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A B S T R A C T

The COVID-19 pandemic raised the need to prepare for the possibility of a new pandemic stemming from an
unknown ‘‘Disease X.’’ The extent to which an epidemic will spread depends on the complex interplay of various
human and environmental factors. Previous studies focused on analyzing the effects of individual parameters
on disease transmission. Based on empirical COVID-19 data from South Korea, we develop a comprehensive
modeling framework incorporating the population density, inter-city human mobility, the location of the initial
outbreak, social distancing, and mass gathering events, with the primary goal to assess the transmission risks
at a quantitative level. Systematic computations reveal the emergence of a group structure among all possible
spreading scenarios: they are organized into three distinct groups with well-defined boundaries. This group
structure underscores the importance of individualized risk assessment strategies for cities based on their
unique characteristics, leading to intervention policies tailored to their specific circumstances.
1. Introduction

When a new virus emerges and begins to spread, there is usually
limited or no pre-existing immunity to it within the human population.
In the absence of an effective vaccine, the virus has the potential to
rapidly spread worldwide, leading to a pandemic. The first line of
defense is often non-pharmaceutical interventions (NPIs) that serve as
the primary public-health measures to mitigate the transmission of the
novel virus, which include social distancing, close contact tracing, mask
wearing, travel restriction, rapid diagnosis, and isolation of confirmed
cases [1,2]. Factors such as the population density, inter-city mobility,
the location of the initial outbreak, social distancing (SD), and mass
gathering events (MGEs) play a crucial role in the extent and severity
of infectious spread [3–5]. It is of paramount interest to assess, quanti-
tatively and systematically, how different factors affect the risk of the
disease transmission, taking into the unique population characteristics,
and to develop effective intervention strategies.

Diverse factors affecting the spreading of an epidemic can be de-
scribed using the global COVID-19 pandemic caused by the severe acute
respiratory syndrome coronavirus (SARS-CoV-2). It started in Dec. 2019
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and quickly spread globally [6,7]. In the absence of vaccination, NPIs
were implemented to manage the transmission of COVID-19, and mass
vaccination against SARS-CoV-2 commenced in America and Europe
in Dec. 2020 to reduce high-risk populations [8]. SD was enforced
by the Korean government since Feb. 2020 during the early outbreak
of COVID-19, and social network analysis was conducted to estimate
the effect of mask wearing campaign on the reduction of the size of
outbreak in South Korea [9]. MGEs have the potential of spreading
the disease rapidly and can lead to super-spreading events (SSEs).
The crucial role of MGEs in the global propagation of diseases was
reported in several countries [4,10–13], where it was found that MGEs
from large public events to small family gatherings could lead to rapid
spreading or even SSEs [14,15]. Significant international efforts were
made to implement specific measures, risk assessment, surveillance,
and event cancellations to prevent the spread of SARS-CoV-2 from
the MGEs [16]. Also, the characteristics of COVID-19 have changed
due to mutations over the past two years since 2019, highlighting
the necessity of clarifying the clinical and epidemiological aspects to
evaluate policy responses. In [17], they forecasted COVID-19 cases by
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region using the compartmental model to estimate effective reproduc-
tion numbers under varying control-intervention intensities. Moreover,
a comprehensive analysis of infection clusters is required, focusing on
uncovering and examining key social factors related to age and regional
patterns [18]. Other factors that contribute to the disease spreading
include population density and mobility [19–21], where the density
of inhabitants and the close contacts among people in urban areas
are potential hot spots for rapid spread of COVID-19 and other infec-
tious diseases such as influenza and severe acute respiratory syndrome
(SARS) [22,23]. Previous studies highlighted the significance of move-
ment between regions [24,25], which can introduce pathogens to new
areas and facilitate their spread within and among the populations [3].
Outbreaks caused by MGEs were reported [4,10–13], and there were
international efforts in attempting to mitigate the spread of COVID-19
from MGEs. For modeling disease transmission with MGEs, an earlier
work considered several key factors [26]. Incidence of COVID-19 asso-
ciated with MGEs in Spain was analyzed by using inverse probability
weighted regression [27]. It is important to assess how factors such as
the differences in the population density between two cities and the
city of initial outbreak affect the spreading.

NPIs are among the best ways of controlling the spread of new virus
when vaccine is not yet available, but prolonged application of NPIs
can diminish the effect of the intervention, besides causing negative
social and economic effects. While NPIs such as social distancing are
effective in controlling outbreaks, they also have economic costs. This
creates a challenge for policymakers who must balance disease control
with economic impact. Therefore, it is argued that targeted interven-
tions are necessary to balance outbreak control and economic impact
mitigation in specific regions [28]. In addition, the previous study [29]
analyzed the impact of COVID-19 variants on cost-effectiveness across
age groups, considering vaccination efforts and NPIs in Republic of
Korea. The transmission dynamics of an infectious disease depends on
the strategies of NPIs that need to take into account factors such as the
first outbreak place, city characteristics and travel. The effects of NPIs
also depend on various conditions including the population density, the
first outbreak place and travel among the cities. To make a decision to
apply NPIs, an understanding of the risk of spreading under different
circumstances is essential. For example, is it necessary to apply high SD
level to a very low-density city?

The vast complexity of the COVID-19 pandemic made it difficult to
determine effective preventive measures, especially in terms of the im-
pact of physical distancing and vaccines on reducing the spread of the
virus. The control strategies for COVID-19 include NPIs and vaccination
programs. Different NPIs were employed to reduce COVID-19 cases,
including social distancing, wearing of masks, temporary shutdowns in
schools, reductions in social activities, and employment-related restric-
tions [7,30]. NPIs played an important role in controlling COVID-19
infections, especially when effective vaccines are unavailable. Mass
vaccination against COVID-19 began in Europe at the end of 2021.
Even after vaccination became widely available, many governments in
Europe continued to impose limitations on social activities in tandem
with their vaccination programs [3,23,31]. For informing the govern-
mental policies and quantifying the pandemic dynamics, mathematical
modeling is essential [22,32,33]. For example, agent-based modeling
(ABM) can be implemented to simulate the transmission of COVID-
19 with human behaviors taken into account, enabling the effects of
various public health intervention method to be evaluated [34]. Agent-
based modeling incorporating human mobility from mobile data was
also exploited to assess the impact of NPIs in the Boston metropolitan
area [35,36]. Furthermore, an ABM was employed to capture the early
transmission dynamics of COVID-19. Without vaccines or treatments,
contact tracing and case isolation are the most crucial interventions
to prevent large outbreaks, underlining their significance in mitigating
SSEs [37].

Previous studies did not take into account the combined impact

of the crucial factors such as MGEs, intensity of NPIs, movement

2 
behaviour to assess the risk of outbreak of the infectious disease. The
aim of this paper is to address the risk induced by multiple spreading
factors. To achieve this goal, we introduce a measure to quantify the
epidemic risk of spreading infectious disease for various scenarios and
carry out a comprehensive comparison study of the risks of various
scenarios. To obtain an appropriate setting for different scenarios, we
assume that the mobility rate of the individuals is fixed and focus on
the following four factors: (1) level of SD, (2) the sizes of MGEs, (3) the
population density of the first outbreak city, and (4) the population
density of the city where MGEs took place, where the density is
categorized by two classes: high or low. The risk can then be calculated
by the probabilities of various ways of transmission. For example, the
probability of local transmission can be calculated from the number
of infected people in the first outbreak city exceeds a threshold. Our
specific approach is agent-based modeling where agent movements
occur between two cities with high and low densities, respectively,
based on empirical data of COVID-19 outbreaks from two major cities
of South Korea [38,39]: Seoul with high-density and Daegu with low-
density from Feb. 2020 to Oct. 2021. During this time period, two
major outbreaks associated with MGEs occurred in each city, followed
by an abrupt increase in the COVID-19 cases. In response, the South
Korean government implemented different SD policies depending on
the significance level of COVID-19. After an MGE, the SD level im-
mediately enhanced to a higher level and super spreaders who have a
high number of secondary infections were identified in both outbreaks.
In our agent-based model, the SD levels and the sizes of MGEs are
categorized into four different classes. Given a specific scenario, our
modeling framework captures the main features of COVID-19 spreading
in South Korea and allows the prioritizing factor affecting the spreading
dynamics to be identified. For example, simulations confirm that an
initial outbreak in a high-density city can lead to high risks, suggest-
ing social distancing as an effective mitigation strategy in this case.
However, when the initial outbreak occurs in a low population density
region, a number of factors including human mobility, MGEs, and SD
all can be important. Depending on other factors, MGEs in high-density
areas can lead to significant spreading.

Our systematic calculation and analysis of the epidemic risks for all
possible spreading scenarios reveal the emergence of a group structure
among all possible spreading scenarios: they are organized into three
distinct groups with well-defined boundaries. The significance of this
finding is that it underscores the importance of individualized risk
assessment strategies for cities based on their unique characteristics,
leading to tailored intervention policies adeptly suited to their specific
circumstances. To our knowledge, in the existing literature on infec-
tious disease spreading and interventions, no such a group structure
associated with the risks of various epidemic scenarios at a quantitative
level was reported.

2. Methods

2.1. Construction of mathematical model and empirical data

Agent-based model with population movements. In South Korea,
there were two instances of initial COVID-19 outbreaks attributed to
MGEs: the one occurred in Daegu in Feb. 2020 followed by a second
outbreak in Seoul in Aug. 2020. Both Daegu and Seoul are major
cities in the country with massive daily population movements between
them. The urban population density of Seoul is nearly four times higher
than that of Daegu. Fig. 1 displays empirical COVID-19 outbreak data
gathered from the two cities. Accordingly, our model has two cities,
where the population density of one city is four times higher than that
of the other, and there can be significant human movements between
the two cities.

In the agent-based model, each city represents a region of size
𝐿 in the two-dimensional physical space, one with 𝑁1 and another

with 𝑁2 agents. The population movements between the two cities are
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Fig. 1. Description of empirical COVID-19 data in South Korea. a The time series of the
daily COVID-19 confirmed cases (black) and delta variant cases (blue), in South Korea
from Feb. 1, 2020 to Oct. 31, 2021. The shaded colors represent the levels of SD. b,
c The first and second COVID-19 outbreaks caused by MGEs in different periods, from
Feb. 1 to Apr. 30, 2020 and from Jul. 1 to Sep. 30, 2020, respectively. The black, red,
and green traces represent the total number of cases in South Korea and the number of
COVID-19 cases in Daegu and Seoul cities, respectively. d, e Geographical distributions
of the total cases corresponding to b, c respectively. f, g Distributions of secondary
cases due to the MGEs, corresponding to b, c respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

characterized by the mobility rate 𝑅𝑝 - the fraction of individuals in
movement. Due to the difference in the population densities of the
two cities, the ratio between the number of travelers from one city to
another and that in the opposite direction is given by the coefficient
𝑁1∕𝑁2. Specifically, at each simulation time step 𝛥𝑡, randomly chosen
𝑅𝑝𝑁1 agents in the low-density city move to the high-density city,
and (𝑁1∕𝑁2) × 𝑅𝑝𝑁2 agents move in the opposite direction. In each
city, the agents uncorrelated random walks: (𝑥𝑡+1, 𝑦𝑡+1) = (𝑥𝑡, 𝑦𝑡) +
(𝑟 cos 𝜃, 𝑟 sin 𝜃), where (𝑥𝑡, 𝑦𝑡) represents the position of an agent at time
𝑡, and the radius 𝑟 and angle 𝜃 follow a multivariate normal and a
uniform distribution, respectively. Individuals are susceptible to either
the original COVID-19 strain or the delta variant. The transmission
process is described by the compartmental SEIR model [40], where an
agent at time 𝑡 can be in one of seven states: susceptible (𝑆), exposed
(𝐸), infectious (𝐼), removed (𝑅), vaccinated (𝑉 ), exposed by variants
(𝐸𝐷), and infectious by variants (𝐼𝐷). The state evolves according to
two sets of rules, described as follows.

Rule #1: A susceptible agent 𝑆 can be exposed to the disease from
an infectious agent 𝐼 at the transmission rate 𝛽. An exposed agent 𝐸
is a newly infected agent without transmissibility, but will be in the
infectious state 𝐼 after a latent period. An agent 𝐼 can transmit the
disease to other agents, and then become a removed state 𝑅 after an
infectious period. Both the latent and infectious time periods follow the
gamma distribution with a specific set of parameters [41,42]. Removed
agents 𝑅 are those who have recovered from the infectious disease or
died. Vaccinated agents 𝑉 have a higher protection rate 𝜌 from the
disease than that for the susceptible individuals. When a susceptible
agent 𝑆 contacts a virus carrier in the state 𝐼 , i.e., when the distance
between 𝑆 and 𝐼 is less than the time-varying infection radius 𝜖(𝑡), the
susceptible agent is exposed to a time-varying transmission rate 𝛽(𝑡).
Especially, if a susceptible agent 𝑆 contacts 𝑛 number of carriers at time
𝑡, the transmission rate is given by [43] 1 − (1 − 𝛽(𝑡))𝑛.
3 
Fig. 2. Schematic illustration of the disease transmission dynamics in the agent-
based model. (a) A time-varying transmission rate function, where the black solid
line represents the transmission rate according to the levels of SD, and the shaded
regions mark the levels of SD (see Supplementary Tab. I for more details). (b) A
comparison between the real data and the simulation results, where the black trace is
a time series of the daily confirmed COVID-19 cases, which is the sum of all confirmed
cases in Daegu and Seoul from Feb. 1, 2020 to Oct. 31, 2021. The red curve is the
average confirmed cases estimated from 1000 independent simulations of the agent-
based model, and the error bars correspond to the 95% confidence interval. Note that,
due to the different population scales, the left and right vertical axes are for empirical
data and simulation results, respectively.

Rule #2: After mid-2021, the delta variant, SARS-CoV-2 B.1.617.2,
became the most dominant type of variants in Korea. To take into
account different transmission types of COVID-19 variants, we intro-
duce two states: delta-exposed and delta-infectious states, denoted as
𝐸𝐷 and 𝐼𝐷, respectively, after 𝑡𝐷, the time that the first delta variant
emerged. In the model simulation, an exposed agent at 𝑡 = 𝑡𝐷 is
randomly chosen and becomes the first carrier of the delta variant after
a latent period. Note that there are no differences between preexisting
virus carriers and delta variant carriers except that the latter have an
increased transmission rate of 𝑟𝐷𝛽, where 𝑟𝐷 denotes the increased
transmission rate caused by the delta variant [44,45]. If an susceptible
agents simultaneously contacts 𝑛1 number of preexisting virus carriers
and 𝑛2 number of delta variant carriers, the conditional probability 𝑃
that 𝑆 gets exposed to delta variant will be

𝑃 =
𝑛2𝑟𝐷𝛽

𝑛1𝛽 + 𝑛2𝑟𝐷𝛽
.

2.2. Mass gathering events, social distancing & vaccination

Mass gathering events. An MGE, a high concentration of individ-
uals at a specific location, can be modeled based on the concept of
a gathering zone. MGEs take place in this zone, which attract agents
including at least one infectious individual. In our simulation, the
gathering zone is designated as a square area with periodic boundary
conditions. When MGEs occur, agents are randomly chosen to relocate
to the gathering zone, where they are uniformly distributed. In the
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zone, infectious agents have the opportunity to transmit the virus to
susceptible individuals. Once an MGE finishes, the agents return to their
original locations within the city. To account for the heightened trans-
mission risks and safety concerns arising from crowd density during an
MGE, two distinct time scales are needed: (1) a macro-time scale (𝛥𝑡),
typically corresponding to a day, which governs the agent movement
within each city, and (2) a micro-time scale (𝛿𝑡) that dictates the
agents’ activities within the gathering zone. In our simulation, 50 micro-
times is equal to one macro time, i.e., 𝛥𝑡 = 50𝛿𝑡. The parameters and
configurations associated with MGEs are outlined in Supplementary
Tabs. II & III. MGEs are categorized into four risk levels: 0 − 3, with
the classification based on the size of the population participating in
the MGEs.

Social distancing. Since the initial COVID-19 outbreak in Feb.
2020, the Korean government has implemented NPIs including SD
measures and the mandatory mask wearing, as shown in Fig. 2(a). SD
means maintaining a greater physical distance from others than usual
to minimize potential exposure and reduce transmission. We categorize
SD into four levels based on guidelines of the Korean government:
‘‘Without = 𝑆0’’ (SD level less than 1), ‘‘Low = 𝑆1’’ (SD level between 1
and 1.5), ‘‘Intermediate = 𝑆2’’ (SD level between 2 and 2.5), and ‘‘High
= 𝑆3’’ (SD level between 3 and 4). We assume that the disease trans-
mission rate 𝛽(𝑡) depends on the SD level. Specifically, for without, low,
intermediate, and high levels, the rate 𝛽(𝑡) is 𝛽0, 0.9𝛽0, 0.75𝛽0, 0.5𝛽0,
espectively.

To account for the reduced effect of the intervention due to the
rolonged SD, we introduce the parameter of fatigue rate. For each city,
e define the infection radius function as 𝜖𝑖(𝑡) = 𝜖0𝜆𝑖(𝑡)−(1−𝜏(𝑡)), where
0 is the baseline of the radius, 𝜆𝑖(𝑡) is the weekly moving average of
aily confirmed cases in city 𝑖 from 𝑡− 7 to 𝑡, and 𝜏(𝑡) ∈ [0, 1] is a non-
egative step function modeling public fatigue caused by the prolonged
nterventions [38,46]. To avoid the explosion of the infection radius,
e set 𝜖𝑖(𝑡) = 𝜖0 for 𝜆𝑖(𝑡) < 1.

Vaccination. Vaccination against COVID-19 commenced in Ko-
ea on Feb. 26, 2021, stipulated by the Korea Disease Control and
revention Agency (KDCA) [47]. To integrate the impact of vaccination
nto our agent-based model, we introduce four parameters: 𝑡𝑉 , 𝜙, 𝜅,
𝜌, whose values are listed in Supplementary Table 2. In particular,
𝑡𝑉 signifies the date when the second vaccine dose was administered,
which, in this case, is set to Mar. 6, 2021. We assume that it takes a two-
week period for individuals to develop immunity from the vaccination
when its coverage (𝜅) is limited to 95%. Susceptible individuals are
chosen at random to receive the vaccine at the rate 𝜙. Additionally, we
account for a reduction in the transmission rate due to the protective
effect of vaccination: (1 − 𝜌)𝛽.

Parameter estimation. We conducted simulations for two MGEs
spanning from Feb. 1, 2020, to Oct. 31, 2021. The initial MGE took
place in Daegu in Feb. 2020, followed by a second event in Seoul
in Aug. 2020 (details in the Supplementary Tab. IV). To estimate
the pertinent parameters, we performed multiple Monte-Carlo simula-
tions to determine the most suitable parameter configuration. Fig. 2(b)
shows that the simulation results agree well with the real-world data,
justifying the choice of the model parameters pertinent to MGEs and
SD.

Process of simulation. To obtain data, we simulate it at least
10,000 times for each scenario (𝑆𝑖,𝑀𝑘

𝑗 , 𝑂𝑚). Our basic assumption for
ach simulation is that (1) when exposed or infected agents do not
xist, our simulation is terminated, because our simulation reaches an
quilibrium, and (2) the maximal simulation time (= 1000𝛥𝑡) is fixed.
or extreme case, i.e., with higher MGE and population density, most of
opulation (≥70%) is infected over the maximal simulation time, which
eans that we may consider all population is infected in the epidemic

ense. But, except extreme scenario, we confirmed that our simulation
as terminated before the maximal simulation time.
 𝐼

4 
Data. The empirical data on which our study was based was
rom the COVID-19 data base by the Korea Disease Control and Pre-
ention Agency (KDCA), which includes the daily number of confirmed
ases, regional infection rates, routes of transmission, and variant types
n South Korea [47].

.3. Quantification of spreading: Epidemic risk and effective reproduction
umber

Probabilities of no, local, influential and wide transmissions. To
examine the impact of infectious transmission between the two cities,
the concepts of ‘‘local’’ and ‘‘influential’’ transmissions are important.
The two transmission types can be distinguished by setting a threshold
in terms of the number of infected individuals, which we set as 2% of
the total population for each city. That is, when there is an outbreak in
city A, we classify it as a ‘‘local transmission’’ if the count of infected
individuals in the city surpasses the threshold. Likewise, if the number
of infected individuals in city B exceeds the threshold, we categorize
it as an ‘‘influential transmission’’. These classifications form the basis
for defining the probabilities associated with both local and influential
transmissions:

𝑃𝐿 =
Number of local transmission occurrences

Total number of simulations ,

𝑃𝐼 =
Number of influential transmissions occurrences

Total number of simulations .

Furthermore, it is possible to define a probability 𝑃𝑊 to represent
he concurrent occurrence of both local and influential transmissions,
eferred to as wide transmission. Similarly, we define the probability of
o transmission, denoted as 𝑃𝑁 , which pertains to the situation where
he cumulative number of infected individuals in each city does not
urpass the specified threshold.

Epidemic risk. For a complex epidemic environment, we define
he risk for spreading of infectious disease 𝑅𝑖𝑠𝑘 as

𝑖𝑠𝑘 = 𝑃𝐿⟨𝑅𝐿⟩ + 𝑃𝐼 ⟨𝑅𝐼 ⟩ − 𝑃𝑊 ⟨𝑅𝑊 ⟩, (1)

where ⟨𝑅𝑗⟩ (𝑗 ∈ 𝐿, 𝐼,𝑊 ) are the average ratios of the total number
of infected individuals in the two cities relative to the combined
population of the two cities for different modes of transmission. The
component associated with ‘‘wide transmission’’ is taken away because
the ‘‘local’’ and ‘‘influential’’ transmissions contain elements of ‘‘wide
transmission’’. When both ‘‘local’’ and ‘‘influential’’transmissions occur,
the risk of propagation can vary based on the number of infected
individuals involved. The measure of infectious spreading risk in Eq. (1)
serves to gauge the potential severity of the spreading.

Effective reproduction number. The basic reproduction number
𝑅0, the expected number of secondary cases resulting from a single
infected individual in a population of susceptible individuals, is a
critical quantity characterizing the potential spread of an emerging
infectious disease. For 𝑅0 < 1, the disease is not expected to propagate
significantly. Conversely, for 𝑅0 > 1, chances are that the disease
will spread within the population [48,49]. A more practical metric is
the effective reproduction number 𝑅𝑡, which represents the expected
number of secondary cases arising from a primary case infected at a
specific time 𝑡. The impact of interventions on disease transmission
can be assessed by 𝑅𝑡, which has been used widely in public health
policies and strategies. Computationally, 𝑅𝑡 can be calculated as the
number of new infections at time 𝑡, denoted as 𝐼(𝑡), divided by the
umber of infectious individuals 𝐼(𝑡 − 1) at the preceding time step
− 1. Numerical fluctuations can arise due to the small denominator
nd the consideration of the infectious period for exposed individuals.
s a remedy, we define the effective reproduction number 𝑅𝑡 as

𝑡 =

{

𝑟0 ×
𝐼(𝑡)

𝐼(𝑡−1) , if 𝐼(𝑡 − 1) > 𝐼𝑐 ,
0, if 𝐼(𝑡 − 1) ≤ 𝐼𝑐 ,

(2)

here 𝑟0 and 𝐼𝑐 are the mean of the infectious period 𝛾 and the critical
umber of the infected individuals, respectively. We set 𝑟0 = 7 and

𝑐 = 1.
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Fig. 3. Effects of SD. (a,b) Probability distribution 𝑃inf (𝑥) of the cumulative cases
(Cum) of infection for different SD levels at the low- and high-density density city,
respectively. The distribution in (a) can be fitted by an exponential function while
that for the high-density city is approximately Gaussian. The dashed box in (b) is
zoomed in for different scales.

3. Results

3.1. Effects of SD and MGEs on epidemic spreading in absence of population
movement

Probability of cumulative cases, 𝑃inf (𝑥). We classify four different
SD level: 𝑆0 = no SD, 𝑆1 = low level of SD, 𝑆2 = intermediate SD
level and 𝑆3 = high SD level. For each SD level, we calculate 𝑃inf (𝑥),
the probability distribution of the cumulative infected population in
both the low- and high-density cities, which can be seen in Fig. 3. The
distribution is approximately exponential-type for the low-density city
and can be fitted by a Gaussian-type curve of mean 𝜇𝑚 and standard
deviation 𝑠𝑚 for the high-density city:

𝑃inf (𝑥) ∼
{

exp (−𝜆𝑆𝑥), for small 𝑥,
exp [−(𝑥 − 𝜇𝑚)2∕2𝑠2𝑚], for large 𝑥, (3)

as shown in Fig. 3(a) and (b), respectively. For the low-density city, SD
has little effect on the spreading and a higher level of SD can reduce
the probability of cumulative cases (Cum) but only slightly. For the
high-density city, the probability of a large number of infected people
decreases from 80% to 76%, 67%, 28% by increasing SD-level, 𝑆0 → 𝑆3,
i.e., the number of infections can be reduced by almost three times
by increasing the SD level from low to high. For a city with high
population density, SD as an NPI can then be effective in preventing
the disease spreading.

Note that to determine a Gaussian-type distribution for large 𝑥
shown as in Fig. 3(b), we may use Kolmogorov–Smirnov test [50,51]
and whose p-values for 𝑆0, 𝑆1 and 𝑆2 are 0.57, 0.96 and 0.06. It
means that 𝑃inf (𝑥) for 𝑆0 and 𝑆1 satisfy a Gaussian distribution, but
for 𝑆2, not Gaussian. That is, due to stronger SD, Gaussian distribution
is destroyed. It means that SD as an NPI can be effective in preventing
the disease spreading. The significance of having two distribution types
for different scales is that higher population density can trigger new,
large-scale outbreaks. That is, population density is one of key factors
in epidemic spreading.

MGE-effect in an isolated city. The size of MGEs can be cate-
gorized into four groups in terms of the number of attendees: 0%,
0.5%, 1% and 1.5% of the total population of the city (denoted as
𝑀0,𝑀1,𝑀2,𝑀3). Fig. 4(a) and (b) show 𝑃inf (𝑥) for the four MGE
sizes at the low- and high-density city, respectively, which can be
approximately fitted by Eq. (3). For the low-density city, as the MGE
size increases from 𝑀0 to 𝑀3, the probability of an outbreak increases
from 0% to 29% and the number of infected individuals increases from
1% to 8%, indicating that an MGE can lead to a large-scale outbreak.
For the high-density city, for the same increase in the MGE level, the
number of infected individuals changes from 85% to 88%, indicating
that MGEs have little effect on the spreading once an outbreak has
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already occurred. Fig. 4(c) and (d) show a representative time series
of the daily confirmed cases and the effective reproduction number 𝑅𝑡
for the fixed SD level 𝑆0 and MGE size 𝑀1, for the low- and high-density
city, respectively. When MGE is occurred, the value of 𝑅𝑡 increases
dramatically and becomes greater than 1, suggesting MGEs as a likely
trigger for a massive increase in the new infections. Fig. 4(e) and
(f) show the mean and variance of 𝑃inf for different SD levels and
MGE sizes. For a fixed MGE size, the mean and variance decreases
with the SD level, implying that SD is effective at reducing spreading
even if MGEs occur, especially for the high-density city [Fig. 4(f)]. For
the low-density city, a large MGE size can cause serious transmission.
However, for the high-density city, MGEs do not have a significant
affect on the spreading, because of the high population density as a
strong contributing factor to disease transmission. Fig. 4(g) (h) show
the probability of the local transmission, denoted as 𝑃𝐿, for different
SD levels and MGE sizes. For the low-density city, 𝑃𝐿 increases with
the MGE size and decrease with the SD level. For the high-density city,
the MGE size has little effect on 𝑃𝐿, except for a high SD level. Overall,
high population density represents a potential risk factor for infectious
disease transmission.

3.2. Epidemic risks with population movements

The results presented so far are for the setting where there are no
population movements between the low- and high-density cities. We
now address the effects of population mobility on epidemic spreading.
To be concrete, we assume that the population of the high-density city
(H) is four times that of the low-density city (L). In addition to studying
the effects of NPIs and mobility rate on the transmission dynamics,
another key factor is the city in which the infectious disease emerges
for the first time. Because of the large number of possible scenarios,
it is necessary to have a labeling scheme. We introduce the following
notation to label the various scenarios:

(𝑆𝑖,𝑀
𝑘
𝑗 , 𝑂𝑚),

where 𝑆𝑖 is for SD level (𝑖 = 0, 1, 2, 3), 𝑀𝑘
𝑗 represents the size 𝑗 of MGE

occurred in the 𝑘-density city (𝑗 = 0, 1, 2, 3 and 𝑘 = 𝐿,𝐻), 𝑂𝑚 indicates
the city of the first outbreak (𝑚 = 𝐿,𝐻), and 𝑀0 indicates that MGE
does not occur. Altogether, there are 56 distinct scenarios.

Effects of SD. In the presence of population movements, the
size and speed of epidemic spreading will depend on the population
density of the two cities and the specific city in which the first outbreak
occurs. To be concrete, we assume that there are no MGEs and fix the
population mobility rate at 𝑅𝑝 = 0.0004.

Suppose that the first outbreak of an infectious disease begins in
the low-density city and population movement into the high-density
city is allowed. This scenario is labeled as (𝑆𝑖, 𝑀0, 𝑂𝐿). Fig. 5(a)
shows 𝑃inf , which is the probability distribution of the cumulative
infected population in both the low- and high-density cities. For a small
number of cumulative cases, 𝑃inf is approximately exponential with
the total probability about 99%. The probability for a large number
of cumulative cases is less than 1%: for the four SD levels (𝑆0 to 𝑆3),
the probability of large-scale infection is about 0.64%, 0.49%, 0.38%
and 0.16%, respectively. These behaviors suggest that, if the initial
outbreak occurs in the low-density city, a large scale outbreak is not
likely. Quantitatively, the values of risk measure (see Methods) for the
four SD levels are close to zero:

𝑅𝑖𝑠𝑘(𝑆0,𝑀0, 𝑂𝐿) ≈ 0.0047, 𝑅𝑖𝑠𝑘(𝑆1,𝑀0, 𝑂𝐿) ≈ 0.0035,

𝑅𝑖𝑠𝑘(𝑆2,𝑀0, 𝑂𝐿) ≈ 0.0018, 𝑅𝑖𝑠𝑘(𝑆3,𝑀0, 𝑂𝐿) ≈ 0.0001,

indicating that, for the scenario (𝑆𝑖, 𝑀0, 𝑂𝐿), SD is ineffective in spite
of the population movements.

What control strategy is effective for this scenario? Fig. 5(b) shows
the time series of the daily confirmed cases and the effective reproduc-
tion number for each city. Due to the population movement from the
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Fig. 4. Effects of MGEs. The first and second rows are for the low- and high-density cities, respectively. (a,b) For fixed SD level 𝑆0, the probability distribution of cumulative
cases for different MGE sizes. (c,d) For fixed MGE size (= 𝑀1) and SD level 𝑆0, a representative time series of daily confirmed cases 𝐷 and the effective reproduction number
𝑅𝑡. (e,f) Mean ⟨Cum⟩ and variance 𝜎2(Cum) of cumulative cases for different MGE sizes and SD levels. (g,h) The probability of local transmission 𝑃𝐿. The dashed box in (a,b) is
zoomed in for different scales.
Fig. 5. SD effects with population movement. The population mobility rate is set to
be 𝑅𝑝 = 0.0004. (a) For an initial outbreak in the low-density city, the probability
distribution of cumulative infection, 𝑃inf (𝑥), for different SD levels. (b) For the fixed SD
level 𝑆0, representative time series of daily confirmed cases 𝐷 (black) and its effective
reproduction number 𝑅𝑡 (red) for both the low-density (top) and high-density (bottom)
cities. (c) For an initial outbreak in the high-density city, the distribution 𝑃inf (𝑥) for
different SD levels. (d) For the fixed SD level 𝑆0, representative time series as in (b).
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

low- to high-density city, the effective reproduction number is greater
than one in the long run. There can be rapidly spreading events in both
cities, albeit with a low probability. For this scenario, travel restriction
can be effective at preventing large-scale outbreaks.

We now study the scenarios (𝑆𝑖, 𝑀0, 𝑂𝐻 ), where an initial outbreak
occurs in the high-density city and population movement into the low-
density city is allowed. Fig. 5(c) shows 𝑃inf in both cities for different
SD levels. The distribution is approximately Gaussian. The probabilities
of having a large number of cumulative cases (a large-scale outbreak)
for the four SD levels are high: 81%, 77%, 66% and 28%, respectively,
6 
with the corresponding risk measures:

𝑅𝑖𝑠𝑘(𝑆0,𝑀0, 𝑂𝐻 ) ≈ 0.5532, 𝑅𝑖𝑠𝑘(𝑆1,𝑀0, 𝑂𝐻 ) ≈ 0.4942,

𝑅𝑖𝑠𝑘(𝑆2,𝑀0, 𝑂𝐻 ) ≈ 0.3738, 𝑅𝑖𝑠𝑘(𝑆3,𝑀0, 𝑂𝐻 ) ≈ 0.0642.

These results indicate that SD as an NPI can be effective because a
high level of SD can lead to a three-fold reduction in the infection
and the spreading risk can be reduced by at least eight times. Fig. 5(d)
shows time series of daily confirmed cases and its effective reproduction
number in both cities. It takes a long time for the reproduction number
to exceed one due to the high population density, after which the
disease spreads to the low-density city due to human mobility. Overall,
if the initial outbreak occurs in the high-density city, the likelihood of
a large-scale epidemic spreading will be high. Compared with the case
where the initial outbreak occurs in the low-density city, a large-scale
outbreak is 100 times more likely: 𝑅𝑖𝑠𝑘(𝑆0,𝑀0, 𝑂𝐻 )∕𝑅𝑖𝑠𝑘(𝑆0,𝑀0, 𝑂𝐿) >
100.

Effects of MGEs. We fix the population mobility rate at 𝑅𝑝 =
0.0004 and assume SD level 𝑆1. Consider the scenario where the
first outbreak and MGEs occur in the low-density city, denoted as
(𝑆1,𝑀𝐿

𝑗 , 𝑂𝐿). Fig. 6(a) shows the distribution 𝑃inf for different sizes
of MGEs. As the size of the MGE increases (𝑀0 → 𝑀3), the probability
for more than 60% of the total population to be infected increases as
0.5% → 24% → 26% → 27%. Fig. 6(b) shows the probabilities of the
local, influential and wide transmission, where 𝑃𝐿 ≈ 𝑃𝐼 ≈ 𝑃𝑊 . The
values of the risk measure 𝑅𝑖𝑠𝑘 can be obtained from Fig. 6(c) as

𝑅𝑖𝑠𝑘(𝑆1,𝑀0, 𝑂𝐿) ≈ 0.0032, 𝑅𝑖𝑠𝑘(𝑆1,𝑀
𝐿
1 , 𝑂𝐿) ≈ 0.1574,

𝑅𝑖𝑠𝑘(𝑆1,𝑀
𝐿
2 , 𝑂𝐿) ≈ 0.1732, 𝑅𝑖𝑠𝑘(𝑆1,𝑀

𝐿
3 , 𝑂𝐿) ≈ 0.1796.

In this case, MGEs have a significant effect on the probability of
occurrence of large-scale transmission. In fact, the risk associated with
the scenario (𝑆1,𝑀𝐿

3 , 𝑂𝐿) is less than half of that of the scenario
(𝑆2,𝑀0, 𝑂𝐻 ): 𝑅𝑖𝑠𝑘(𝑆2,𝑀0, 𝑂𝐻 ) ≈ 0.3738 and 𝑅𝑖𝑠𝑘(𝑆1,𝑀𝐿

3 , 𝑂𝐿) ≈ 0.1796.
We now consider the scenario where the first outbreak occurs in

the high-density city: (𝑆1,𝑀𝐻
𝑗 , 𝑂𝐻 ). Fig. 6(d) shows the 𝑃inf , which

is similar to the distribution in Fig. 6(a). As the MGE size increases
from zero to three, the probability that more than 60% of the total
population is infected is approximately constant: 76%, 78%, 79%, 79%,
indicating that, in this case, MGEs have little effect on enhancing the
disease transmission. Fig. 6(e) shows the transmission probabilities 𝑃 ,
𝐿
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Fig. 6. Effects of MGEs with population movements. For the scenario (𝑆1 ,𝑀𝐿
𝑗 , 𝑂𝐿), (a)–(c) Distribution 𝑃inf , the probabilities of 𝑃𝐿, 𝑃𝐼 and 𝑃𝑊 , and the risk measure 𝑅𝑖𝑠𝑘 for

different sizes of MGEs, respectively. (d)–(f) Same as (a)–(c) but for the scenario (𝑆1 ,𝑀𝐻
𝑗 , 𝑂𝐻 ).
Fig. 7. Group structure of risks for all spreading scenarios. Shown is a systematic display of the values of the rise measure 𝑅𝑖𝑠𝑘 for all 56 spreading scenarios for mobility rate
𝑅𝑝 = 0.0004, which can be divided into three groups (separated by the two blue vertical dashed lines): left, center and right. The blue arrows indicate the decreasing trend of the
risk for different scenarios. The group structure is robust, which holds for other values of 𝑅𝑝 (see Supplementary Materials). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
𝑃𝐼 , and 𝑃𝑊 , where the local transmission probability is relatively high
(≥0.76), but the other two probabilities are near zero, indicating that
the disease spreads mostly locally due to the high population density.
The risk values 𝑅𝑖𝑠𝑘 for (𝑆1,𝑀𝐻

𝑗 , 𝑂𝐻 ) can be obtained from Fig. 6(f):

𝑅𝑖𝑠𝑘(𝑆1,𝑀0, 𝑂𝐻 ) ≈ 0.4941, 𝑅𝑖𝑠𝑘(𝑆1,𝑀
𝐻
1 , 𝑂𝐻 ) ≈ 0.5288,

𝑅𝑖𝑠𝑘(𝑆1,𝑀
𝐻
2 , 𝑂𝐻 ) ≈ 0.5343, 𝑅𝑖𝑠𝑘(𝑆1,𝑀

𝐻
3 , 𝑂𝐻 ) ≈ 0.5338,

indicating a high risk, even though the effects of MGEs on spreading is
quite insignificant.

3.3. Spreading risk management

From the perspective of risk management, the results presented
so far indicate that SD is not the only tool to prevent spreading and
MGEs are not always the leading cause of transmission. To obtain a
comprehensive picture of the risks associated with different spreading
scenarios, we calculate the values of the risk measure 𝑅𝑖𝑠𝑘 for all 56
scenarios for a fixed population mobility rate (e.g., 𝑅𝑝 = 0.0004), as
shown in Fig. 7. Depending on the values of 𝑅𝑖𝑠𝑘, the scenarios can
be distinguished into three groups, which are separated by 𝑅1

𝑖𝑠𝑘 ≈ 0.015
and 𝑅2

𝑖𝑠𝑘 ≈ 0.366, as indicated by the two vertical dashed lines in Fig. 7.
More specifically, Groups 1, 2, and 3 are associated with low, medium,
and high risks, respectively, where the highest risk values for Groups
1–3 are approximately near zero, 0.2, and 0.6, respectively. A common
7 
feature of the scenarios in Group 3 is that the population density of the
first outbreak location is high, and MGEs generally increase the risk.
Fig. 7 provides guidance for managing the spreading risk. For example,
by increasing the SD level as an NPI, a scenario in Group 3 can become
one in Group 2:

𝑅𝑖𝑠𝑘(𝑆1,𝑀
𝐻
3 , 𝑂𝐻 ) ∈ Group 3 → 𝑅𝑖𝑠𝑘(𝑆3,𝑀

𝐻
3 , 𝑂𝐻 ) ∈ Group 2.

Even for the scenarios belonging to the same group, imposing a higher
SD level can reduce the risk, e.g., 𝑅𝑖𝑠𝑘(𝑆1,𝑀𝐿

1 , 𝑂𝐿) ≈ 0.1574 ∈ Group 2
and 𝑅𝑖𝑠𝑘(𝑆3,𝑀𝐿

3 , 𝑂𝐿) ≈ 0.0294 ∈ Group 2.
To better understand the roles of SD and MGEs in spreading for

different scenarios, we consider four city combinations: (𝑀𝐻
𝑗 , 𝑂𝐻 ),

(𝑀𝐿
𝑗 , 𝑂𝐻 ), (𝑀𝐻

𝑗 , 𝑂𝐿) and (𝑀𝐿
𝑗 , 𝑂𝐿), where the first indicates the city

in which MGEs occur with size 𝑗 and the second is the city in which
the first outbreak occurs, and calculate the risks for each combination.
The results for the four combinations are presented in Fig. 8(a–d),
respectively.

For (𝑀𝐻
𝑗 , 𝑂𝐻 ), the range of the risks is approximately (0.148, 0.587),

as shown in Fig. 8(a). Except for the scenario with the high SD level,
(𝑆3,𝑀𝐻

𝑗 , 𝑂𝐻 ) all others (𝑆𝑖,𝑀𝐻
𝑗 , 𝑂𝐻 ) belong to Group 3. The implica-

tion is that controlling MGEs cannot be effective for the combination
(𝑀𝐻

𝑗 , 𝑂𝐻 ) and only a high SD level can move the scenarios into Group
2. The reason is quite intuitive: living in a high-density city is similar
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Fig. 8. Illustration of the roles of SD and MGEs for different scenarios. The risks
associated with four city combinations are exemplified for different SD levels and MGE
sizes: (𝑀𝐻

𝑗 , 𝑂𝐻 ), (𝑀𝐿
𝑗 , 𝑂𝐻 ), (𝑀𝐻

𝑗 , 𝑂𝐿) and (𝑀𝐿
𝑗 , 𝑂𝐿), where the first notation indicates

the city in which the MGEs occur with size 𝑗 and the second notation is the city in
which the first outbreak occurs.

to experiencing MGEs, so a high SD level is necessary to suppress the
spreading.

For (𝑀𝐿
𝑗 , 𝑂𝐻 ), the range of the risks is approximately (0.064, 0.558),

as shown in Fig. 8(b). Similar to (𝑀𝐿
𝑗 , 𝑂𝐻 ), the scenarios (𝑆𝑖,𝑀𝐿

𝑗 , 𝑂𝐻 )
belong to Group 3 except for the scenario (𝑆3,𝑀𝐿

𝑗 , 𝑂𝐻 ) with a high
SD level. The first outbreak in the high-density city is still the leading
cause of spreading, and MGEs in the low-density city have little effect
on the spreading.

For (𝑀𝐻
𝑗 , 𝑂𝐿): the range of risks is approximately [0.0001, 0.0005],

as shown in Fig. 8(c). By these scenarios, MGEs have occurred in the
high-density city before producing possible super spreaders due to the
first outbreak in the low-density city. The scenarios belong to Group 1,
and NPIs have little effect on the spreading dynamics. Note that, if some
super spreaders produced in the low-density city visit the high-density
city, then the scenarios associated with (𝑀𝐻

𝑗 , 𝑂𝐿) will become those
with (𝑀𝐻

𝑗 , 𝑂𝐻 ), rendering effective travel restriction.
For (𝑀𝐿

𝑗 , 𝑂𝐿): the range of risks is approximately [0.016, 0.211],
as shown in Fig. 8(d). The scenarios without MGEs, i.e., (𝑆𝑖,𝑀0, 𝑂𝐿),
belong to Group 1, and all others belong to Group 2. Depending on
the implementation of NPIs, the risk difference between the spreading
scenarios is almost 13 times. For these scenarios, restricting MGEs can
be effective.

3.4. Effects of population mobility

The main result – the emergence of three distinct groups associated
with different epidemic risks as illustrated in Fig. 7, was obtained
for the fixed population mobility rate 𝑅𝑝 = 0.0004. Will a different
mobility rate change the phenomenon? Note that, for 𝑅𝑝 = 0.0004,
the scenarios associated with (𝑀𝐻

𝑗 , 𝑂𝐻 ) and (𝑀𝐿
𝑗 , 𝑂𝐻 ) have similar

dynamical behaviors of spreading while the scenarios associated with
(𝑀𝐻

𝑗 , 𝑂𝐿) have low risks. It thus suffices to focus on the scenarios
associated with (𝑀𝐻

𝑗 , 𝑂𝐻 ) and (𝑀𝐿
𝑗 , 𝑂𝐿) to examine the effects of

different 𝑅𝑝 values on the risk.
We first study the scenarios where the first outbreak occurs in the

high-density city. Fig. 9(a) shows 𝑅𝑖𝑠𝑘(𝑆1,𝑀𝐻
1 , 𝑂𝐻 ) versus 𝑅𝑝, where

the risks for the two cities are approximately the same, indicating that
the value of 𝑅𝑝 does not affect the spreading dynamics. The reason
is that, for the scenarios associated with (𝑀𝐻

𝑗 , 𝑂𝐻 ), the risks are
already high, making high population density as the major cause of the
spreading, regardless of the value of 𝑅 . As the SD level increases, the
𝑝
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Fig. 9. Effects of human mobility. (a)–(c) The risk 𝑅𝑖𝑠𝑘 for the scenarios associated
with (𝑀𝐻

𝑗 , 𝑂𝐻 ) versus the mobility rate 𝑅𝑝 for different SD levels and MGE sizes.
(d)–(f) The corresponding results for the scenarios associated with (𝑀𝐿

𝑗 , 𝑂𝐿).

Table 1
Comparison of two major COVID-19 Mass Gathering Events.

Category Daegu MGE Seoul MGE References

Cluster Shincheonji church Sarang Jeil church
Level of SD 𝑆0 𝑆2 [52]
Level of MGE 𝑀3 𝑀1
Cumulative cases
of entire Korea

8132 8556 [53,54]

Cumulative cases
of MGE

5006 1136 [53,54]

Proportion of
MGE cases

61.6% 13.3% [53,54]

Scenario (𝑆0 ,𝑀𝐿
3 , 𝑂𝐿) (𝑆2 ,𝑀𝐻

1 , 𝑂𝐻 )
Group for 𝑅𝑖𝑠𝑘 Group 2 Group 3

following transition occurs: (𝑆1,𝑀𝐻
1 , 𝑂𝐻 ) → (𝑆3,𝑀𝐻

1 , 𝑂𝐻 ). Fig. 9(b)
shows that the risk is reduced by more than one-third, but it is still
independent of the value of 𝑅𝑝, indicating that traveling between
the two cities has little effect on the spreading, for the same reason
that the epidemic has already occurred in the high-density city and
increasing the SD level can reduce the risk. For large MGE sizes, i.e.,
(𝑆1,𝑀𝐻

1 , 𝑂𝐻 ) → (𝑆1,𝑀𝐻
3 , 𝑂𝐻 ), the risks are high but independent

of the mobility rate, as shown in Fig. 9(c), which is similar to that
in Fig. 9(a), indicating again that the population density of the first
outbreak city is a key spreading factor and SD can be effective at
suppressing the spreading.

If the first outbreak occurs in the low-density city (scenarios (𝑆1,
𝑀𝐿

1 , 𝑂𝐿)), a higher mobility rate can increase the risk, as illustrated in
Fig. 9(d). Applying stronger SD to induces the transition (𝑆1,𝑀𝐿

1 , 𝑂𝐿)
→ (𝑆3,𝑀𝐿

1 , 𝑂𝐿). For these scenarios, the risk is significantly lower but
it increases with the mobility rate, as shown in Fig. 9(e). That is, SD
can be effective at mitigating the spreading even for more intense
population movements. When the MGE size increases to induce the
transition (𝑆1,𝑀𝐿

1 , 𝑂𝐿) → (𝑆1,𝑀𝐿
3 , 𝑂𝐿), the risk will increase even for

small mobility rate, as shown in Fig. 9(f).

3.5. Applications of risk management

In South Korea, during the pandemic several mass infections
emerged: two major events were the Shincheonji Church cluster in
Daegu from Feb. 18, 2020 to March 15, 2020 (referred to as the Daegu
MGE) and the Sarang Jeil Church cluster in Seoul from Aug. 12, 2020 to
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Sep. 3, 2020 (referred to as the Seoul MGE). Fig. 1a illustrates the time-
series data of these two significant infection events. The Shincheonji
Church cluster had triggered a significant outbreak concentrated in
Daegu/Gyeongbuk, as shown in Fig. 1b. A total of 5006 confirmed
COVID-19 cases were related to the Daegu MGE [53], as shown in
Fig. 1b. Those from Daegu MGE accounted for 61.6% among the total
COVID-19 cases, as illustrated in Fig. 1b, indicating that the COVID-
19 outbreak was concentrated mainly in Daegu/Gyeongbuk. The Seoul
MGE is depicted in Fig. 1c, where a total of 1136 COVID-19 cases
were linked to the Sarang Jeil Church [54]. The Seoul MGE cases
represented only 13.3% of the total patients, suggesting that there were
more patients reported in other regions and explaining the sporadic and
continuous transmission across a nationwide spread.

Table 1 provides a summary of the two scenarios for the Daegu and
Seoul MGEs [53,54]. The scenario for Daegu MGE is represented by
(𝑆0,𝑀𝐿

3 , 𝑂𝐿). If SD had been enhanced, transitioning from (𝑆0,𝑀𝐿
3 , 𝑂𝐿)

o (𝑆3,𝑀𝐿
3 , 𝑂𝐿) would have resulted in a significant decrease in 𝑅𝑖𝑠𝑘,

oving it to the lowest rank within Group 2. Furthermore, if there
ad been strong regulations for mobility-generated exposure, it would
ave shifted from (𝑆0,𝑀𝐿

3 , 𝑂𝐿) to (𝑆0,𝑀𝐿
0 , 𝑂𝐿), reducing it to Group 1.

owever, the scenario for the Seoul MGE corresponds to (𝑆2,𝑀𝐻
1 , 𝑂𝐻 ),

lacing it in the middle-risk category, Group 3, as depicted in Fig. 7.
Despite the Seoul MGE having a relatively higher level of social

istancing, a lower level of movement guidance enforcement, and fewer
umulative cases compared to the Daegu MGE, it still falls into a higher
isk category. This is primarily due to the initial outbreak and the MGE
ccurred in Seoul, which has a high population density, thus increas-
ng the potential risk of disease transmission within the city. Indeed,
he transmission impact originating from the Sarang Jeil Church was
ignificant, as shown in Fig. 1a & c. The number of cases from the
eoul MGE involved extensive spread to other regions, resulting in
poradic infections that continued over time, making the full scale of
he outbreak difficult to assess. If SD were enhanced, transitioning from
𝑆2,𝑀𝐻

1 , 𝑂𝐻 ) to (𝑆3,𝑀𝐻
1 , 𝑂𝐻 ) would significantly reduce 𝑅𝑖𝑠𝑘 within

roup 3. Moreover, if both SD and mobility-generated exposure regula-
ions were controlled together, it could lead to a substantial reduction,
otentially to the lower ranks of Group 2. This could demonstrate that
D was significantly more effective than MGE regulation, and even
ore so when both measures were combined together.

. Conclusion and discussion

The COVID-19 pandemic has raised the need to prepare for the
ext possible pandemic triggered by some unknown pathogen. It is
uite likely that a vaccine will not be available at the initial out-
reak, so NPIs are necessary, as the extent of any disease transmission
epends on diverse epidemic environmental factors such as the pop-
lation density, mobility rates, the location of the initial outbreak,
ocial distancing, mass gathering events, etc. In this paper, employing
gent-based modeling, we developed a comprehensive framework to
ssess, quantitatively, the effects of these factors on epidemic spreading
nd the risks associated with distinct scenarios defined according to
he environmental factors. Our concrete setting is agent movements
etween two cities with different population densities. The foundation
f our model construction was the empirical data gathered during the
OVID-19 outbreaks from Feb. 2020 to Oct. 2021 in two cities in
outh Korea: Seoul with a very high population density and Daegu with
relatively low population density (see Methods). Various epidemic

nvironmental factors were incorporated into the model. Based on the
robabilities pertinent to the local, influential, and wide transmissions,
e introduced a quantitative measure to characterize the epidemic risk
ssociated with different scenarios.

We first focused on the impacts of SD and MGEs in the two cities.
n the low-density city, MGEs and SD have predictable effects on
preading and outbreak reduction, MGEs tend to facilitate disease trans-
ission while SD can effectively curb the epidemic, as expected. In the
9 
igh-density city, the disease transmission can be substantial regardless
f the scale of MGEs, suggesting that MGEs do not have a significant
mpact on the outbreak, primarily because the high population density
tself acted as a powerful driver of disease spread. In this case, SD can
e highly effective as a vital approach to containing the spreading.
ur analysis underscores that the effectiveness of NPIs such as SD
nd MGEs depends on the population density of the city. We then
tudied the effects of population movements between the two cities
n the epidemic associated with all scenarios and discovered that the
cenarios can be divided into three groups associated with distinct
isks. In particular, individuals in the high-density city already face
n inherent risk of outbreaks due to the high population density. Our
nalysis revealed that the most precarious scenario occurs when the
nitial outbreak takes place in the high-density city, as expected. For
hese scenarios, MGEs have little effect on the spreading, making SD the
rimary means of risk reduction. Our results reaffirms, at a quantitative
evel, that among the myriad factors influencing epidemic spreading,
igh population density is the most critical factor.

We discuss our findings on risk management of epidemic spreading
ith respect to previous relevant results. Past research emphasized the

mportance of implementing NPIs as well as population density and
ovements on the epidemic risk [55–57]. For example, the popula-

ion density was identified as a crucial factor in estimating the total
umber of infection cases at the country level [55], highlighting the
ecessity of incorporating population density into transmission models.
nother study [56] underscored the importance of a city’s population
ensity and social contact patterns, particularly in high-density cities,
here moderate physical distancing measures can effectively control

he extent of infection. An analysis of the territorial differences in the
pread of COVID-19 and the associated excess mortality in Europe and
he US was carried out [57], revealing the importance of territorial
haracteristics in shaping effective public health policy responses at
he regional level. These studies highlight the multifaceted nature of
nfectious disease spread and vast complexity in devising effective
ontrol measures. In comparison, we have provided a comprehensive
nalysis encompassing all the factors and the effects of their interplay
n spreading, which include NPIs, MGEs, population density of the
irst outbreak, and population movement, with an emphasis on the
mportance of tailoring effective control interventions to prevent dis-
ase spread according to the specific characteristics of each region. In
articular, our study suggests that each city should conduct a thorough
ssessment of its own risk profile based on its distinct characteristics
nd develop quarantine policies tailored to its unique circumstances.

Taken together, an extensive investigation of the risk of disease
pread as in our work is necessary to manage epidemic risks when
mplementing NPIs. Our research represents a foundational framework
or the management of risk across a spectrum of epidemic scenarios,
acilitating the application of multiple NPIs, and provides a quanti-
ative base for health authorities and governments to make informed
ecisions to safeguard public health in the face of potential infectious
isease outbreaks.
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