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 A B S T R A C T

A tipping point in nonlinear dynamical systems was previously understood as an abrupt 
transition from a high to a low stable steady state as a bifurcation parameter crosses a critical 
value. We uncover an unconventional tipping phenomenon in a class of non-autonomous 
nonsmooth biophysical systems, where the transition occurs through an intermediate, oscillatory 
state. Such a ‘‘stepping-stone’’ state also occurs in the reverse process of recovery, resulting in a 
‘‘wrinkled’’ hysteresis loop. The dwelling time in the oscillatory state, e.g., the transient tipping 
time before the system settles in the low steady state, depends on the rate of the parameter 
change. The scaling laws of the transient tipping and recovery times are derived analytically. 
The intermediate state presents an opportunity for control intervention to prevent a healthy 
system from collapsing into a diseased state.

1. Introduction

The past half century has witnessed an increasing utilization of nonlinear dynamics to understand various diseases [1,2], where 
the central idea is that diseases are the result of some critical transition or tipping in the underlying physiological dynamical 
system [3,4], leading to the concept of dynamical diseases [5]. Methodologies in nonlinear dynamics that have been exploited 
to understand dynamical diseases such as epilepsy [6,7] include the Lyapunov exponents [8,9], the correlation dimension [10], and 
phase synchronization [11]. The focus of this paper is on tipping in a major class of human skin diseases: atopic dermatitis (AD) - a 
prevalent skin condition [12,13] governed by the complex interplay among genetic, immunological, and environmental factors [14] 
with diverse phenotypes and endophenotypes [15] as well as regional and age-related differences in AD clinical characteristics [16]. 
While being common, the manifestations of AD vary drastically across age groups, ethnicity, and genders, making it difficult to 
develop universally effective methods of treatment. For example, in the age group from birth to seven years old [17], AD is 
often associated with asthma [18]. It was also found that the AD phenotypes depends on the timing of onset and progression 
in childhood [19]. In adults with acute AD, the cytokine levels were found to be related to the SCORAD index [20]. Because of 
the diversity in the AD manifestations and courses of evolution [21], it has been challenging to understand its mechanism and 
long-term evolution [22] so as to develop universally applicable treatment. The rarity of robust animal models further complicates 
the translation of theoretical research into clinical practice. Recently, the focus has shifted towards in vivo, in vitro, and in silico
methods to dissect the pathophysiological underpinnings of AD and to identify critical therapeutic targets and biomarkers, where 
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mathematical modeling [23] and computational analysis are playing an increasing role [24]. More specifically, a computational 
design of treatment strategies for proactive therapy on AD using optimal control theory was developed [25]. Mathematical modeling 
of AD revealed ‘‘double-switch’’ mechanisms underlying four common disease phenotypes [26], a bifurcation analysis was developed 
to determine patient-specific effects of treatments on dynamic phenotypes [27], and multistability [28] and complex transient 
dynamics [29] in the AD model was investigated [28]. From the point of view of dynamics, the AD systems are nonsmooth because 
of the various biological switches involved [26]. As will be demonstrated and explained, because of the non-smoothness, the tipping 
phenomenon exhibits unique features that are not seen in smooth dynamical systems.

The broad phenomenon of tipping in dynamical systems has been understood as a sudden transition from one stable steady state 
to another as a bifurcation parameter changes through a critical point. Such systems are bistable and, as the parameter reverses its 
change, a transition to the original steady state can occur but at a parameter value differing from the tipping point, leading to a 
hysteresis loop that is quite common in bistable physical and biological systems.

For example, in biology, multistability, bifurcations, and hysteresis were studied in a large class of biological positive-feedback 
systems [30] and robust bistable patterning was discovered on the dorsal surface of the Drosophila embryo [31]. In systems 
biology, multistability was found to play a key role in regulated stochastic cell fate determination [32], control of gene regulatory 
networks [33], and the engineering of a synthetic quadrastable gene network on Waddington landscape for cell fate [34]. In optics, 
bistability was discovered in nonlinear plasmonic cloaks to realize giant all-optical scattering switching [35], in an atomic coherent 
medium [36], and in all-microwave switching [37]. In nanomagnetics, multistable free states of an active particle was discovered 
in coherent memory dynamics [38] and in magnetoelastic switching of non-ideal nanomagnets with defects [39]. Moreover, a class 
of mesoscopic superconducting memory based on bistable magnetic textures was studied [40]. Quite recently, folding states within 
a hysteresis loop as a hidden form of multistability were discovered in a number of nonlinear physical systems [41].

A field in which tipping is of particular interest is ecological systems where bistability is ubiquitous [42]. For example, in a 
shallow lake, two contrasting stable states can coexist: a clear-water state dominated by aquatic plants and a turbid-water state 
with excessive algae and suspended sediment [43]. Early-warning signals for critical transitions between two coexisting stable states 
(or tipping [44]) in ecological systems were studied [45] and the need to forecast tipping points was emphasized [46]. In certain 
ecological systems, regime shifts can occur without warning [47] and early warning signals of extinction in deteriorating environ-
ments were discovered [48]. The limits to detection of early warning for critical transitions in ecosystems were quantified [49], and 
generic indicators for loss of resilience before a tipping point leading to population collapse were uncovered [50]. Tipping points in 
ecological networks were discovered [51]. It was also found that the sudden collapse of pollinator communities can be attributed 
to tipping [52]. Tipping in macroeconomic agent-based models [53] was uncovered. In complex mutualistic networks of plants 
and pollinators, predicting tipping through dimension reduction was studied [54] and a control strategy was articulated to prevent 
tipping [55]. In these ecological networks, noise was found to play a beneficial role in species recovery [56] and control [57], and 
transient dynamics can arise due to noise [58]. Multiplexity in mutualistic networks can also be exploited to mitigate tipping [59]. 
(A comprehensive review of bistability and tipping in ecosystems is available [60].)

Bistability and tipping also arise in other fields. For example, in medicine, early-warning signals were proposed for detecting 
sudden deterioration of complex diseases through dynamical network biomarkers [61], and such biomarkers can be effective 
indicators of pulmonary metastasis at the tipping point of hepatocellular carcinoma [62]. In climate science, tipping may be 
predicted as a noisy bifurcation [63], there can be noise-induced and rate-dependent tipping events in climate systems [64], and 
critical slowing down can be used for early warning of tipping [65]. It was argued that a state shift may be occurring in Earth’s 
biosphere [66]. A stochastic integrated assessment of the climate tipping points indicated the need for strict climate policy [67]. A 
significant example where global climate change makes tipping significantly more likely in critical natural systems is the Atlantic 
Meridional Overturning Circulation (AMOC) [68], which supports livable temperature conditions in Western Europe [69]. The 
evolution of the AMOC since 1980 was studied [70] and the risk of tipping the overturning circulation due to increasing rates of 
ice melt was pointed out [71]. Recently, model-based statistical [72] and data-driven machine learning [73] methods were recently 
developed to predict the potential tipping or collapse of the AMOC.

In general, nonautonomous dynamical systems with some time-dependent bifurcation parameter are vulnerable to tipping as 
it can be triggered by the time-rate change of the parameter, the phenomenon of rate-induced tipping [64]. Bifurcation and rate-
induced tipping caused by parameter shifts in low-dimensional nonautonomous systems was studied [74]. Rate-induced tipping in a 
predator–prey system was discovered [75] and the rate of environmental change as an important driver across scales in ecology was 
noted [76]. It was also found that rate-induced tipping can trigger plankton blooms [77]. The dynamical mechanism of rate-induced 
tipping [78] from the perspective of global phase space was elucidated [79]. In most existing studies on tipping, the transition is 
typically abrupt through a saddle–node type of bifurcation.

In this paper, we present a phenomenon in nonsmooth dynamical systems where tipping occurs in an unconventional manner 
that is characteristically different from any known scenario. In particular, the system still possesses two stable steady states. As a 
bifurcation parameter changes with time (thereby making the system nonautonomous), a transition from one stable steady state to 
another eventually occur, but through a ‘‘stepping-stone’’ type of intermediate attractor that is not a steady state but oscillatory. As 
illustrated in Fig.  1, at the first critical point, denoted as 𝑞1, a transition from the high stable state to the intermediate attractor occurs, 
followed by a transition from this attractor to the low steady state at 𝑞2. Likewise, in the reverse process of recovery, the system 
moves out of the low steady state to a different intermediate attractor at 𝑞3, and the subsequent transition from this attractor to the 
high steady state at 𝑞4 completes the hysteresis loop. While the two stable steady states do not depend on how fast the parameter 
changes, the intermediate attractor does depend on the time rate change of the parameter. To our knowledge, hysteresis loops in 
physical and biological systems reported in the literature are typically associated with abrupt but nonetheless smooth transitions 
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between the two stable steady states, as described in the preceding paragraphs. However, in our case, the loop becomes irregular and 
‘‘wrinkled’’ due to the system’s wandering on an oscillatory attractor before finally approaching a stable steady state. The dwelling 
or the transient time in the oscillatory state depends on the rate of parameter change and exhibits an algebraic scaling behavior, 
which can be understood analytically.

2. Nonlinear dynamics of atopic dermatitis

2.1. Mathematical model of AD

The biophysical mechanism of AD pathogenesis progression is captured by the model [26] in Fig.  1(a), as governed by the 
interactions between the skin barrier, immune regulation, and environmental stress. Under normal conditions, small amounts of 
pathogens entering through compromised skin barriers are naturally contained and pose no significant threat. However, when the 
pathogen load exceeds a threshold, a critical point is reached, at which physiological switches 𝑅 and 𝐾 are activated, such as 
toll-like receptors and protease-activated receptor 2. As a result, an AD flare is triggered. The immune response includes the release 
of antimicrobial peptides that combat the invading pathogens and signal various immune mechanisms that mobilize dendritic cells 
to the lymph nodes. If the pathogen level decreases below a deactivation threshold, these switches are turned off, stopping the 
AD flare. Conversely, if the dendritic cell count in the lymph nodes surpasses a second critical threshold, a further, irreversible 
change (𝐺 switch) in the immune state occurs, exacerbating the skin condition. Because of the activation and deactivation of the 
switches, the underlying dynamical system is nonsmooth. Quantitatively, the AD mechanism can be described by the following set 
of nonlinear differential equations:

𝑑𝑃
𝑑𝑡

=
𝑃env𝜅𝑝

1 + 𝛾𝐵𝐵(𝑡)
− 𝛼𝐼𝑅(𝑡)𝑃 (𝑡) − 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
𝑑𝑡

=
𝜅𝐵[1 − 𝐵(𝑡)]

[1 + 𝛾𝑅𝑅(𝑡)][1 + 𝛾𝐺𝐺(𝑡)]
− 𝛿𝐵𝐾(𝑡)𝐵(𝑡), (1)

𝑑𝐷
𝑑𝑡

= 𝜅𝐷𝑅(𝑡) − 𝛿𝐷𝐷(𝑡),

where 𝑃 (𝑡) ≥ 0, 0 ≤ 𝐵(𝑡) ≤ 1 and 𝐷(𝑡) ≥ 0 denote the infiltrated pathogen load (in milligrams per milliliter), the strength of 
barrier integrity (relative to the maximum strength), and the concentration of dendritic cells in the lymph node (cells per milliliter), 
respectively. The typical parameter values are listed in Appendix  A.

The structure of the skin barrier is dependent on the proteins keratin and filaggrin (FLG), and the extracellular matrix containing 
lipids, structural proteins, and the serine protease subgroup kallikreins. Dysfunction of these components can result in barrier defects, 
as typically found in loss-of-function mutations of the FLG gene [80]. The AD model (1) utilizes switches to describe the activation of 
the immune system, as shown in Fig.  1(a). In particular, the switches 𝑅(𝑡), 𝐺(𝑡) and 𝐾(𝑡) [26] depict the levels of activated immune 
receptors, Gata3 transcription relative to the maximum transcription level, and active kallikreins, respectively, which are given by

𝑅(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅off,  for 𝑃 (𝑡) < 𝑃− or 
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅off},

𝑅on,  for 𝑃 (𝑡) > 𝑃+ or 
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅on},

(2)

𝐾(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾off,  for 𝑃 (𝑡) < 𝑃− or 
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅off},

𝑚on𝑃 (𝑡) − 𝛽on,  for 𝑃 (𝑡) > 𝑃+ or 
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅on},

(3)

𝐺(𝑡) =

{

𝐺off,  for 𝐷(𝑡) < 𝐷+ and 𝐺(𝑡−) = 𝐺off,
𝐺on,  for 𝐷(𝑡) ≥ 𝐷+  or 𝐺(𝑡−) = 𝐺on,

(4)

where 𝑅on, 𝑅off, 𝐺on, 𝐺off and 𝐾off are parameters characterizing the activating or inactivating constant-level of the switches, but 
𝐾on depends on 𝑃 (𝑡): 𝐾on = 𝑚on𝑃 (𝑡) − 𝛽on, and the two switches 𝑅 and 𝐾 work together simultaneously.

Note that the switches 𝑅 and 𝐾 are hysteretic, which activate and cease AD flares. In contrast, switch 𝐺 is irreversible: once 
activated, it remains on.

2.2. Bifurcation of AD dynamics

The AD system (1) exhibits complicated dynamical phenomena including multistability, transients and nonsmooth bifurca-
tions [28,29]. Previous works [26,28] revealed four distinct attractors corresponding to the four stages of AD: healthy recovery (𝐻), 
chronic damage (𝐶), mild oscillations (𝑂𝑚), and severe oscillations (𝑂𝑠). Fig.  1(b) illustrates that the two steady-state attractors, 
labeled as 𝐻 and 𝐶, do not exhibit any oscillatory behavior. Specifically, the skin integrity level is represented by 𝐵 = 1 for the 
healthy skin state (𝐻) and 𝐵 = 0 for severe skin damage (𝐶). In contrast, the oscillatory attractors, 𝑂  and 𝑂 , display fluctuating 
𝑚 𝑠
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Fig. 1. AD system, unconventional tipping and wrinkled hysteresis loop. (a) The biophysical processes underlying AD leading to a nonsmooth 
dynamical system. (b) Behavior of four attractors over time, illustrating the activation and inactivation of the 𝑅,𝐾-switch, as well as the activation 
of the 𝐺-switch. (c) A bifurcation diagram with the nominal skin permeability 𝜅𝑝, revealing multiple coexisting attractors. There are a low stable 
steady state 𝐵 = 0 (red, denoted as 𝐶), a high stable steady state 𝐵 = 1 (blue, 𝐻), and two oscillatory attractors in between (𝑂𝑠 - purple and 
𝑂𝑚 - green). The rate of pathogen eradication is fixed at 𝛼𝐼 = 0.1. There are six distinct bifurcation points 𝑏𝑖 (𝑖 = 1,… , 6). At each point, either 
a new attractor emerges or an existing attractor disappears. (d) For the corresponding nonautonomous system with 𝜅𝑝(𝑡) = 𝜅𝑠

𝑝 + 𝜖𝑡 (𝜖 = 10−6), 
unconventional tipping occurs, where the system transits from 𝐻 to 𝑂𝑚 at 𝜅𝑝 = 𝑞1, followed by another transition to 𝐶 at 𝑞2. The reverse process 
is also through two transitions: one at 𝑞3 and another at 𝑞4. The gray background marks the oscillatory attractors in (c). As a result of the four 
transitions, the hysteresis loop becomes wrinkled. (e) Similar transitions and wrinkled hysteresis loop for 𝜖 = 10−3. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

behavior in skin integrity, highlighting the dynamic progression of AD. A key distinction between these two oscillatory attractors 
is the activation of the 𝐺 switch: the 𝐺 switch for 𝑂𝑚 remains consistently off, while for 𝑂𝑠, it remains consistently on, as shown 
in Fig.  1(b). Two key parameters are the nominal skin permeability 𝜅𝑝 and the rate 𝛼𝐼  of pathogen eradication. One dynamic 
feature observed in the AD system is multistability. For example, with a fixed parameter pair (𝜅𝑝, 𝛼𝐼 ) = (0.835, 0.114) in this region, 
the steady-state attractors 𝐻 , 𝑂𝑚, 𝑂𝑠, and 𝐶 can all emerge due to multistability [28]. This means that, depending on the initial 
conditions, any of these attractors can occur [28].

Fig.  1(c) shows a typical bifurcation diagram with 𝜅𝑝 for 𝛼𝐼 = 0.1, where there are six distinct bifurcation points 𝑏𝑖 (𝑖 = 1,… , 6) 
with four attractors in different parameter intervals. In particular, for 𝜅𝑝 < 𝑏4, the high steady state, denoted as 𝐻 and represented 
in blue, is the only attractor. As 𝜅𝑝 increases through 𝑏4, the attractor 𝑂𝑠, represented by purple, emerges. For 𝑏4 ≤ 𝜅𝑝 ≤ 𝑏3, the 
system has two coexisting attractors, signifying bistability. At 𝜅𝑝 = 𝑏3, a low steady state attractor, denoted as 𝐶 and represented 
in red, is born. For 𝑏3 ≤ 𝜅𝑝 ≤ 𝑏6, the system has three coexisting attractors, leading to multistability. At 𝑏6, 𝑂𝑠 is destroyed and the 
system has two coexisting steady-state attractors for 𝑏6 ≤ 𝜅𝑝 ≤ 𝑏5. At 𝑏5, the mild oscillatory attractor 𝑂𝑚, represented in green, is 
created and the system has three coexisting attractors again for 𝑏5 ≤ 𝜅𝑝 ≤ 𝑏1. At 𝑏1 and 𝑏2, respectively, the high steady state (𝐻) 
and the mild oscillatory attractor (𝑂𝑚) disappear, respectively, and the system has two coexisting attractors for 𝑏1 ≤ 𝜅𝑝 ≤ 𝑏2. For 
𝜅𝑝 > 𝑏2, the low steady state (𝐶) is the only attractor.

That is, by varying 𝜅𝑝, the number of existing attractors changes in the following sequence: 1 → 2 → 3 → 2 → 3 → 2 → 1. 
This unique bifurcation behavior, as illustrated in Fig.  1(b), can only be observed in nonsmooth dynamical systems, making it a 
characteristic feature of such systems. Recent studies have examined the frequency characteristics of oscillatory states, 𝑂𝑚 and 𝑂𝑠, 
in relation to inflammation dynamics of AD [81]. In general, the bifurcation at the tipping point belongs to the type of boundary 
equilibrium bifurcations [27].
4 
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Note that 𝜅𝑝 characterizes the skin condition, where large values of 𝜅𝑝 correspond to a more deteriorated condition. For 𝜅𝑝 < 𝑏4, 
patient’s skin condition is healthy, where the high steady state is the only attractor in the system. As 𝜅𝑝 increases through 𝑏4, clinic 
symptoms of varying degrees as characterized by the occurrence of the oscillatory attractors and the low steady state. For 𝜅𝑝 > 𝑏2, 
AD has evolved into the most severe stage.

3. Results

The AD system (1) is nonautonomous as the skin condition changes with time for a variety of reasons including aging. To model 
this feature, we set the nominal skin permeability as a function of time [82,83]: 

𝜅𝑝(𝑡) = 𝜅𝑠
𝑝 ± 𝜖𝑡, (5)

where 𝜅𝑠
𝑝 is the initial value and 𝜖 is the linear ramping rate. The forward (+) and backward (−) conditions indicate that the skin 

condition will deteriorate and improve with time, respectively.
We fix the initial value 𝜅𝑠

𝑝 at 0.69 for the forward direction and 0.9 for the backward direction. Fig.  1(d) shows, for 𝜖 = 10−6, 
forward (backward) trajectories. As the skin conditions deteriorate, a tipping transition occurs in the relative strength 𝐵(𝑡) of the 
barrier integrity at 𝑞1 from the high steady state to the oscillatory state 𝑂𝑚 (the blue trajectory, corresponding to mild skin disease). 
The system remains in 𝑂𝑚 until 𝜅𝑝 reaches the second critical point 𝑞2 > 𝑞1, at which 𝐵(𝑡) drops to near zero, signifying reaching 
the most severe stage of AD. For reference, the bifurcation diagram in Fig.  1(c) for the autonomous system is included in Fig. 
1(d) as the gray background. In the nonautonomous system, both transitions at 𝑞1 and 𝑞2 are abrupt, which is characteristic of 
tipping. Overall, the tipping from the high healthy state to the intermediate oscillatory state, the system’s maintaining in this state 
for a finite parameter interval (equivalently, a finite amount of time) and the second tipping to the low steady state, constitute an 
unconventional, two-stage tipping transition. This makes the tipping branch of the hysteresis loop rippled, in contrast to the tipping 
behavior directly from the high to the low stable steady state in smooth dynamical systems.

A similar phenomenon occurs in the backward direction of the parameter variation: 𝜅𝑝(𝑡) = 𝜅𝑠
𝑝 − 𝜖𝑡, where the skin condition is 

improved. At the transition point 𝑞3 < 𝑞1, a sudden transition from the low steady state to another intermediate oscillatory state, 
𝑂𝑠, occurs. The system stays in 𝑂𝑠 for a finite parameter interval (time) before an abrupt transition back to the high stable steady 
state at 𝑞4 < 𝑞3. Owing to the dwelling in the oscillatory state 𝑂𝑠, the recovery process from the low to the high steady state is 
also unconventional, contributing to an irregular branch of the hysteresis loop. Compared with a typical hysteresis loop in smooth 
dynamical systems, the overall hysteresis loop represented by the blue and red curves in Fig.  1(d) is ‘‘wrinkled’’.

Two remarks are in order. First, in the nonautonomous AD system, the tipping points 𝑞𝑖 are different from the corresponding 
bifurcating points 𝑏𝑖 in the autonomous system, as indicated in Fig.  1(d). This difference can be understood analytically (see 
Appendices  B and C). Second, the phenomena of unconventional tipping and wrinkled hysteresis loop can occur for different time 
rate change of the bifurcation parameter, as exemplified in Fig.  1(e) for 𝜖 = 10−3, a rate that is three orders of magnitude higher 
than that in Fig.  1(d). The initial values 𝜅𝑠

𝑝 for the forward and backward trajectories, as shown in Fig.  1(e), are 0.69 and 0.90, 
respectively. At this rate, the first tipping occurs at approximately the same point 𝑞1 but the oscillatory state of mild AD lasts in 
a larger parameter interval as a higher critical value 𝑞2 is required for the system to switch to the low steady state associated 
with severe AD. Likewise, while the first recovery point 𝑞3 in Figs.  1(d) and 1(e) are approximately the same, the oscillatory state 
lasts through a larger parameter interval and the skin condition as characterized by the value of 𝜅𝑝 needs to be significantly more 
improved for a full recovery at 𝜖 = 10−3 than at 𝜖 = 10−6. In fact, the quantities 𝑞𝑖 − 𝑏𝑖 (𝑖 = 1, 2, 3, 4), the differences between the 
transition points in the nonautonomous system and their corresponding bifurcation points in the autonomous system, depend on 
the rate 𝜖 and obey scaling laws. In spite of the differences in the detailed transitions, the tipping and recovery transitions contain 
multiple stages through some oscillatory state as the ‘‘springboard’’ and the overall hysteresis loop remains wrinkled.

The unconventional, two-stage tipping process in the AD system, as demonstrated in Figs.  1(d) and 1(e), is drastically different 
from conventional tipping in smooth dynamical systems. To better appreciate the difference, we note that, in a nonautonomous 
smooth system, tipping occurs almost instantaneously: due to the little parameter change required at the critical point for tipping, 
practically it takes an infinitesimal amount time for the transition from the high to the low stable steady state to occur. However, in 
the nonsmooth AD system, the time for tipping, or the transient tipping time between the two consecutive tipping points denoted as 
𝜏tp, to occur can be quite long. Figs.  2(a) and 2(b) show, for 𝜖 = 10−6 and 10−3, respectively, the length of the transient tipping time, 
where the difference in the transient time in the two cases is about three orders of magnitude (approximately 10 times larger than 
the difference in the parameter ramping rate). Similarly, the recovery process also involves a long transient process, as illustrated 
in Figs.  2(c) and 2(d).

To characterize unconventional tipping and the wrinkled hysteresis loop, we examine four quantities: (1) the tipping parameter 
interval (𝛥𝑞)tp ≡ 𝑞2 − 𝑞1 [cf., Figs.  1(d, e)] (2) the recovery parameter interval (𝛥𝑞)rc ≡ 𝑞3 − 𝑞4 [cf., Figs.  1(d, e)], (3) the transient 
tipping time 𝜏tp [cf., Figs.  2(a, b)] and (4) the transient recovery time 𝜏rc [cf., Figs.  2(c, d)]. As these quantities depend on the 
parameter ramping rate 𝜖, we ask what scaling relations between them and 𝜖 are. Figs.  3(a) and 3(b) show the numerically obtained 
representative scaling behavior of (𝛥𝑞)tp(𝜖) and (𝛥𝑞)rc(𝜖), respectively. For a slow rate 𝜖 ≪ 𝜖𝑐 , (𝛥𝑞)tp(𝜖) and (𝛥𝑞)rc(𝜖) approach the 
parameter difference between the two static bifurcation points, 𝑏2 − 𝑏1 and 𝑏3 − 𝑏4, respectively. However, for 𝜖 ≫ 𝜖𝑐 , (𝛥𝑞)tp(𝜖) and 
(𝛥𝑞)rc(𝜖) increase algebraically with 𝜖, with the respective scaling exponent 𝛽tp ≈ 0.63 and 𝛽rc ≈ 1. We have

(𝛥𝑞)tp(𝜖) ∼
{

𝜖𝛽tp 𝜖 > 𝜖𝑐 , (6)

𝑏2 − 𝑏1 𝜖 < 𝜖𝑐 ,

5 
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Fig. 2. Transient tipping and recovery process. (a, b) A relatively long and short transient process for the tipping from the high to low stable 
state to finish for 𝜖 = 10−6 and 10−3. respectively. (c, d) Similar transient recovery process for 𝜖 = 10−6 and 10−3, respectively. For the two values 
of the ramping rate, the difference in the transient time is more than the time difference as determined by the rate.

Fig. 3. Scaling of tipping and recovery parameter intervals, and of the transient tipping and recovery times with the parameter ramping rate. 
(a, b) Scaling of (𝛥𝑞)tp(𝜖) and (𝛥𝑞)rc(𝜖), respectively. The two horizontal asymptotic solid lines correspond to the difference between the two 
consecutive bifurcation points, i.e., 𝑏2 − 𝑏1 and 𝑏3 − 𝑏4, respectively. (c, d) Scaling of 𝜏tp(𝜖) and 𝜏rc(𝜖), respectively, where 𝜖𝑐 is determined by 
the intersection of the dashed and solid black lines, representing the asymptotic lines of two scaling curves in log–log scale. Here, 𝜖𝑐 is given by 
6 × 10−4 and 2.5 × 10−4 for the forward and backward directions, respectively. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

(𝛥𝑞)rc(𝜖) ∼
{

𝜖𝛽rc 𝜖 > 𝜖𝑐 ,
𝑏3 − 𝑏4 𝜖 < 𝜖𝑐 .

(7)

These scaling results indicate that, for a more rapid change of the parameter, both the tipping and recovery processes require a 
larger parameter change to complete. The scaling relations (6) and (7) can be derived analytically (see Appendices  B and C).

The relations 𝜏tp(𝜖) = (𝛥𝑞)tp(𝜖)∕𝜖 and 𝜏rc(𝜖) = (𝛥𝑞)rc(𝜖)∕𝜖 lead to the following algebraic scaling of the transient tipping and 
recovery times:

𝜏tp(𝜖) ∼
{

𝜖𝛽tp−1, 𝜖 > 𝜖𝑐 ,
𝜖−1, 𝜖 < 𝜖𝑐 ,

(8)

𝜏rc(𝜖) ∼
{

constant, 𝜖 > 𝜖𝑐 ,
𝜖−1, 𝜖 < 𝜖𝑐 ,

(9)

as exemplified in Figs.  3(c) and 3(d), respectively. Note that, for 𝜖 ≫ 𝜖 , the transient recovery time 𝜏 (𝜖) approaches a constant.
𝑐 rc
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4. Discussion

To summarize, we have uncovered a type of tipping behavior in a class nonautonomous nonsmooth biophysical systems that is 
quite distinct from the conventional tipping so far reported in the literature. Such a system describes the evolution of common skin 
diseases with different clinically distinguishable stages. The main feature of the unconventional tipping is that the transition from a 
high to a low stable steady state occurs through an intermediate oscillatory state in an extended duration of parameter changes or 
time. A similar scenario arises during the recovery process from the low to the high steady state. As a result, tipping and recovery 
are no longer ‘‘instantaneous’’ but transient, and the hysteresis loop exhibits a wrinkled structure. The clinical significance of these 
phenomena are the following. Given that transition from the high steady state to the intermediate oscillatory state corresponds to a 
sudden deterioration of the skin barrier with alternating symptoms and a further transition to the low state marks the onset of severe 
skin disease, the emergence of the intermediate state presents an opportunity for control intervention to prevent a healthy system 
from collapsing completely into the diseased state. Nonsmooth dynamics arise in biological and physical systems. Our findings 
indicate that tipping and hysteresis loop can manifest themselves in ways that have not been previously recognized.

The origin of the non-smoothness in the AD system is the various biological switches in the vector field, which represent a 
mathematical way to describe non-differentiable or discontinuous functions. In general, the governing equations of nonsmooth 
dynamical systems contain such functions. This often occurs due to effects such as impacts, friction, or switching behaviors in 
diverse physical and biological systems where sudden changes or interactions take place. Switches represent only a convenient way to 
describe nonsmooth systems. While the mathematical forms of the governing functions may differ from system to system, the generic 
feature of non-differentiability or discontinuity is shared by all nonsmooth dynamical systems. As demonstrated, nonsmooth systems 
are connected to real-world situations and they can exhibit unconventional phenomena that do not arise in smooth dynamical 
systems. Developing a rigorous mathematical theory to fully understand these unconventional behaviors in nonsmooth dynamical 
systems is challenging, but our physical and intuitive reasoning suggests the generality of the uncovered unconventional tipping 
phenomenon.
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Appendix A. Parameters of AD model

The parameter values of the AD system, Eq. (1), are described in Table  A.1.

Appendix B. Scaling of tipping parameter interval and transient tipping time

We consider the tipping point associated with forward parameter ramping: 𝜅𝑝(𝑡) = 𝜅𝑠
𝑝 + 𝜖𝑡 (for 𝜖 > 0 and 𝜅𝑠

𝑝 ≪ 𝑏1). For 𝑡 > 𝑡0 = 0, 
the AD system approaches the fixed point 𝐻 : 

𝐻 = (𝑃1, 𝐵1, 𝐷1) =

(

𝑃env𝜅𝑝
𝛿𝑝(1 + 𝛾𝐵)

, 1, 0

)

. (B.1)

From the existence condition of this fixed point [28], we get 

𝜅𝑝 ≤ 𝜅𝑐 ≡
𝑃+𝛿𝑝(1 + 𝛾𝐵). (B.2)
𝑝 𝑃env
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Table A.1
Description and values of parameters of the AD system.
 Parameter Description Value  
 𝑃env Environmental stress load 95 (mg/mL)  
 𝛾𝐵 Barrier-mediated inhibition 1  
 of pathogen infiltration  
 𝜅𝑝 Nominal skin permeability (1/day)  
 𝛼𝐼 Rate of pathogen eradication (1/day)  
 by innate immune responses  
 𝛿𝑃 Basal pathogen death rate 1 (1/day)  
 𝜅𝐵 Barrier production rate 0.5 (1/day)  
 𝛾𝑅 Innate immunity-mediated inhibition 10  
 of barrier production  
 𝛿𝐵 Rate of kallikrein-dependent 0.1  
 barrier degradation  
 𝛾𝐺 Adaptive immunity-mediated inhibition 1  
 of barrier production  
 𝜅𝐷 Rate of DC activation by receptors 4 cells/(mL 3 day) 
 𝛿𝐷 Rate of DC degradation 0.5 (1/day)  
 𝑃 − Receptor inactivation threshold 26.6 (mg/mL)  
 𝑃 + Receptor activation threshold 40 (mg/mL)  
 𝐷+ 𝐺𝑎𝑡𝑎3 activation threshold 85 (cells/mL)  
 𝑅off Receptor off level 0  
 𝑅on Receptor on level 16.7  
 𝐺off 𝐺𝑎𝑡𝑎3 off level 0  
 𝐺on 𝐺𝑎𝑡𝑎3 on level 1  
 𝐾off Kallikrein off level 0  
 𝑚on Slope of the linear relation 0.45  
 between 𝑃 (𝑡) and 𝐾on  
 𝛽on Y-intercept of the linear relation 6.71  
 between 𝑃 (𝑡) and 𝐾on  

When 𝜅𝑝 arrives at the bifurcating point 𝑏1 at time 𝑡1, i.e., 𝜅𝑝(𝑡1) = 𝜅𝑐
𝑝 as shown in Fig.  1(b), all switches of AD system are off and 

𝐵(𝑡) = 1. In this case, the system is described by 
𝑑𝑃
𝑑𝑡

=
𝑃env

1 + 𝛾𝐵
𝜅𝑝(𝑡) − 𝛿𝑝𝑃 (𝑡), (B.3)

which constitutes one of the subsystems of the AD system - the healthy subsystem whose solution can be obtained explicitly:

𝑃 (𝑡) =
𝑃env

𝛿𝑝(1 + 𝛾𝐵)
𝜅𝑝(𝑡) −

𝑃env𝜖

𝛿2𝑝 (1 + 𝛾𝐵)

+

(

𝑃0 −
𝑃env𝜅𝑠

𝑝

𝛿𝑝(1 + 𝛾𝐵)
+

𝑃env𝜖

𝛿2𝑝 (1 + 𝛾𝐵)

)

𝑒−𝛿𝑝𝑡, (B.4)

where 𝑃 (0) = 𝑃0. For 𝑡 = 𝑡1, the third term in Eq. (B.4) becomes negligibly small. We get 

𝑃 (𝑡1) = 𝑃+ −
𝑃env𝜖

𝛿2𝑝 (1 + 𝛾𝐵)
+  ⪇ 𝑃+, (B.5)

which causes the tipping point to be delayed. For 𝑡 > 𝑡1 and 𝑃 (𝑡) ≥ 𝑃+, the switches 𝑅 and 𝐾 are turned on, so the system equation 
becomes 

𝑑𝑃
𝑑𝑡

=
𝑃env𝜅𝑝

1 + 𝛾𝐵𝐵(𝑡)
− 𝛼𝐼𝑅on𝑃 (𝑡) − 𝛿𝑝𝑃 (𝑡). (B.6)

Using 𝑃 (𝑡) in Eq. (B.4), we can find a time 𝑡2 such that 𝑃 (𝑡2) = 𝑃+ or 𝜅𝑝(𝑡2) = 𝑞1. Since Eq. (B.4) contains the 𝑡 and 𝑒𝑡 terms, we use 
the Lambert W-function [84] to get a closed-form solution for 𝑡2. Note that, in general, the Lambert W-function provides a method 
for solving equations of the form: 

𝑥 = 𝑊 (𝑥)𝑒𝑊 (𝑥). (B.7)

In our case, by expressing 𝑃 (𝑡2) = 𝑃+ and isolating the exponential term, we get 
𝑃+ = 𝐴1 + 𝐴2𝑡2 + 𝐴3𝑒

−𝛿𝑃 𝑡2 , (B.8)

where

𝐴1 =
𝑃env𝜅𝑠

𝑝 −
𝑃env𝜖

2
,

𝛿𝑃 (1 + 𝛾𝐵) 𝛿𝑃 (1 + 𝛾𝐵)
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𝐴2 =
𝑃env𝜖

𝛿𝑃 (1 + 𝛾𝐵)
,

𝐴3 = 𝑃0 − 𝐴1.

Reparametrization gives 

 = 𝛿𝑃 𝑡2 −
𝛿𝑃 (𝑃+ − 𝐴1)

𝐴2
, (B.9)

so the 𝐴3 term in Eq. (B.8) can be expressed as
𝐴3 = (𝑃+ − 𝐴1 − 𝐴2𝑡2)𝑒𝛿𝑃 𝑡2

=

[

𝑃+ − 𝐴1 − 𝐴2
𝐴2 + 𝛿𝑃 (𝑃+ − 𝐴1)

𝛿𝑃𝐴2

]

𝑒
+ 𝛿𝑃 (𝑃+−𝐴1)

𝐴2

= −
𝐴2

𝛿𝑃
𝑒
𝛿𝑃 (𝑃+−𝐴1)

𝐴2  𝑒 . (B.10)

Using Eq. (B.10), we finally get 
− 𝐴3𝛿𝑃

𝐴2 exp
𝛿𝑃 (𝑃+ − 𝐴1)

𝐴2

=  𝑒 . (B.11)

Using the Lambert-W function, we obtain 

 = 𝑊0

⎡

⎢

⎢

⎢

⎢

⎣

− 𝛿𝑃𝐴3

𝐴2 exp
𝛿𝑃 (𝑃+ − 𝐴1)

𝐴2

⎤

⎥

⎥

⎥

⎥

⎦

, (B.12)

where 𝑊0 is the principal branch of the Lambert W-function. From Eqs. (B.9) and (B.12), we can express 𝑡2 as 

𝑡2 =
1
𝛿𝑃

𝑊0

⎡

⎢

⎢

⎢

⎢

⎣

− 𝛿𝑃𝐴3

𝐴2 exp
𝛿𝑃 (𝑃+ − 𝐴1)

𝐴2

⎤

⎥

⎥

⎥

⎥

⎦

+
𝑃+ − 𝐴1

𝐴2
. (B.13)

Since the value of the Lambert W-function is small, i.e.,

𝑊0

⎡

⎢

⎢

⎢

⎣

−𝛿𝑃𝐴3

𝐴2 exp
(

𝛿𝑃 (𝑃+−𝐴1)
𝐴2

)

⎤

⎥

⎥

⎥

⎦

≈ 0,

we have 

𝑡2 ∼
𝑃+ − 𝐴1

𝐴2
=

𝛿𝑃𝑃+(1 + 𝛾𝐵) − 𝑃env𝜅𝑠
𝑝

𝑃env𝜖
+ 1

𝛿𝑃
, (B.14)

which implies
𝑞1 = 𝜅𝑠

𝑝 + 𝜖𝑡2

∼ 𝜅𝑠
𝑝 + 𝜖

(

𝛿𝑃 (1 + 𝛾𝐵)𝑃+ − 𝑃env𝜅𝑠
𝑝

𝑃env𝜖
+

1
𝛿𝑃

)

(B.15)

=
𝑃+𝛿𝑃 (1 + 𝛾𝐵)

𝑃env
+

𝜖
𝛿𝑃

Using Eq. (B.2), we get
𝑞1 − 𝑏1 = 𝜅𝑝(𝑡2) − 𝜅𝑝(𝑡1)

∼

(

𝑃+𝛿𝑃 (1 + 𝛾𝐵)
𝑃env

+
𝜖
𝛿𝑃

)

−
𝑃+𝛿𝑝(1 + 𝛾𝐵)

𝑃env

=
𝜖
𝛿𝑃

∼ 𝜖, (B.16)

which gives the effect of the parameter changing rate on the delay of the first tipping point.
Calculating the tipping parameter interval (𝛥𝑞)tp ≡ 𝑞2 − 𝑞1 requires the quantity 𝑞2 − 𝑏1, where 𝑞2 = 𝜅𝑝(𝑡3). The system exhibits 

oscillatory dynamics between 𝑞  and 𝑞 . With the aid of the slope function 𝐹 𝑠 introduced in Ref. [29], the oscillating behavior 
1 2 𝑖

9 



Y. Kang et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 200 (2025) 117099 
Fig. B.4. Transformed dynamics of tipping associated with different forward ramping rates 𝜖. (a, b) Tipping points and change of AD states 
for 𝜖 = 10−3 and 10−6, respectively. (c, d) The transformed tipping trajectories in (a, b), respectively. Red and Blue dots indicate the chronic 
damage (𝐶) and healthy recovery (𝐻), respectively, while the red and blue curves represent a nonsmooth opened channel created by the slope 
functions, 𝐹 𝑠 and 𝐹 𝑢 (magnified). (e,f) Heights of the opened channels in (c, d), respectively. (g) Algebraic scaling of the escaping time 𝜏, where 
the scaling exponents are indicated by the solid and dotted lines, as represented by Eq. (B.17). (h) The relation between the average height ⟨𝛿⟩
and the ramping speed 𝜖, as represented by Eq. (B.18). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

can be understood as a type of transient dynamics induced by an open dynamical channel. For instance, Figs.  B.4(a–d) show the 
transformed behavior for the occurrence of the second tipping point for two different values of the ramping rate. In particular, a 
trajectory’s passing through the open channel gives rise to the second tipping point and the associated transient behavior [29].

To determine the transient tipping time 𝜏 through the open channel marked by the red and blue curves in Figs.  B.4(c, d) [or the 
transient tipping time 𝜏 from 𝑏1 to 𝑞2 in Figs.  B.4(a, b)], we examine the height of the open channel created by the two underlying 
slope functions, specifically, the height between the red and blue curves as illustrated in Figs.  B.5(c–d). The average height ⟨𝛿⟩ of 
the open channel in Figs.  B.5(e–f) can then be calculated. Since the AD system is nonsmooth, the curves defining the channel are 
irregular with a kink structure, as shown in Figs.  B.4(c, d). For each ramping rate 𝜖, we numerically obtain the following scaling 
law for 𝜏: 

𝜏 ∼
{

⟨𝛿⟩𝑐1 , 𝜖 > 𝜖𝑐 , 
⟨𝛿⟩𝑐2 , 𝜖 < 𝜖𝑐 , 

(B.17)

where 𝑐1 ≈ −0.74 and 𝑐2 ≈ −1 [from Fig.  B.4(g)]. Since the channel height depends on the ramping speed 𝜖 as 

⟨𝛿⟩ ∼
{

𝜖𝑑1 , 𝜖 > 𝜖𝑐 , 
𝜖𝑑2 , 𝜖 < 𝜖𝑐 , 

(B.18)

where 𝑑1 ≈ 0.5 and 𝑑2 ≈ 1 [ Fig.  B.4(h)], we obtain

𝑞2 − 𝑏1 = 𝜅𝑝(𝑡3) − 𝜅𝑝(𝑡1) = 𝜖(𝑡3 − 𝑡1) ∼ 𝜖𝜏

∼
{

𝜖1+𝑐1𝑑1 𝜖 > 𝜖𝑐 , (B.19)
constant 𝜖 < 𝜖𝑐 . 
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Fig. B.5. Transformed dynamics of recovery points for different parameter ramping rate. The legends are the same as in Fig.  B.4.

Let 𝛽tp ≡ 1 + 𝑐1𝑑1 ≈ 2∕3. For 𝜖 → 0, the AD system becomes stationary, so the constant is the distance between the two bifurcation 
points 𝑏2 − 𝑏1. Combining Eqs. (B.16) and (B.19), we get

(𝛥𝑞)tp(𝜖) = 𝑞2 − 𝑞1 ∼
{

𝜖𝛽tp − 𝜖, 𝜖 > 𝜖𝑐 ,
𝑏2 − 𝑏1 − 𝜖, 𝜖 < 𝜖𝑐 . 

For 𝜖 < 𝜖𝑐 , we have (𝑏2 − 𝑏1 − 𝜖)∕(𝑏2 − 𝑏1) ≈ 1 due to the smallness of 𝜖. For 𝜖 > 𝜖𝑐 , we get

1 > 𝜖𝛽tp − 𝜖
𝜖𝛽tp

= 1 − 𝜖1−𝛽tp > 1 − 𝜖
1−𝛽tp
𝑐 = constant.

It implies that 𝜖𝛽tp > 𝜖𝛽tp − 𝜖 > Constant × 𝜖𝛽tp . Finally, we have

(𝛥𝑞)tp(𝜖) ∼
{

𝜖𝛽tp , 𝜖 > 𝜖𝑐 ,
𝑏2 − 𝑏1, 𝜖 < 𝜖𝑐 , 

as shown in Fig.  3(a). The relation 𝜏tp(𝜖) = (𝛥𝑞)tp(𝜖)∕𝜖 leads to the following algebraic scaling of the transient tipping time: 

𝜏tp(𝜖) ∼
{

𝜖𝛽tp−1, 𝜖 > 𝜖𝑐 ,
𝜖−1, 𝜖 < 𝜖𝑐 ,

(B.20)

Appendix C. Scaling of recovery parameter interval and transient recovery time

We consider the recovery scenario where the bifurcation parameter changes in the opposite (backward) direction: 𝜅𝑝(𝑡) = 𝜅𝑠
𝑝 − 𝜖𝑡

for 𝜖 > 0 and 𝜅𝑠
𝑝 ≫ 𝑏3. For 𝑡 > 𝑡0 = 0, the AD system come close to the steady state of chronic damage characterized by the fixed 

point 𝐶 = (𝑃4, 𝐵4, 𝐷4) given by 

𝑃4 =
𝑃env𝜅𝑝

(𝛼𝐼𝑅on + 𝛿𝑝)(1 + 𝛾𝐵𝐵4)

𝐵4 =
𝜅𝐵 (C.1)
𝛿𝐵(𝑚𝑜𝑛𝑃4 − 𝛽)(1 + 𝛾𝑅𝑅on)(1 + 𝛾𝐺𝐺𝑜𝑛)
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𝐷4 =
𝜅𝐷𝑅on

𝛿𝐷
.

The existence condition of this fixed point [28] gives 

𝜅𝑝 ≥ 𝜅𝑐
𝑝 ≡

𝑃−(𝛼𝐼𝑅on + 𝛿𝑃 )(1 + 𝛾𝐵𝐵4)
𝑃env

. (C.2)

As 𝜅𝑝 reaches the bifurcating point 𝑏3 at time 𝑡4 determined by 𝜅𝑝(𝑡4) = 𝜅𝑐
𝑝 [see Fig.  1(b)], all switches of the AD system are on and 

the value of 𝐵(𝑡) is near zero: 𝐵(𝑡) = 𝐵∗ ≁ 0. In this case, the AD system, Eq. (1), can be rewritten as 
𝑑𝑃
𝑑𝑡

=
𝑃env

1 + 𝛾𝐵𝐵∗𝜅𝑝(𝑡) − (𝛼𝐼𝑅on + 𝛿𝑝)𝑃 (𝑡), (C.3)

whose solution is

𝑃 (𝑡) =
𝑃env𝜅𝑝(𝑡)

(𝛼𝐼𝑅on + 𝛿𝑝)(1 + 𝛾𝐵𝐵∗)
+

𝑃env𝜖

(𝛼𝐼𝑅on + 𝛿𝑝)2(1 + 𝛾𝐵𝐵∗)

+

(

𝑃0 −
𝑃env𝜅𝑠

𝑝

(𝛼𝐼𝑅on + 𝛿𝑝)(1 + 𝛾𝐵)

−
𝑃env𝜖

(𝛼𝐼𝑅on + 𝛿𝑝)2(1 + 𝛾𝐵)

)

𝑒−(𝛼𝐼𝑅on+𝛿𝑝)𝑡,

where 𝑃 (0) = 𝑃0. From a direct computation of 𝑃 (𝑡4), we obtain

𝑃 (𝑡4) = 𝑃− +
𝑃env𝜖

(𝛼𝐼𝑅on + 𝛿𝑝)2(1 + 𝛾𝐵𝐵∗)
+  ⪈ 𝑃−,

leading to a delay effect, where 𝜅𝑝(𝑡4) = 𝑏3.
For 𝑡 > 𝑡4 defined by 𝑃 (𝑡) ≤ 𝑃−, the switches 𝑅 and 𝐾 of the system are off, so the system equation becomes 

𝑑𝑃
𝑑𝑡

=
𝑃env𝜅𝑝

1 + 𝛾𝐵𝐵(𝑡)
− 𝛿𝑝𝑃 (𝑡). (C.4)

At 𝑡 = 𝑡5 determined by 𝑃 (𝑡5) = 𝑃−, the first tipping point occurs: 𝑞3 = 𝜅𝑝(𝑡5). Similar to the analysis in Appendix  B, 𝑡5 can be found 
by using the Lambert W-function: 

𝑡5 =
1
𝐴7

𝑊0

[

𝐴6𝐴7

𝐴5
exp

𝐴7(𝑃− − 𝐴4)
𝐴5

]

−
𝑃− − 𝐴4

𝐴5
, (C.5)

where

𝐴4 =
𝑃env𝜅𝑠

𝑝

(𝛼𝐼𝑅on + 𝛿𝑝)(1 + 𝛾𝐵𝐵∗)
−

𝑃env𝜖

(𝛼𝐼𝑅on + 𝛿𝑝)2(1 + 𝛾𝐵𝐵∗)
,

𝐴5 =
𝑃env𝜖

(𝛼𝐼𝑅on + 𝛿𝑝)(1 + 𝛾𝐵𝐵∗)
,

𝐴6 = 𝑃0 − 𝐴,

𝐴7 = 𝛼𝐼𝑅on + 𝛿𝑝.

Using the property of the Lambert W-function, 𝑡5 can be approximated as

𝑡5 ∼ −
𝑃− − 𝐴4

𝐴5

=
1

𝛼𝐼𝑅on + 𝛿𝑃

+
𝑃env𝜅𝑠

𝑝 − 𝑃−(𝛼𝐼𝑅on + 𝛿𝑃 )(1 + 𝛾𝐵𝐵∗)

𝑃env
⋅
1
𝜖
, (C.6)

leading to

𝑞3 = 𝜅𝑠
𝑝 − 𝜖𝑡5

∼
𝑃−(𝛼𝐼𝑅on + 𝛿𝑃 )(1 + 𝛾𝐵𝐵4)

𝑃env
−

𝜖
𝛼𝐼𝑅on + 𝛿𝑃

= 𝑏3 −
𝜖

. (C.7)

𝛼𝐼𝑅on + 𝛿𝑃
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As a result, we get 

𝑏3 − 𝑞3 = 𝑏3 − (𝑏3 −
𝜖

𝛼𝐼𝑅on + 𝛿𝑃
) =

𝜖
𝛼𝐼𝑅on + 𝛿𝑃

∼ 𝜖, (C.8)

which gives the first recovery point.
The scaling of the second recovery can also be obtained in a similar way to that of the tipping (forward) case. The transient 

recovery time 𝜏 from 𝑏3 to 𝑞4 can be numerically obtained as 

𝜏 ∼
{

⟨𝛿⟩𝑐1 , 𝜖 > 𝜖𝑐 , 
⟨𝛿⟩𝑐2 , 𝜖 < 𝜖𝑐 , 

(C.9)

where 𝑐1 ≈ −3 and 𝑐2 ≈ −1 [ Fig.  B.5(g)]. The height associated with the ramping rate 𝜖 is 

⟨𝛿⟩ ∼
{

𝜖𝑑1 , 𝜖 > 𝜖𝑐 , 
𝜖𝑑2 , 𝜖 < 𝜖𝑐 , 

(C.10)

where 𝑑1 → 0 as 𝜖 grows and 𝑑2 ≈ 1 [ Fig.  B.5(h)]. We obtain
𝑏3 − 𝑞4 = 𝜅𝑝(𝑡4) − 𝜅𝑝(𝑡6) = 𝜖(𝑡6 − 𝑡4)

∼ 𝜖𝜏

∼
{

𝜖1+𝑐1𝑑1 , 𝜖 > 𝜖𝑐 ,
𝜖1+𝑐2𝑑2 , 𝜖 < 𝜖𝑐 ,

∼
{

𝜖1+𝑐1𝑑1 , 𝜖 > 𝜖𝑐 ,
constant, 𝜖 < 𝜖𝑐 ,

(C.11)

because 𝑐2𝑑2 = −1. Let 𝛽rc ≡ 1 + 𝑐1𝑑1 ≈ 1. For 𝜖 → 0, the system becomes stationary, so the constant is the distance 𝑏3 − 𝑏4 between 
the two bifurcation points. Using Eqs. (C.8) and (C.11), we obtain

(𝛥𝑞)rc(𝜖) = 𝑞3 − 𝑞4

∼
{

𝜖𝛽rc − 𝜖, 𝜖 > 𝜖𝑐 ,
𝑏3 − 𝑏4 − 𝜖, 𝜖 < 𝜖𝑐 , 

∼
{

𝜖𝛽rc , 𝜖 > 𝜖𝑐 ,
𝑏3 − 𝑏4, 𝜖 < 𝜖𝑐 , 

as shown in Fig.  3(b). The relation
𝜏rc(𝜖) = (𝛥𝑞)rc(𝜖)∕𝜖

leads to the following algebraic scaling of the transient tipping and recovery times: 

𝜏rc(𝜖) ∼
{

constant, 𝜖 > 𝜖𝑐 ,
𝜖−1, 𝜖 < 𝜖𝑐 .

(C.12)

Data availability
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