, the small values in γα are almost all removed
(figure 10(b)). For graphene quantum dots, when the classical
dynamics is mixed, beside the smooth envelope for
γα∼10−2, there is a cluster of points for small γα values
(figure 10(c)). When the classical dynamics becomes chaotic
(figure 10(d)), although the overall trend is that the small
values are shifted upwards, there are still a big cluster of
points take apparently smaller values than the envelope,
indicating the persistence of the sharp resonances.

In addition, figure 11 shows the LDS for the most pro-
nounced patterns in both the 2DEG and graphene quantum
dots. (a) and (d) are for classically mixed dynamics, which
show strong localizations on the stable periodic orbits in both
cases. (b), (c) and (e), (f) are for classically chaotic dynamics.
It is clear that for 2DEG cases, chaos ruined the localized
states on the unstable periodic orbits that are present in the
closed case, i.e. the scars; but for graphene quantum dot,
localization on unstable periodic orbits still persists. Actually,

Figure 9. Δγ between counterclockwise and clockwise scaring states on a period-3 orbit (a) and a period-4 orbit (b). The massless Dirac
regime is m 0, while k 0 is effectively  ¥m and is the Schrödinger limit. Adapted from [570] with permission.
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there are many such states, corroborating the results in
figure 10. Although weaker, the effect that classical chaos can
make the conductance fluctuation becomes smoother can be
exploited to articulate a controlling scheme to modulate the
conductance fluctuations in quantum transport through a
quantum dot, by changing the underlying classical dynamics
[583, 584]. In the presence of a strong magnetic field, the
difference caused by the classical dynamics can be suppressed
further [585].

The same phenomenon has also been observed in bilayer
graphene [586]. The pseudoparticles in bilayer graphene
follow the 2D massive Dirac equation. Thus this indicates that
the suppression of the effect of eliminating sharp resonances
by chaos also persists for massive Dirac systems. In addition,

when the pseudoparticle is traveling along the classical bal-
listic orbit, it tends to hop back and forth between the two
layers, exhibiting a Zitterbewegung-like effect.

Besides scattering, there are other phenomena that the
effect of chaos has been suppressed. For example, for reg-
ulation of tunneling rates by chaos [191, 192], it has been
found that if 2DEG is replaced by graphene or the massless
Dirac fermion, although the regularization effect persist, it is
much weaker than the 2DEG case [193–195]. The same hold
for persistent currents [587, 588] in Aharonov–Bohm (AB)
rings [589]. Conventional metallic [590–593] or semi-
conductor [594] ring systems with a central AB magnetic flux
may exhibit dissipationless currents, e.g. the persistent or
permanent current. However, the current is quite sensitive that

Figure 10. The imaginary part γ of the eigenenergies due to coupling between the dot and the leads, which is an effective indicator of the
resonance width. The left panels are for 2DEG quantum dots, and the right panels are for graphene quantum dots. Upper panels are for the
cases with mixed dynamics, and lower panels are for classically chaotic dynamics. Adapted from [573] with permission.

Figure 11. Typical local density of states for quantum dots with classically mixed (a), (d) and chaotic (b) ,(c), (e), (f) dynamics. The upper
panels are for 2DEG quantum dots, and lower panels are for graphene quantum dots.
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small non-idealities such as boundary deformation or dis-
orders may destroy the persistent current drastically
[595–598]. While in a ring of massless Dirac fermions, due to
the Dirac whispering gallery modes [599–601], the persistent
current is quite robust against boundary deformations that
even in the case where the classical dynamics become chaotic
there is still a quite large amount of persistent currents
[602–604]. Furthermore, recently, Han et al [605] investi-
gated out-of-time-order correlator in relativistic quantum
billiard systems and found that the signatures of classical
chaos are less pronounced than in the nonrelativistic case.
Here again the effect of chaos is suppressed.

5. Quantum chaos in pseudospin-1 Dirac materials

Dirac materials hosting pseudospin-1 quasiparticles with a
conical intersection of triple degeneracy in the underlying
energy band have attracted a great deal of attention
[606–633]. The physics of these 2D Dirac materials is
described by the generalized Dirac-Weyl equation for mass-
less spin-1 particles [607, 608, 626]. Pseudospin-1 quasi-
particles are different from Dirac, Weyl and Majorana
fermions, and are of particular interest to the broad research
community with diverse experimental realization schemes
such as artificial photonic lattices [612, 616, 620, 621, 624],
optical [622] and electronic Lieb lattices [631, 632], as well as
superconducting qutrits [633]. A striking relativistic quantum
hallmark of pseudospin-1 particles is super-Klein tunneling
through a scalar potential barrier [608, 610, 623, 634, 635],
where omnidirectional and perfect transmission of probability
one occurs when the incident energy is about one half of the
potential height. Generally, Klein tunneling defines optical-
like, negatively refracted ray paths through the barrier inter-
face via angularly resolved transmittance in the short wave-
length limit [636–638].

A recent study [639] addressed the issue of confinement
of quasiparticles in pseudospin-1 materials. When both super-
Klein tunneling and chaos are present, one may intuitively
expect severe leakage to predominantly occur so that trapping
would be impossible. However, quite counterintuitively, an
energy range was found in which robust wave confinement
occurs in spite of chaos and super-Klein tunneling. Espe-
cially, the three-component spinor wave concentrates in a
particular region of the boundary through strongly squeezed
local current vortices generated there, whose pattern in phy-
sical space can be manipulated in a reconfigurable manner,
e.g. by deforming the boundary shape or setting the direction
of excitation wave. While these modes are distributed
unevenly in physical space because of the irregular defor-
mations, even fully developed chaos and super-Klein tun-
neling are not able to reduce their trapping lifetime. That is,
these modes contradict the intuitive expectation that electro-
statically confining relativistic type of carriers/particles to a
finite chaotic domain is impossible due to the simultaneous
presence of two leaking (Q-spoiling) mechanisms: chaos
assisted tunneling and Klein tunneling. This phenomenon has
no counterpart in nonrelativistic quantum or even in

pseudospin-1/2 systems. The resulting narrow resonances are
also characteristically different from those due to scarring
modes concentrating on periodic orbits in conventional wave
chaotic scattering, in quantum dots [573, 640–645] or in open
optical microcavities [646–648].

6. Discussions

Beside the above discussed few topics in relativistic quantum
chaos, there are many other interesting topics that have been
investigated in depth, such as quantum tunneling without
[193, 194] and with electron–electron interactions [195],
super-persistent currents that are robust to boundary defor-
mations [602, 603] and the presence of disorders [604],
relativistic quantum chimera states that electrons with dif-
ferent spins exhibit distinct scattering behaviors as they fol-
low different classical dynamics [649], OTOC for relativistic
quantum systems [605], anomalous entanglement in chaotic
Dirac billiards [650], relativistic quantum kicked rotors [442,
510–512], kicked relativistic particle in a box [651], etc. More
efforts are needed to gain deeper understandings of these
interesting subjects. In addition, electron–electron interaction
effects [652] in a chaotic graphene quantum billiard have also
been considered and compared with scanning tunneling
microscopy (STM) experiments, which could explain both the
measured density of state values and the experimentally
observed topography patterns [198]. Most of the under-
standings achieved so far for relativistic quantum chaos are
for massless cases. Massive Dirac billiards have been con-
sidered only recently, where quantization formula for scarred
states in confined 2D massive Dirac billiard has been pro-
posed and validated numerically, and restoration of time-
reversal symmetry in the infinite mass limit has been unveiled
[570]. However, there are many other issues to be understood
in the massive Dirac billiards, e.g. to what extent the intri-
guing observations for massless Dirac billiard persist in the
massive case? Pseudo-spin one systems [607–609] have
attracted much attention recently. Due to the flat band, it has
many interesting properties regarding quantum chaotic scat-
tering, such as superscattering that could even defy chaos
Q-spoiling and Klein tunneling [635, 639, 653, 654]. There
are still many open questions concerning pseudo-spin one
system and quantum chaos.

Retrospecting the half-century development of quantum
chaos, there are many subjects that would be interesting to
extend into the relativistic quantum realm, such as the validity
of the proposed indicators of universality corresponding to
different classical dynamics, Loschmidt echo, many-body
effects, quantum thermalization, etc. that have been discussed
in section 1, as it is not straightforward to speculate what will
happen when stepping into the relativistic regime. Efforts in
trying to understand the behaviors of these subjects in rela-
tivistic quantum systems may not only advance the knowl-
edge on the fundamental physics of relativistic quantum
chaos, but may also bring new concepts of applications base
on the state-of-art Dirac material technologies.
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