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A B S T R A C T

Traditionally, mathematical modelling of population dynamics was focused on long-term, asymptotic behaviour
(systems attractors), whereas the effects of transient regimes were largely disregarded. However, recently there
has been a growing appreciation of the role of transients both in empirical ecology and theoretical studies.
Among the main challenges are identification of the mechanisms triggering transients in various dynamical
systems and understanding of the corresponding scaling law of the transient’s lifetime; the latter is of a vital
practical importance for long-term ecological forecasting and regime shifts anticipation. In this study, we reveal
and investigate various patterns of long transients occurring in two generic time-discrete population models
which are mathematically described by discontinuous (piece-wise) maps. In particular, we consider a single-
species population model and a predator–prey system, in each model we assume that the dispersal of species
at the end of each season is density dependent. For both models, we demonstrate transients due to crawl-by
dynamics, chaotic repellers, chaotic saddles, ghost attractors, and a rich variety of intermittent regimes. For
each type of transient, we investigate the corresponding scaling law of the transient’s lifetime. We explore the
space of key model parameters, to find where particular types of long transients can be expected, and we show
that long transients are omnipresent since they can be observed within a wide range of model parameters.
We also reveal the possibility of complex patterns occurring as a cascade of transients of different types.
We also considered a stochastic version of the model where some parameters exhibit random fluctuations.
We show that stochasticity can reduce, extend or produce new patterns of long transients. We conclude that
the discontinuity in population models significantly facilitates the emergence of long transients by creating
new types and increasing parameter domains of the corresponding transient dynamics. Another important
conclusion is that the asymptotic regime of population dynamics is hardly possible to predict based on a finite
time course of species densities, which is crucial for ecosystem management and decision making.
1. Introduction

A large number of mathematical models in ecology are based on
differential equations and/or discrete maps. In those models, the main
focus has long been on the asymptotic states of the considered system,
which are defined as the system attractors. The two main reasons are:
(i) the relative simplicity of the asymptotic states as compared to the
entire phase space (e.g., system equilibria can be found by solving
algebraic equations), and (ii) the common sense belief that the time
that it takes a real-world system to closely approach an attractor is not
too long, therefore we can disregard the initial transient regime. There
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is, however, a growing understanding that the latter reason is essen-
tially wrong, since a large number of theoretical models and empirical
observations demonstrated that transient behaviour may persist over
very long time periods [1,2]. In the case, where the length of transients
is longer than the required horizon of our prediction, focusing solely
on the long-term behaviour of systems would be misleading due to a
mismatch of scales [3]. Correspondingly, there is a growing recognition
of the leading role of transient dynamics, and especially long transients,
in ecology and epidemiology, as well as applied dynamical systems of
other origins [1,2,4–8]. Importantly, long transients are considered to
be an alternative explanation of ecological regime shifts, where, unlike
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the classical tipping point scenario, a transients-related mechanism of
shift occurs for constant model parameters [6,9].

Recently, the theoretical aspects of the long transients paradigm in
ecological modelling have been revisited with the main goal of creating
a more systematic approach based on the abundant literature on the
topic [2,5,6]. To be able to predict regime shift due to the alternative
transient-based scenario, the formal definition of a long transient has
been proposed. The definition requires the existence of a scaling law
for the transient lifetime when a certain bifurcation parameter tends
to a critical value [5,10] (for detail see Section 2.2). Transient regimes
have been classified according to their nature and their scaling [5]. On
the other hand, despite hard efforts to systematise transient behaviour
in models and empirical studies, this area of research still seems to be
patchy and new types of transients are currently being revealed [8,11].
The current work is aimed to elucidate unknown features of transients
in simple time-discrete population models.

Population dynamics models based on maps (i.e., assuming non-
overlapping generations) have been in the focus of theoretical ecology
for more than half a century starting from the seminal works of R.
May [12–15]. Various patterns of long transient have been reported in
discrete time models. For example, the possibility of chaotic saddles
was demonstrated for generic model settings, where the trajectory
seems to be chaotic for a long time before it becomes eventually pe-
riodical [16]. Importantly, chaotic saddles and super-persistent chaotic
saddles were shown to exist within a wide range of a model parameter,
which is crucial from the practical point of view to observe chaos,
which is a fundamental problem in ecology [17,18]. Indeed, from the
general theory of discrete maps it follows that in the parameter space
windows corresponding to periodic orbits are dense [19,20], whereas
parameter sets for chaotic attractors are extremely scarce, they contains
no open intervals and constitute a fat fractal set [21,22]. In contrast,
for transient chaos, there are an infinite number of open parameter
intervals, which can be observed in experiments/observations which is
not possible for a ‘pure’ chaotic behaviour [13]. Emergence of transient
chaos requires some restrictions on the model: the minimum dimension
is two for invertible discrete maps [23,24].

We should stress, however, that despite a large body of literature,
our understanding of long transients in discrete population models is
still limited even regarding relatively simple single-species and two-
species models [16]. There are at least two major gaps in our knowl-
edge. Firstly, the transient phenomena are much less understood in
maps including discontinuity despite the fact that such models are
widely used in ecology and ecosystem management. For example,
piece-wise discrete models are used in the theory of optimal harvest-
ing, species conservation, and pest control [25–28]. The existence of
long transients can significantly alter the control strategy proposed
in those models under asymptotic dynamics settings. On the other
hand, it is known that discrete models with discontinuous functions
can possess complicated dynamics and a complex bifurcation struc-
ture quite different from those observed in the corresponding models
without discontinuity; for example in such systems, the classical period-
doubling bifurcation scenario may not necessarily hold [29]. Therefore,
it is important to understand what mechanisms of long transients can
occur in such systems [30]. The second gap in our knowledge is the
substantial lack of understanding of the structure of the parameter
space corresponding to various types of transients. For example, a
crucial question is whether parameter values corresponding to long
transients make up a substantial proportion of the overall parameter
space. Apparently, this issue has important practical applications. An-
other interesting aspect requiring more attention is the possibility of
the switch different types of transients before approaching the final
attractor, i.e. the existence of a cascade of transients [31]. One efficient
technical way to reveal the commonality of long transients is through
the construction of the corresponding parametric diagrams; however, to
the best of our knowledge, this approach is not well-developed in the
2

literature even for simple models despite some recent progress [32–34]. L
Finally, the role of the initial condition in the transient behaviour has
not been properly studied; in particular, a largely open question is how
sensitive the long transients are to the choice of the initial conditions.

In this paper, we endeavour to address the above-mentioned gaps,
although our research into the problem is by no means exhaustive.
Namely, we explore transient behaviour in two discrete models of
population dynamics containing discontinuity in model functions. The
models are: a single species population model and a predator–prey
model, in each model we include the effects of density dependent
migration described by a discontinuous term. In each model, we reveal
patterns of long transient dynamics due to various mechanisms and
we explore their scaling behaviour. We discover some new types of
transients which emerge due to the discontinuity in the model. We
construct bifurcation diagrams to reveal the structure of parameter
space corresponding to different transient regimes and demonstrate
that transients are omnipresent in the considered systems. Interestingly,
some patterns show cascades of transients, when dynamics switch
between different transient types before finally, the trajectory settles on
an attractor. We demonstrate that the sets of parameters producing long
transients have a complex structure. We also discuss the dependence
of transients on the initial condition. Along with purely deterministic
models, we explore effects of random fluctuations of model parameter
on long transients. Finally, we link our findings to the challenges of
ecosystem management.

2. Theoretical framework

2.1. Model equations

Here we assume non-overlapping generations (e.g. such an as-
sumption is usually made in modelling insect populations [15]), and
consider two simple discrete population models with density dependent
dispersal. Firstly, we consider a single species model. The generic form
of the model is given by [26]

�̃�𝑡+1 = 𝐹 (𝑋𝑡), (1)

𝑡+1 = �̃�𝑡+1(1 + 𝜖1𝑠𝑔𝑛(𝑋𝑡 − �̃�𝑡+1)), (2)

here �̃�𝑡+1 is the population size at the end of year 𝑡 prior to the
ispersal; 𝑋𝑡 is the population size at the end of year 𝑡 after the
ispersal event. The function 𝐹 denotes the local population growth.
he biological rationale behind the model is the following. Each year
he population locally grows according to the function 𝐹 , then before
he end of the season, a part of the population undergoes dispersal
rom the given geographic location to some other sites. The dispersal
s density dependent. In the case where the density at the end of
he growth season is higher as compared to the last year population
ensity, i.e. 𝑋𝑡 < �̃�𝑡+1, a part of the population leaves the given
ite. In the opposite situation, i.e. when 𝑋𝑡 > �̃�𝑡+1, individuals from
ther sites arrive at the given location, thus we have an inflow of
opulation. The parameter 𝜖1 characterises the strength of dispersal.
nother interpretation of the term 𝜖1𝑠𝑔𝑛(𝑋𝑡 − �̃�𝑡+1) can be the effect
f ecosystem management, where some proportion of individuals is
emoved or added depending on the previous year’s density and the
ensity after the growth season.

The above model containing two equations can be re-written as a
ingle equation discrete map

𝑡+1 = 𝑚𝑎𝑥
[

𝐹 (𝑋𝑡)(1 + 𝜖1𝑠𝑔𝑛(𝑋𝑡 − 𝐹 (𝑋𝑡))), 0
]

≡ 𝐻(𝑋𝑡). (3)

aking the maximum in the above expression excludes unrealistic cases
here either 𝑋𝑡 or 𝐹 (𝑋𝑡) becomes negative. The resultant map is given
y the function 𝐻(𝑋𝑡), which is a discontinuous function.

The second model is a discrete predator–prey system which is
n extension of the above single species model, where a dynamical
redator is added. The local population growth is described by the

otka–Volterra discrete equations (see [35,36]). Unlike the previous
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studies, we introduce the density dependent discontinuous dispersal
terms in the same way as in the single species model. The corresponding
equations are given by

�̃�𝑡+1 = 𝐺1(𝑋𝑡, 𝑌𝑡) ≡ 𝐹 (𝑋𝑡) − 𝑏𝑋𝑡𝑌𝑡, (4)

𝑌𝑡+1 = 𝐺2(𝑋𝑡, 𝑌𝑡) ≡ 𝑑𝑋𝑡𝑌𝑡 − 𝑐𝑌 (𝑡), (5)

𝑋𝑡+1 = 𝑚𝑎𝑥
[

�̃�𝑡+1(1 + 𝜖1𝑠𝑔𝑛(𝑋𝑡 − �̃�𝑡+1)), 0
]

, (6)

𝑌𝑡+1 = 𝑚𝑎𝑥
[

𝑌𝑡+1(1 + 𝜖2𝑠𝑔𝑛(𝑌𝑡 − 𝑌𝑡+1)), 0
]

, (7)

where 𝑋𝑡, 𝑌𝑡 is the population sizes of the prey and the predator,
respectively, at the end of year 𝑡 after the dispersal event; �̃�𝑡, 𝑌𝑡 are
he population sizes prior to the dispersal. 𝐹 (𝑋) is the growth rate of
he prey in the absence of the predator. The parameter 𝑐 > 0 describes
he mortality of the predator in the absence of prey; 𝑏 > 0 is the attack
ate of the predator on the prey, and 𝑑 > 0 is the combination of the
ttack rate and the trophic efficiency of the predator. Without losing
enerality we can assume that 𝑏 = 1 (e.g. by re-scaling the density
f predator). The dispersal terms have the same meaning as for the
ingle species model. The four-dimensional system above can be easily
implified to a two-dimensional system as follows

𝑡+1 = 𝑚𝑎𝑥
[

𝐺1(𝑋𝑡, 𝑌𝑡)(1 + 𝜖1𝑠𝑔𝑛(𝑋𝑡 − 𝐺1(𝑋𝑡, 𝑌𝑡))), 0
]

, (8)

𝑌𝑡+1 = 𝑚𝑎𝑥
[

𝐺2(𝑋𝑡, 𝑌𝑡)(1 + 𝜖2𝑠𝑔𝑛(𝑌𝑡 − 𝐺2(𝑋𝑡, 𝑌𝑡))), 0
]

, (9)

where the functions 𝐺1(𝑋𝑡, 𝑌𝑡) and 𝐺2(𝑋𝑡, 𝑌𝑡) are defined above. For
simplicity, to reduce the number of parameters, in the rest of the text
we will assume that 𝜖1,2 ≡ 𝜖.

One needs to parameterise the growth rate function 𝐹 (𝑋) in both
models. Following the work of [26], here we mostly focus on the case
where 𝐹 (𝑋) is the logistic function, i.e. 𝐹 (𝑋) = 𝜇𝑋(1 −𝑋), where 𝜇 is
the maximal per capita growth rate of the population 𝑋. However, in
order to check the robustness of our findings to the choice of the growth
function, we have also briefly considered the scenario where 𝐹 (𝑋)
was given by the Ricker function given by 𝐹 (𝑋) = 𝑋 exp (𝜇(1 −𝑋)).
For the Ricker function we find similar mechanisms generating long
transients which we do not present here for the sake of brevity. Note
that the fixed points of model (3) with 𝜖1 > 0 were studied in [26],
whereas system (8) without dispersal terms (𝜖1,2 = 𝜖 = 0) was
briefly considered in [35,36]. Here, however, our main focus will be
on transient dynamics. For each transient type, we explore the scaling
properties of transients, which is their fundamental property [5] (see
also the definition of transients in the next subsection).

Finally, along with the deterministic models presented above, we
also considered stochastic versions of the same models, where some
coefficients exhibit random fluctuations. The details on the stochastic
versions of the models are provided in Section 3.3.

2.2. Defining a long transient

To reveal long transient regimes in the above models, we need some
formal definition at hand. We should stress, however, that transient
phenomena in dynamical systems (either for time continuous or dis-
crete dynamical systems) are much more diverse to be covered by an
exhaustive single definition. As a result, various definitions of tran-
sients currently exist in the theoretical literature which can be applied
to modelling different phenomena [5,8]. Moreover, a universal, all-
embracing definition would be potentially meaningless. Indeed, strictly
speaking, trajectories which are not a part of the system’s attractor
should be formally considered as transients. On the other hand, we
argue (see below) that even if the considered trajectory is exactly
an attractor (or it is close to an attractor), sometimes parts of this
trajectory can be sensibly considered as long transients. In this study,
we shall use the definition from the recent study by Morozov et al. [5],
which relates a long transient to a regime shift.
3

Definition 2.1 (Long Transient Dynamics). Consider a dynamical system
(discrete or continuous), where all parameters are constant, i.e. they
do not depend on time. We assume that the system is functioning in a
particular state (a ‘quasi-stable regime’), where the main characteristics
remain close to constant. Note that we understand a ‘quasi-stable
regime’ in a broad sense, including oscillatory dynamics as well. Sup-
pose that at some point the system experiences a transition to another
regime which is stable (or quasi-stable) and the transition occurs on a
timescale much shorter than the duration of the preceding dynamical
pattern. If the duration of the system state before the transition can be
made as long as possible, when approaching some bifurcation parame-
ter, we call it a long transient. Note that the new regime after the shift
can be a long transient as well. The above definition can be applied for
a stochastic system as well in the case random fluctuations of a model
parameter are small and they occur around some mean value.

Remark. Note that in this paper, unlike in the study by Morozov
et al. [5], we intentionally do not consider another important class
of transients, where the system’s dynamics evolve on a very slow
timescale, which is much longer than any characteristic time of the
current dynamical pattern before reaching a different stable or to a
different quasi-stable regime (e.g. damped oscillations with very slow
changing amplitude, which can be found in both considered models).
Such long transients should be explored elsewhere. Also, here we do not
make a distinction between chaotic and non-chaotic transients, despite
the fact that the former may have different properties.

Remark. The proposed definition assumes the existence of scaling
behaviour of the average lifetime of a long transient. In other words,
if some control parameter 𝑝 tends to a critical value 𝑝𝑐 , the average
lifetime will tend to infinity according to some law which is usually
exponential, power law or their combination. Various scaling behaviour
allows for the classification of distinct transient patterns [5,10].

Remark. We should stress that according to the above definition,
long transient dynamics can be a part of an intermittent regime, when
the system remains on the attractor or stays close to an attractor,
which is characterised by different phases of dynamics. For example,
a long (transient) phase of low amplitude oscillations can be followed
by large amplitude oscillations. By varying a model parameter we
can make the duration of one as large as possible, i.e. the lifetime
of the phase exhibits scaling. From the ecological point of view, the
inclusion of intermittency-related transients (where the trajectory is a
final attractor) is required in the case we model phenomena involving
various time scales [5,37].

Note that although we require a long transient to have a lifetime
which can be made as large as possible, in this paper, the diagrams
showing the presence of long transients are constructed by fixing
some minimal lifetime of transients 𝑇 . In the context of any partic-
ular ecological application, the choice of 𝑇 can be linked to species
traits and/or to a typical timescale of ecological management actions.
Finally, although some transient regimes can be found using analytical
techniques, most transients patterns (especially for the predator–prey
model) were obtained via numerical simulations (we used MATLAB
software [38]).

3. Results

3.1. Transients in the single species model

We implemented extensive numerical simulations as well as some
analytical methods to reveal long transients in model (3). The main
types of long transients are briefly summarised in Table 1. Note the
table provides a joint classification of transients for both models. The
corresponding numerical examples of each type of transients in model
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Table 1
Classification of long transients in model (3) and model (8). Symbols ‘*’ and ‘**’, refer, respectively, to the one-dimensional
and the two-dimension case; 𝑝 is a control parameter; 𝑝𝑐 is its bifurcation value, we assume |𝑝 − 𝑝𝑐 | ≪ 1. The transient lifetime
𝜏 is understood as follows: for recurrent transients, 𝜏 is estimated via averaging over a long time period; for non-recurrent
transients, 𝜏 is obtained by averaging over a set of initial conditions; for non-recurrent and non-chaotic transients, 𝜏 is
computed based on a fixed initial condition. Details on calculating scaling of transients are provided in the text.

Transient type Scaling behaviour Numerical examples

Transients generated by a
ghost attractor (smooth scenario)

𝜏 ∝ 1
|𝑝−𝑝𝑐 |

0.5 Fig. 1A*, Figs. 5A**,B**

Transients generated by a
ghost attractor (discontinuous
scenario)

𝜏 ∝ − log |𝑝 − 𝑝𝑐 | Fig. 1B*, Figs. 5C**,D**

Transients generated by
chaotic repellers or chaotic
saddles

𝜏 ∝ 1
|𝑝−𝑝𝑐 |

𝛾 , 𝛾 ≥ 1 Figs. 1C*,D*
Figs. 6A**,B**,C**,E**

slow-fast dynamics
(smooth/discontinuous scenarios)

𝜏 ∝ 1
|𝑝−𝑝𝑐 |

𝛾 , 𝛾 ≥ 1 Figs. 1E*,F*, Figs. 6D**,F**

Transients due
to non-chaotic saddles

𝜏 ∝ − log |𝑝 − 𝑝𝑐 | Figs. 5E**,F**
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(3) are shown in Fig. 1. We have also estimated the scaling behaviour
of the lifetime of transients, which in most of cases is obtained via av-
eraging over the time or initial conditions (more detail on computation
of the lifetime of each type of transients is provided below).

We find that the simplest generic class of long transients in the
model is due to the so-called ghost attractor with the corresponding
examples shown in Figs. 1A,B. The general aspects of ghost attractors
are described in [5,39,40]. The given type of transient occurs when
a stable periodic orbit with period 𝑛 disappears when some control
parameter 𝑝 has been varied (here 𝑝 is 𝜖 or 𝜇). Assume that we initially
have a stable periodic orbit with the period 𝑛, i.e. 𝐻𝑛(𝑋) = 𝑋.
Disappearance of the periodic orbit occurs at some critical value of
bifurcation parameter 𝑝𝑐 , and a small gap (called the escape channel)
is formed between the model function 𝐻𝑛(𝑋) and the line 𝑋 = 𝑋. The
time that the trajectory spends when travelling through the escaping
channel shows a scaling behaviour as a function of the difference
|𝑝 − 𝑝𝑐 |. In our model, emergence of a ghost attractor occurs in two
different ways. According to the smooth scenario, the loss of stability
occurs when a pair of stable/unstable periodic orbits annihilates at
𝑝 = 𝑝𝑐 . It can be shown that the lifetime of a transient is scaled as
a power law, 𝜏 ∝ 𝐴1

(𝑝−𝑝𝑐 )0.5
, where 𝐴1 is a positive constant [5,41]. An

xample of a transient according to the considered scenario is given
n Fig. 1 A for a two-periodic orbit (the schematic flowchart of the
mergence of a ghost attractor is provided in SM1, some transients due
o ghost attractors with a higher periodicity are shown in SM2).

A different scenario of transients generated by a ghost attractor is
ossible when the disappearance of the stable periodic orbit takes place
t a point of discontinuity of the system. An example of the correspond-
ng transient pattern is shown in Fig. 1B. The scaling behaviour is given
y 𝜏 ∝ −𝐴2 log |𝑝 − 𝑝𝑐 |, where 𝐴2 is a positive constant. This law can
e understood using the flowchart from Fig. 2, the upper panel, the
oint of discontinuity is shown by a dashed vertical line. Before the
ifurcation, the system has a periodic orbit defined by 𝐻𝑛(𝑋) = 𝑋,
hich is locally stable (shown by a filled circle). After the bifurcation,
𝑛(𝑋) and 𝑋 do not intersect in the considered vicinity. Near the point

f discontinuity, the function 𝐻𝑛(𝑋) can be approximated by a straight
ine with a slope 𝐾 (1 > 𝐾 > 0). The distance 𝜂 between 𝐻𝑛(𝑋) and
= 𝑋 at the point of discontinuity is approximately proportional to

𝑝 − 𝑝𝑐 |, i.e. 𝜂 ∝ |𝑝 − 𝑝𝑐 | ≪ 1. The trajectory approaches the point of
iscontinuity from some distance apart (we can consider this distance
o be of order 1). It will require 𝜏 steps for the trajectory to reach the
oint of discontinuity, which can be found from 𝜂 = 𝐾𝜏 . We have
∝ log |𝑝 − 𝑝𝑐 |∕ log(𝐾) = −𝐴2 log |𝑝 − 𝑝𝑐 |, 𝐴2 > 0 since log(𝐾) < 0.

ote that for the discontinuous scenario of the ghost attractor, the
ransient lifetime increases at a much slower rate as compared to the
mooth scenario. We should also stress that in both mentioned cases,
he trajectory can eventually return to the vicinity of the ghost, thus the
4

w

ransient will be a part of a larger attractor (chaotic or periodic). Note
hat for both above mentioned types of ghost attractors, we measure
he lifetime based on the closeness to the ghost (e.g. requiring that the
rajectory should not deviate from the ghost of the fixed point more
han 5%–10% of its value).

Another scenario of long transients involves chaotic repellers. A typ-
cal example of a chaotic transient is shown in Fig. 1C, where the system
xhibits apparently chaotic dynamics with large amplitude oscillations
efore the trajectory becomes trapped within some narrow region. The
symptotic regime can be a vicinity of the point of discontinuity of the
unction 𝐻(𝑋), which is 𝑋 = (𝜇 − 1)∕𝜇, or this can be some periodic
rbit. The scaling law of chaotic transient lifetime is 𝜏 ∝ 𝐴3

(𝑝−𝑝𝑐 )𝛾
, which

s in agreement with previous studies [5,41]. We should note, however,
hat we obtained the scaling law only for 𝜖 → 0, thus here 𝑝 = 𝜖.
ransient chaos can also include patterns of intermittency, where large
mplitude and low amplitude phases alternate before the trajectory can
ind an escaping channel. An example of a transient due to chaotic
epeller with transient intermittency is shown in Fig. 1D. The end of this
ype of transients can be determined when the trajectory approaches
ome vicinity of the new attractor (e.g. to be within 5% error band).

Chaotic intermittency with fast and slow oscillations can be the
ventual attractor of model (3). However, different phases of intermit-
ency can be made as long as possible by tuning a model parameter.
herefore, we can still apply the definition of the long transients to a
articular phase. For example, small amplitude oscillations can last for
long time before the system starts the next phase with large amplitude
scillations. An example of long transients due to intermittency is
hown in Fig. 1E, where the dynamical regime characterised by small
mplitude oscillations can last for a long time. The mechanism of
ransients consists in trapping the trajectory within a small region
efore the trajectory finds some route to escape from the trap (a
rapping region can occur for some period 𝑛 > 1, in this case, the
esultant pattern will be close to an 𝑛-periodic solution). We find that
he emergence of a small trapping region can include two different
echanisms. Firstly, this can be related to the discontinuity of the

unction 𝐻(𝑋). The corresponding flowchart is shown in Fig. 2 (the
iddle row). In Fig. 2C, once the trajectory lands inside, it would stay
ithin the trapping region forever. However, for a slight variation of

he model parameter 𝑝, a small escaping channel emerges in the trap:
he trajectory will leave the trap within some finite time (Fig. 2D). To
o this, it should land within a small band (escape channel) whose
ength is proportional to the difference |𝑝 − 𝑝𝑐 |, thus the scaling of the
ransient lifetime is given by 𝜏 ∝ 𝐴4

|𝑝−𝑝𝑐 |
. The critical value 𝑝𝑐 , indicating

he emergence of an escaping channel is derived in Appendix A.
The second class of a trapping region related to intermittency occurs

or periodic trajectories generated by 𝐻𝑛(𝑋), within an interval of 𝑋

hich does not contain a discontinuity. The corresponding numerical



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113707A.Y. Morozov et al.
Fig. 1. Main types of long transients in the single species model (3), 𝐹 (𝑋) = 𝜇𝑋(1 −𝑋). (A) Transient generated by a ghost attractor of a stable periodic orbit (smooth scenario),
𝜇 = 3.12, 𝜖 = 0.007647, 𝑋0 = 0.00098322. (B) Transient generated by a ghost attractor of a stable periodic orbit (discontinuous scenario), 𝜇 = 3.2 𝜖 = 0.061251098; 𝑋0 = 0.67. (C)
Transient generated by a chaotic repeller, 𝜇 = 4, 𝜖 = 0.015, 𝑋0 = 0.0000873. (D) Transient generated by a chaotic repeller with transient intermittency, 𝜇 = 3.99, 𝜖 = 0.00013,
𝑋0 = 0.009475. (E) Asymptotic intermittency involving a discontinuous trapping region, 𝜇 = 4, 𝜖 = 0.00109, 𝑋0 = 0.05. (F) Asymptotic intermittency involving continuous and
discontinuous trapping regions, 𝜇 = 4.00032654, 𝜖 = 0.0095, 𝑋0 = 0.05. Details on the mechanisms of transients are provided in the text.
example is shown in Fig. 1F. In fact, Fig. 1F shows a combination
of two patterns of intermittency: one is the intermittency due to the
trajectory being trapped around the point of discontinuity, and the
second one includes a phase close to a periodic orbit (with 𝑛 = 4),
where the trapping region is smooth. Fig. 3 (the bottom row) shows
the mechanism of trapping trajectory within a small region which
does not contain discontinuity. Overall, the mechanism triggering a
transient is conceptually similar to that of the discontinuous scenario,
therefore the scaling law of the lifetime is the same. However, the
5

critical value of control parameter 𝑝𝑐 resulting in opening an escape
channel can be found from a different condition 𝐻𝑛(𝑋∗∗) ≈ �̂� =
𝐻𝑛(�̂�), where 𝑋∗∗ is the local minimum of 𝐻𝑛(𝑋), and �̂� is the closest
unstable 𝑛-periodic orbit located on the right of 𝑋∗∗. For both cases
of intermittency, the scaling laws for the small amplitude phase are
provided in SM3. On the other hand, the large amplitude phase (fast
dynamics) presents a transient regime as well, which is due to a chaotic
repeller (the chaoticity was verified via following exponential deviation
of close trajectories). However, in this case, it is hard to derive the
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Fig. 2. Mechanisms of the emergence of long transients in the single species model (3), 𝐹 (𝑋) = 𝜇𝑋(1 − 𝑋). Upper panel: transients generated by a ghost attractor emerging via
a discontinuous scenario (for the continuous scenario, see SM1). (A) Locally stable periodic orbit (filled circle). (B) The stable orbit disappears at the point of discontinuity; this
creates a small escaping channel for the trajectory. The trajectory stays for a long time near the point of discontinuity before it goes away. Middle panel: transients due to slow-fast
intermittency via a discontinuous scenario. (C) The trajectory is trapped within a region located around the point of discontinuity 𝑋∗. (D) Variation of a model parameter creates
a small escaping channel, so after spending a long time (characterised by slow changes), the trajectory eventually leaves the trap to start fast phase of dynamics. Lower panel:
transients due to slow-fast intermittency via a smooth scenario. (E) The trajectory is trapped within a small region located around the local minimum of 𝐻𝑛(𝑋). (F) Variation of
a model parameter creates a small escaping channel, so after spending long time, the trajectory eventually leaves the trap to start a fast phase (large amplitude) of intermittency.
Open circles represent unstable fixed points.
corresponding scaling law analytically. We numerically found that the
chaotic phase of intermittency regime becomes infinitely large only
when 𝜖 → 0.

For all types of intermittency-related transients, we investigated
the law of distribution of the transient lifetime. We generally found
the distribution to follow the exponential law at the tail both for the
small amplitude and the large amplitude phase (see SM3 for detail).
Therefore, the transient lifetime should be understood as the mean
value of the mentioned distribution. The length of a small amplitude
phase of the transient can be defined as the moment of time, when the
trajectory leaves the trap shown in Fig. 2.
6

We investigated the dependence of occurrence of various types of
transients in (3) on the model parameters, 𝜇 and 𝜖. In our studies, we
mainly focused on the small values of parameter 𝜖 (approximately up to
𝜖 = 0.1), and we mostly varied 𝜇 from 𝜇 = 3 until its maximal possible
values assuring the positivity of 𝑋𝑘. The typical diagrams are presented
in Fig. 3. The diagrams were constructed via direct computer simulation
by following the system’s dynamics within 𝑇 = 10,000 generations. For
each parameter set, 200 first generations are disregarded. We should
stress, however, that the system is rather sensitive to variation of model
parameters even by a very small value which can be seen by zooming
some parts of diagrams (see Fig. 3C,E). For example, variation of the
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Fig. 3. Dependence of transients on parameters 𝜖 and 𝜇 in the single species model (3), with the logistic function, the starting point is 𝑋0 = 0.7. The upper panel shows the main
diagrams constructed for small and intermediate values of 𝜖; the middle and the bottom panels provide fine resolutions of the diagrams in the upper panel. The observed long
transient patterns include: ever persistent intermittency with fast and slow phases (dark blue); transients due to chaotic repellers (magenta); transients due to chaotic repellers
with intermittency (orange); transients generated by a ghost attractor via continuous scenario (cyan); transients generated by a ghost attractor via discontinuous scenario (dark
red). Black colour indicates trajectories recurrently spending large time near an unstable fixed point. Other colours denote realisations of trajectories without long transients; in
this case, the final attractors include: stable periodic orbits (green); chaotic behaviour without intermittency (yellow); chaotic dynamics, where the trajectory is quickly trapped
and always stays near the point of discontinuity (defined as |𝑋𝑡 −𝑋∗

| < 𝜖, grey colour). White colour corresponds to extinction of the species. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
parameter 𝜖 by 10−5 in some domains can entirely change the pattern
of dynamics and cause creation or suppression of a transient. Therefore,
the figures only provide a coarse representation of the underlying
diagrams. Along with long transient patterns, a large portion of points
in the diagram indicates non-transient scenarios, where the trajectory
quickly approaches either chaotic (but not intermittency-based) or
periodic attractors.
7

Overall, we find that long transients are mostly observed when 𝜇
varies from 3.7 up to the maximal possible value of this parameter for
the given 𝜖. For small values of 𝜖 (see Fig. 3A), the most frequently
observed transients (in terms of numbers of the parameter sets for
which they were revealed) are those due to chaotic repellers depicted
by magenta stars. The transients due to permanent slow-fast intermit-
tency are observed near for 𝜇 close to 𝜇 = 4 (dark blue stars). The
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Fig. 4. Dependence of long transients in model (3) with the logistic function on initial conditions used. Both diagrams in the right column are constructed starting from 𝑋0 = 0.7,
whereas the diagrams in the left column are obtained for 𝑋0 = 0.5. The time of simulation is 𝑇 = 10,000 generations, 200 first generations are disregarded. The meaning of the
colours for the domains is the same as in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
domains corresponding to ghost attractors (cyan stars) are smaller in
size, as compared to other types of transients. An example of a domain
containing a ghost attractor via a smooth scenario is shown in Fig. 3B.
For larger values of 𝜖 (see Fig. 3D), the most frequently observed
transients become those related to permanent (asymptotic) slow-fast
intermittency. Another interesting transient pattern includes transient
intermittency (orange stars in the diagram), where the trajectory after
exhibiting several fast and slow phases become periodic (see Fig. 1D
for an example of transient dynamics). Transients generated by a ghost
attractor via discontinuous scenarios are observed for some intermedi-
ate values of 𝜇, this is presented in Fig. 3E (dark red). Note that there
are also dynamical regimes, where the trajectory is recurrently sent to
a vicinity of an unstable equilibrium, where it can stay for a long time
(an example is provided in SM2, panel A). In the diagram, such patterns
are shown in black.

Although the boundary for the asymptotic slow-fast intermittency
is given by a smooth curve (see Appendix A for analytical derivation),
the parameter sets corresponding to this regime in the diagram are
rather patchy. This can be seen from Figs. 3C,F, which provide finer
resolutions of the parametric diagrams around 𝜇 = 4. One can see that
the dark blue domain of intermittency contains a large number of small
inclusions, corresponding to either non-transient dynamics or transients
of a different type. This is explained by the possibility of simultaneous
presence of other attractors and by the fact that a long transient might
requires particular initial condition (otherwise the trajectory quickly
approaches an attractor without producing a long transient).

Finally, we briefly considered the dependence of long transients
on the initial condition, a typical outcome is shown in Fig. 4. As
previously, we focus on the values of 𝜇 close to 4. The diagrams are
constructed for two different initial conditions: 𝑋0 = 0.7 and 𝑋0 = 0.5.
Although the generic structure of the diagrams is preserved, one can
see important difference between the right and the left columns. A
comprehensive comparison of diagrams reveals a few major factors
which make them different. Namely, the chaotic nature of transients
may result in a large variation of the transient lifetime: the time of
finding an escaping channel can be either increased or be reduced. In
particular, the trajectory can be trapped by the transient regime for
a period of time larger than the time of observation 𝑇 , in this case,
we will classify such regime as asymptotic. The existence of alternative
attractors can largely affect the presence of transients.

3.2. Transients in the predator–prey model

In this section, we discuss long transients found in the predator–prey
8

model (8). We should say, however, that due to the extreme complexity
of the system caused by an extra dimensionality and also due to the
presence of a discontinuity in both equations, it becomes technically
impossible to exhaustively span the entire parameter space to be able
to uncover all types of transients. We limit our study to fixing some
parameters and varying the others. When revealing the scaling law of
transients, we consider the control parameter 𝑝 to be either 𝜖 or 𝜇, as
in the single species model. However, we found that variation of other
parameters (e.g. 𝑑 or 𝑐) would generally result in the same scaling laws
(except cases where creation of transients requires approaching of a
parameter to zero). Overall, in our search for long transients, we have
completed approximately 105 numerical simulations. The main types of
long transients in model (8) are presented in Figs. 5, 6. Table 1 contains
basic information on the types of transients in the system, their scaling
properties as well as illustrative examples. Scaling laws of transients in
(8) ares provided in SM5.

Fig. 5 presents main types of long transients which can be charac-
terised as non-chaotic: they include ghost attractors-mechanisms and
non-chaotic saddles. Fig. 5A gives an example of a transient due to
ghost attractor, which is realised via a smooth scenario. According to
this scenario, a saddle point and a stable node collide as a result of
a saddle–node bifurcation, and the trajectory becomes trapped in the
vicinity of the previously existing fixed points (see SM1 for a schematic
presentation of the mechanism). The existence of a pair of closely
located saddle and stable node fixed points was validated by generating
a large number of trajectories from different initial conditions (we do
not provide the corresponding figures for brevity). We find that the
scaling of the transient lifetime is the same as in model (3). Note that
shown in the example of Fig. 5A, the periodicity of fixed points (before
the bifurcation) is 𝑛 = 6, this generates a long transient with the same
periodicity. Note that the transient behaviour becomes recurrent: the
trajectory returns to the vicinity of the saddle–node ghost and spends
there a large portion of time. The transient dynamics is a large part of
the overall attractor which exhibits a cyclic-like behaviour, which is,
however, not exactly periodical. Fig. 5B presents the prey and predator
densities plotted every 𝑛 = 6 generations. One can see from this graph
that the trajectory mostly stays near some fixed point and quickly jumps
to the vicinity of another. The scaling of this transient follows a power
law (see SM5 for details).

Fig. 5B,C give an example of a transient due to a ghost attractor
realised via a discontinuous scenario. Variation of a model parameter
𝑝 results in the disappearance of the locally stable node at the curve of
discontinuity of the model function (either 𝐺1 or 𝐺2). This mechanism
is conceptually similar to that of the single species model (3), the
scaling law of the transient lifetime is given by 𝜏 ∝ − log |𝑝 − 𝑝𝑐 |. For
both above types of ghost attractors, we can measure the lifetime based
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Fig. 5. Main non-chaotic types of long transients in the predator–prey model (8). (A) Transients generated by a ghost attractor via a smooth scenario, 𝜖 = 0.00011; 𝜇 = 2.822;
𝑐 = 0.3; 𝑑 = 3.65; 𝑋0 = 0.32; 𝑌0 = 0.23; (B) Variation of prey and predator density for the pattern shown in (A) plotted for every 6𝑘 generations (𝑘 = 1, 2,…). (C)-(D) Transients
generated by a ghost attractor via a discontinuous scenario, 𝜖 = 0.009195; 𝜇 = 3.67; 𝑐 = 0.01; 𝑑 = 3.1196; 𝑋0 = 0.3; 𝑌0 = 1.5. (E) Transient dynamics in the vicinity of a regular saddle
point (crawl-by dynamics) resulting in a long coexistence of predator and prey before the predator goes extinct, 𝜇 = 3.5, 𝑐 = 0.2; 𝑑 = 1.9, 𝜖 = 0.0044597, 𝑋0 = 0.7, 𝑌0 = 0.3. (F)
Transient dynamics in the vicinity of a regular saddle point (crawl-by) which is followed by shorter transients related to an attractive manifold, 𝜖 = 0.0049; 𝜇 = 3.6; 𝑐 = 0.2; 𝑑 = 2;
𝑋0 = 0.11; 𝑌0 = 0.53. Red and blue colours, denote, respectively, the density of predator and prey. For explanations of the mechanisms of transients see the text. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
on closeness of the trajectory to the ghost of the fixed point (e.g. the
trajectory should not deviate by 5%–10%).

A regular, i.e. non-chaotic saddle point can produce a long transient,
if the trajectory passes close to this point. This type of transients is also
called the crawl-by dynamics [5]. It is easy to prove that in this case
the transient time near the saddle point is scaled as 𝜏 ∝ − log |𝑝 − 𝑝𝑐 |,
where 𝑝 can be considered as an initial condition. Two examples of a
transient due to a saddle point are shown in Figs. 5E,F. In both cases,
9

the existence of a saddle point of considered periodicity was verified
by constructing a phase portrait and generating a large numbers of
trajectories starting from different initial conditions. Fig. 5E provides an
example of crawl-by dynamics where the trajectory is initially attracted
to a 2-periodic saddle, then it leaves the saddle, which results in
extinction of the predator and the dynamics of the prey density is now
governed by Eq. (3). In the resultant single-species model, after spend-
ing a long time in the vicinity of an unstable node, the prey density
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Fig. 6. Long transients involving chaotic behaviour in the predator–prey model (8). (A)-(B) Transient chaotic intermittency characterised by irregular spikes of predator density
followed by long periods of low predator density. (A) Coexistence of both species after the transient, 𝜇 = 3.8; 𝜖 = 0.002; 𝑑 = 1.9; 𝑐 = 0.2; 𝑋0 = 0.7; 𝑌0 = 0.3. (B) Extinction of the
predator at the end of the transient, 𝑑 = 1.9; 𝑐 = 0.2; 𝜇 = 3.8; 𝜖 = 0.0015; 𝑋0 = 0.7; 𝑌0 = 0.3. (C) Permanent intermittency with three chaotic phases with oscillations of prey and
predator densities within narrow bands, 𝜇 = 4.1, 𝑐 = 0.2; 𝑑 = 1.9, 𝜖 = 0.03, 𝑋0 = 0.7, 𝑌0 = 0.3. (D) Chaotic intermittency including transient phases of small and large oscillations of
species densities, 𝑑 = 3.98; 𝑐 = 0.7; 𝜇 = 3.395675; 𝜖 = 0.0071; 𝑋0 = 0.3; 𝑌0 = 0.6; (E) Transients due to chaotic saddle characterised by oscillations close to quasi-periodic dynamics
with a further switch to low amplitude chaotic oscillations, 𝜇 = 2.97; 𝑐 = 0.56; 𝑑 = 3.88; 𝜖 = 0.0006; 𝑋0 = 0.3; 𝑌0 = 0.6. (F) Transients due to chaotic saddle characterised by
irregular predator–prey oscillations for a long time with a further switching to low amplitude chaotic oscillations, 𝜇 = 3.77; 𝜖 = 0.025; 𝑑 = 2; 𝑐 = 0.2; 𝑋0 = 0.11; 𝑌0 = 0.6. Red and
blue colours denote, respectively, the density of predator and prey. For explanations see the text. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
approaches its final attractor, a 4-periodic orbit. The scenario shown
in Fig. 5F shows a different pattern. Initially, the trajectory is attracted
to the vicinity of a 16-periodic saddle point. After leaving the vicinity
of the saddle point, the trajectory quickly approaches an attracting
manifold which is approximately periodic with the period of 𝑛 = 8.
Further, the attracting manifold of the 8-periodic orbit approaches a 4-
periodic stable orbit, which is the final attractor of the trajectory. Note
that although both the 16-periodic and 8-periodic transient parts look
apparently similar by following the dynamics of 𝑋𝑛, 𝑌𝑛 with time, they
have different natures from the point of view of the dynamical system.
In particular, unlike the 16-periodic transient phase due to a saddle, the
8-periodic transient phase is due to an attracting manifold. Staying on
10
the mentioned manifold cannot be made as long as possible by varying
parameters or changing initial conditions. The end of a transient in this
case can be determined as deviation of the trajectory from the saddle to
be higher than some critical value (e.g. 5% of the population density).

Fig. 6 shows long transients which involve chaotic behaviour. These
are due to the presence of chaotic saddles and chaotic dynamics char-
acterised by intermittency. In Figs. 6A,B give examples of patterns of
chaotic intermittency which are characterised by phases of a very low
predator density. During such phases with 𝑌𝑛 ≪ 1, the dynamics of
prey density are mostly governed by Eq. (3). For the given parameters,
the single specie model (3) has a chaotic transient characterised by
large amplitude oscillations. Moreover, variation of prey density is such
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Fig. 7. Examples of chaotic saddles in the predator–prey model (8) producing long transients. Panels (A) and (B) correspond to the transients shown in Figs. 6 E,F. Construction
of chaotic saddles was performed using the sprinkler method [42].
that the geometric mean of the per capita growth rate of the predator
is smaller than one, thus the predator density declines with time.
However, after the chaotic transient (without the predator) ends, the
prey density approaches an attractor (chaotic or periodic), which has
the property that the geometric mean of the predator per capita growth
rate is greater than one. Thus, during this phase the predator density
re-starts growing up to values where it begins influencing prey density.
However, a spike in the predator density kicks the trajectory to the
domain of large chaotic oscillations, where the predator density starts
declining again due to the fact that it mean per-capita rate becomes
smaller than one. The described intermittent dynamics of spikes and
very low density of the predator continues until one of the following
outcomes is realised: (i) the trajectory settles at some attractor assuring
co-existence of prey and predator (Fig. 6A,) or (ii) the predator density
reaches some very low densities where we should considered it to go
extinct 6B (this can be formally defined as the end of the transient).
Note that similar scenarios are realised in the case prey alone exhibits
intermittency dynamics characterised by small and large amplitude
oscillations. For both scenarios, we find that the scaling law of the
transient lifetime is 𝜏 ∝ 1

|𝑝−𝑝𝑐 |𝛾
, where 𝛾 ≥ 1 (see SM5 for the scaling

law). As before, the control parameter 𝑝 is either 𝜇 or 𝜖.
Other types of transients involving intermittency are shown in

Fig. 6C,D. Fig. 6C shows permanent switching between three states
with small amplitude chaotic oscillations. Fig. 6D gives an example of
intermittency between small and large amplitude chaotic oscillations
with almost periodic dynamics. In both cases, intermittent dynamics
is asymptotic, i.e. it is the final attractor of the system. In model
(8), we find the existence of chaotic intermittency due to smooth
and discontinuous scenarios. The end of the transient can be defined
the moment when the trajectory leave the trapping region. However,
unlike the one-dimensional case, analytical derivation of the critical
boundary for the domain for the trapping region for the predator–
prey is a complicated task. We find that in a number of cases, some
intermittency dynamics can contain non-chaotic transient phases, for
example, a saddle point, as shown in Fig. 6D. Fig. 6D shows an example
of a hierarchy of transients: the transient with the shortest time scale is
due to a saddle point; the trajectory follows other non-chaotic saddles,
which is the low amplitude phase of the intermittency regime (in SM5,
the scaling is shown for the average length of the ensemble of repeated
transient due to non-chaotic saddles).

We find a large variety of transients due to chaotic saddles. Two ex-
amples of transients generated by chaotic saddles are shown in Fig. 6E,F
(for more examples, see SM4). Chaotic saddles differ in the degree
of their chaoticity, for example, this can be measured by their fractal
dimension. The chaotic saddle, which generates the transient in Fig. 6E
is visually very close to a quasi-periodic curve (see Fig. 7A). For the
considered parameters 𝜇, 𝑐, 𝑑, we find the existence of an invariant close
11
curve – which is a model attractor – in the absence of discontinuity,
when 𝜖 = 0. Adding a small 𝜖 > 0 results in breaking the invariant
curve. The resultant attractor becomes a fractal set, which is still very
close to the invariant curve, the corresponding dimension is slightly
large than one. A further increase of 𝜖 transforms the attractor into a
set of a finite number of clusters of a small size (each having a fractal
structure). The trajectory becomes trapped in each of the clusters and
it cannot leave the boundary of the cluster. Finally, an increase of 𝜖
creates a small escaping channel, thus a long transient emerges. On
the contrary, for the transients due to a chaotic saddle (Fig. 6F), the
trajectory is not restricted within some narrow regions (clusters) but
fills a large portion of the phase plane (the corresponding chaotic saddle
is shown in Fig. 7B). The scaling law of the transients due to chaotic
saddles can be complicated and be described by several power law
dependencies with different exponents (see SM5). The end of chaotic
transient can be defined as the time, where the trajectory reaches the
vicinity of a new attractor (e.g. being less than 5% of the density).

We investigated the dependence of long transients in (8) on the
model parameters. As in the previous section, we are mainly interested
in small and intermediate values of parameter 𝜖, although transients
can be found for larger values of 𝜖 as well (e.g. up to 𝜖 ≈ 1). Following
the same approach as for the single species model, we produced two-
dimensional bifurcation diagrams in the plane of parameters 𝜖, 𝜇 for
some fixed values of parameters 𝑑 and 𝑐. We should stress, however,
that a clear understanding of the entire structure of the parameter space
would require constructing at least several dozens of 𝜖, 𝜇 portraits for
different combinations of 𝑑 and 𝑐. Moreover, as in the single species
model, variation of a model parameter by a small value (e.g. by 10−5)
can create or suppress a long transient. Therefore, rather than trying
to produce an exhaustive multi-dimensional bifurcation portrait of the
system, we provide a few insightful examples of parametric diagrams
in Figs. 8 and 9. In Fig. 9 we address the important question of the
dependence of long transients on the initial condition. Note that some
types of transients shown in Figs. 5,6 are not found in the presented
bifurcation diagrams since they occur for different values of 𝑑 and 𝑐 (we
did not find a single two-dimensional parametric diagram which alone
contained all possible types of transients). The shown diagrams repre-
sents transients due to chaotic saddles and patterns of intermittency,
which are the most frequently observed transients in model (8).

From Figs. 8, 9, one can make several important conclusions. Firstly,
transients are omnipresent in the predator–prey model. Adding a preda-
tor promotes the diversity of transients: this can be seen by comparing
the diagrams between the single species and the predator–prey model.
Secondly, patterns of transient dynamics observed for small and inter-
mediate values of 𝜖 differ, in terms of their relative frequency, which
is measured as the probability to find a particular type by picking an
arbitrary set of model parameters. For small 𝜖 most of transients are due
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Fig. 8. Dependence of transients on the parameters 𝜖 and 𝜇 for fixed values of 𝑐 = 0.2 and 𝑑 = 1.9 in the predator–prey model (8), with the logistic function for the prey growth.
The initial conditions are 𝑋0 = 0.7, 𝑌0 = 0.3, the system was simulated within 20,000 generations, first 300 initial iterations are disregarded. A long transient is defined as a pattern
which persists within 500 generations. The upper panel shows the diagrams constructed for small and intermediate values of 𝜖; the bottom panel provides fine resolutions of the
diagrams in the upper panel. The observed long transient patterns include: persistent chaotic intermittency characterised periods of very low predator densities with spikes of
high densities (blue); transient intermittency with an eventual extinction of the predator (pastel pink); transient intermittency with further settling at a periodic orbit or a chaotic
orbit with chaotic oscillations with small amplitude (magenta); initial quick drop of the predator density to low values with its further recovering: the final system attractor is
a periodic orbit or a chaotic orbit with chaotic oscillations with small amplitude (pastel violet); cascade of transients occurring by staying in vicinity of several chaotic saddles
(red); transients due to non-recurrent chaotic saddle with a further transition to chaotic oscillations (sepia); quick extinction of predator and transient chaotic intermittency of prey
(black). Other colours denote realisations of trajectories without long transients with the final attractors being: a stable periodic orbit or an orbit with chaotic oscillations with a
small amplitude approximately equal to 𝜖 (green); chaotic oscillations (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
to chaotic intermittency with slow and fast dynamics. In particular, for
small values of 𝜖, a large proportion of transients with intermittency
is characterised by phases with a very low density of predator. An
increase in the degree of discontinuity of the map (a larger 𝜖) makes
a shift towards transients due to chaotic saddles, where the trajectory
fill the space in a close to uniform manner. Thirdly, zooming in some
parts of the diagrams shows a high sensitivity of transients to parameter
variation. The boundary between different transient regimes is close to
fractal. From the comparison between Figs. 8 and 9, one can see that a
relatively small variation of model parameters 𝑑 (an increase of 5%)
results in a tremendous difference between the parameter diagrams.
Similar observation is true for considering other close values of 𝑑, 𝑐
(not shown results). This signifies that the entire parametric space has
an extremely complex structure without a clear indication of where
transient parameters of particular types should be. Finally, we briefly
addressed the dependence of the transients on the initial condition,
which is demonstrated in Fig. 9. One can see from the comparison of
the right and the left columns of the figure, some types of transients
can be only observed starting from particular sets of initial conditions.
Moreover, the parametric domain corresponding to long transients can
largely alter by modifying initial conditions.
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3.3. Influence of noise on long transients

Along with the deterministic version of the model(s) formulated in
Section 2, we briefly explore the scenario, where some model parame-
ters are affected by external noise, which is a fairly realistic situation
in ecology. Specifically, here we assume that the parameters 𝜇 and
𝑑 exhibit small random fluctuations. Fluctuation of the mentioned
parameters at each time step 𝑛 are described by 𝜇𝑛 = 𝜇0(1 + 𝛿0𝜉𝑛) and
𝑑𝑛 = 𝑑0(1 + 𝛿0𝜁𝑛), where 𝛿0 denotes the level of noise (𝛿0 ≪ 1); 𝜉𝑛 and
𝜁𝑛 are random numbers normally distributed with the zero mean and
the unit variance; thus, 𝜇0 and 𝑑0 are the mean values of fluctuating
parameters. In this study, we considered the scenario, where 𝜉𝑛 and
𝜁𝑛 are described by fractional Brownian motion [43,44]. Fractional
Brownian motion is quantitatively characterised by the Hurst exponent
𝐻 : for negative correlations in fluctuations we have 0 < 𝐻 < 0.5,
whereas for positive correlations we have 0.5 < 𝐻 < 1.0; finally, in the
absence of correlations we have 𝐻 = 0.5, which is the classical white
(Gaussian) noise. To generate a sequence of random numbers 𝜉𝑛 and
𝜁𝑛 based on fractional Brownian motion, we used the computational
algorithm from [43].

Our extensive numerical simulations of the single species and the
predator–prey models with white noise revealed the following prop-
erties. For the existing patterns of transients due to saddles (chaotic
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Fig. 9. Dependence of transients on the parameters 𝜖 and 𝜇 for fixed values of 𝑐 = 0.2 and 𝑑 = 2.0 in the predator–prey model (8), with the logistic function for the prey growth.
The diagrams in the left column are constructed for the initial conditions 𝑋0 = 0.7, 𝑌0 = 0.3, whereas the diagrams in the right column are constructed for 𝑋0 = 0.11, 𝑌0 = 0.53. The
system was simulated within 20,000 generations, first 300 initial iterations are disregarded. A long transient is defined as a pattern which persists at least within 500 generations
before switching to another quasi-stable regime. The upper panel shows the diagrams constructed for small and intermediate values of 𝜖; the bottom panel provides fine resolutions
of the diagrams in the upper panel. The colours denote the same regimes as in Fig. 8, except the following colours added to denote: transients due to non-recurrent chaotic saddle
with large amplitude oscillations with a further settling at a periodic orbit or a chaotic orbit with chaotic oscillations with small amplitude (orange); staying near a non-chaotic
saddle with recurrent returns to this saddle (light brown); recurrent chaotic intermittency with phases of slow and fast dynamics (dark green); transients due to chaotic saddle
with eventual extinction of predator (olive); quick settling of the trajectory on a quasi-periodic attractor without a long transient (grey). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
or non-chaotic) and ghost attractors in a noise-free system, adding
noise generally reduces the length of transients. Note that due to the
probabilistic nature of fluctuations, we always obtain a distribution of
transient lifetimes: we found that the mean value of this distribution de-
creases with an increase of the level of noise 𝛿0. For the predator–prey
model, Fig. 10A,B provides an insightful example of transformation of
the chaotic transient previously shown in Fig. 6E under the action of
a white noise. From Fig. 10B one can conclude that a strong level of
noise destroys the original shape of chaotic transient. A similar scenario
can be observed by comparing panels (C)-(E) in Fig. 10: the initial
chaotic saddle observed until time 𝑇 = 2600 for 𝛿0 = 0 substantially
shrinks in the presence of noise (note that a further increase of noise
can produce a different, new pattern of transients, as in Fig. 10F,
see the next paragraph). We found reduction of the average transient
lifetime in the presence of noise for other types of transients too, both
in the single species and the predator–prey model (we do not show the
corresponding graphs for the sake of brevity).

On the other hand, allowing for stochasticity in the system can
generate new transients, in particular, this concerns regimes of inter-
mittency. An example of noise-induced transients is shown in Fig. 10
D, where noise generates recurrent switch between two levels of species
densities: the system remains at a particular state over a long time
before switching to the other state. We emphasise that the mean
lifetime of noise-induced transients can be made as long as possible by
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decreasing the level of noise; therefore, our definition of a long tran-
sient regime given in Section 2 remains applicable. A further increase of
the level of noise results in a fast switch between the states (see Fig. 10
E), therefore no long transients are observed. For a higher level of noise
(Fig. 10 E) noise-induced intermittency resumes; however, this pattern
is characterised by a switch between the states with a high and very low
density of predator. Another example of noise-induced intermittency
(in the single-species model) is provided in SM6.

A question may arise here as to how different can be the effect of
stochasticity in case noise is not white. Correspondingly, we briefly
explored the effect of correlations in the stochastic fluctuation on the
occurrence and the length of transient dynamics. We found that for the
same level of noise 𝛿0, the effect of correlated (coloured) noise is highly
variable. In some cases, anti-correlated noise (𝐻 < 0.5) apparently
prevents formation of transients, whereas positively correlated noise
can create a newlong transient characterised by an abrupt shift to
another regime (see Fig. 11 A,B); after the shift the system further
remains at the new state. Positive correlations in random variation of
model parameters (i.e. 𝐻 > 0.5) generally tend to impede intermittency
regimes. The corresponding examples can be seen in Figs. 11 C,D for the
predator–prey model and in SM6 for the single species model. On the
other hand, Finally, we found that triggering noise-induced transients
require a supercritical level of noise: below the threshold, adding noise
only results in blurring trajectories around an attractor without any
regime shift (see the diagram in SM6).



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 174 (2023) 113707A.Y. Morozov et al.
Fig. 10. Influence of the amplitude 𝛿0 of white noise on long transients in the predator–prey model (8). Variation of the parameters 𝜇 and 𝑑 is described by white (uncorrelated)
noise, where the Hurst exponent is 𝐻 = 0.5. (A)-(B) Reduction and eventual suppression of long transients due to a chaotic saddle with an increased 𝛿0. The transient pattern
in the same system without noise is shown in 6E. The other model parameters are as in Fig. 6E. (C)-(F) Gradual alteration of transient patterns for an increased 𝛿0. The model
parameters and the initial conditions are 𝜇0 = 3.7295234; 𝜖 = 0.015; 𝑑0 = 1.9; 𝑐 = 0.2; 𝑋0 = 0.7; 𝑌0 = 0.3. Red and blue colours, denote, respectively, the density of predator and
prey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
To conclude, we stress that the several examples shown in this
section with regard to the influence of noise on long transients are by no
means exhaustive due to the high complexity of the system. A separate
future study should address this problem in more detail.

4. Discussion

Despite a growing recognition of the importance of long transients
in ecology, epidemiology as well as neuroscience [1,2,5–8,40], cur-
rently theoretical literature is still mostly focused on systems’ attractors.
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The overall goal of this study is to strengthen the message about a
key role that transient regimes, especially long transients, can play in
population dynamics, and consequently, in ecosystem management and
species conservation. We consider two generic time-discrete models
of population dynamics: a single-species model and a predator–prey
system. The particularity of the considered models is the presence of
a discontinuity in the underlying maps. The mentioned discontinuity
is introduced to mimic an ecologically realistic scenario, where the
species dispersal is density dependent: in particular, it depends on
the differences between the population density before and after the
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Fig. 11. Influence of negative and positive correlations in the stochastic variation of 𝜇 and 𝑑 on the generation of long transients in the predator–prey model (8). Both 𝜇 and 𝑑
are varied based on the fractional Brownian motion characterised by the Hurst exponent 𝐻 ; for details see the text. (A)-(B) Noise-induced transients are impeded by anti-correlated
noise (𝐻 = 0.1), whereas by positive correlations in parameter variation (𝐻 = 0.9) can create transients (in both cases the noise level is 𝛿0 = 0.0005). The model parameters and the
initial conditions are 𝜇0 = 3.6; 𝜖 = 0.00491; 𝑑0 = 2; 𝑐 = 0.2; 𝑋0 = 0.11; 𝑌0 = 0.53. (C)-(D) Noise-induced transients via intermittency scenario are promoted by anti-correlated noise
(𝐻 = 0.1), whereas positive correlations (𝐻 = 0.9) impede generation of transients (in both cases 𝛿0 = 0.0008). The model parameters and the initial conditions are 𝜇0 = 3.7295234;
𝜖 = 0.015; 𝑑0 = 1.9; 𝑐 = 0.2; 𝑋0 = 0.3; 𝑌0 = 0.6. Red and blue colours, denote, respectively, the density of predator and prey. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
reproduction and growth stages. The use of the considered type of
discontinuity is typical in problems of harvesting and control of tar-
get species, such as pests, or protected species under the threat of
extinction [25–28,45].

From the mathematical point of view, we addressed the following
two principle questions: (i) whether the presence of a discontinuity in
the map can generate various types of long transients and (ii) whether
long transients are frequent in the space of model parameters (by re-
vealing the structure of the parameter space corresponding to transient
regimes). We emphasise that transients in piece-wise continuous time-
discrete systems are studied much less than in similar systems with
smooth maps. This is a yawning gap in our knowledge, as indeed piece-
wise continuous maps generally possess a more complicated bifurcation
structure than their smooth analogues [29,45,46]. We use the definition
of a transient, which is related to regime shifts (see Section 2). Regime
shifts due to long transient dynamics can occur for constant model
parameters, and this scenario is considered as an alternative to the
classical regime shift paradigm using the tipping points philosophy [6,
9].

Both in the single species model (3) and the predator–prey system
(8), we find that the discontinuity in the dispersal term promotes long
transients according to various mechanisms. Our simulations show that
in the absence of dispersal (i.e. 𝜖 = 0), the transients become rare
to find in the parameter space. On the other hand, the presence of
discontinuity, even for a very small value of 𝜖 (e.g. 𝜖 = 10−5 or smaller),
creates new types of transients which are not possible in the system
with 𝜖 = 0. For example, this concerns the possibility of ghost attractors
of periodic orbits realised via a discontinuous scenario, which does
15
not require a saddle–node bifurcation (see Figs. 1A, 2A,B, 5C,D). An
important difference between a ghost attractor via the continuous and
discontinuous scenarios is the different scaling law of transient lifetime:
the lifetime of a discontinuous ghost attractor is scaled as a logarithmic
law, whereas for a smooth ghost attractor we observe a power law
dependence (see Table 1).

A major impact of the discontinuity is the creation of trapping re-
gions with a characteristic size of 𝜖 such that the trajectory can stay for
a long time before escaping such regions. The existence of such trapping
regions leads to the emergence of chaotic saddles of various types.
In particular, discontinuity-based trapping regions are responsible for
intermittency patterns involving slow-fast dynamics (small amplitude
chaotic oscillations inside the trap and large-amplitude oscillations
outside). Note that recurrent intermittency characterised by irregular
switch between different chaotic regimes was found in other piece-wise
discrete systems [30], although for a finite size of discontinuity. In the
models considered here, however, the size 𝜖 can be made as small as
possible while still allowing patterns of intermittency.

Another important feature of the observed dynamics is that small
traps generated by discontinuity can be absorbing: once the orbit lands
into such an absorbing trap, it will be held there forever. Such absorb-
ing traps have very narrow attracting channels, which promotes chaotic
transients. The trajectory may exhibit long irregular oscillations before
it finally finds a narrow escaping channel which would direct it to its
final attractor, the absorbing trap. The corresponding transient lifetime
is scaled according to the power law as the amplitude of discontinuity
tends to zero (see Table 1). The existence of such absorbing traps
with a characteristic size (diameter) of approximately 𝜖 is an important
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phenomenon per se with the implications going well beyond the current
study focused on transient dynamics. An orbit inside absorbing traps
shows chaotic dynamics, which is observed within a wide range of
model parameters, whereas in the same system with 𝜖 ≡ 0, asymp-
totic chaotic dynamics can be rarely found. The chaoticity inside the
absorbing traps was verified via checking the sensitivity of trajectory to
the initial condition and by directly estimating the Lyapunov exponents
of the map. However, we should say that, although in the precise
mathematical sense the oscillations are chaotic, their magnitude is of
the order of 𝜖, therefore for 𝜖 ≪ 1, an external observer following time
series would be tempted to interpret it as a steady state or periodic
dynamics affected by a slight noise (even for a purely deterministic
system).

Using extensive simulations we reveal that long transients are om-
nipresent in both single species and the predator–prey model. This
can be seen from the constructed parametric diagrams. We find all
main types of long transients previously reported in the literature:
transients due to non-chaotic saddles; transients due to non-chaotic
ghost attractors; transients generated by chaotic saddles; slow-fast dy-
namics [5]. Moreover, we have discovered hierarchies of transients,
i.e. a ‘simple’ standard long transient can be a part of a complex,
compound transient, each part having its own scaling law for the
lifetime (Figs. 1 D,F, 6C,D). There can be also a cascade of transients
(Figs. 5,6). The structure of parameter space corresponding to long
transients is found to be very complex, which makes any prediction
of the population dynamics based on a finite time course difficult,
if possible at all. The boundary between transient and non-transient
regimes is highly irregular, suggesting a possibility of fractal geometry,
although a separate study would be needed to define if it is truly fractal
or it is close fractal only within some intermediate scales. Note that only
very few previous studies explored the dependence of transient lifetime
on model parameters [32].

The complexity of the parameter sets corresponding to long tran-
sients can be explained by several factors. For example, for chaotic
saddles, a very small variation parameters (or initial condition) would
result in a large variation of model trajectory, and, as a result, the
time spent travelling through the escaping channel will be highly
variable. The maximal time of observation can play a role a well. For
the constructed diagrams, the observation time was fixed to be 𝑇 =
10,000 (or sometimes 𝑇 = 20,000), which can affect the classification:
some transient regimes with very large lifetimes could be classified as
asymptotic. Therefore, the complexity of the transient parameter set
is defined by the value of 𝑇 . A gradual increase of the observation
ime would result in shrinking of the domain of transients in the
arameter space, for 𝑇 → ∞, transients would be observed within an
nfinitely narrow region around the bifurcation curves and this would
ecrease the complexity of the structure of the parameter set. Our
efinition of a long transient (Section 2) suggests that there should be
bifurcation value such that the transient lifetime becomes infinitely

arge. However, when approaching the critical value in the parameter
pace, one can cross several bifurcation curves, where the transient
attern (of a finite time) can disappear and re-emerge several times
efore becoming infinitely long. Therefore, from the practical point of
iew, the requirement of having infinitely large observation time can
e relaxed. As such, fixing a finite observation time 𝑇 is another reason
or having a complex boundary of transient regimes. Finally, existence
f multiple attractors contributes to the complexity of parameter space.
ndeed, there can be escaping channels leading to different attractors
or a trajectory trapped in some regions. Therefore, a small variation
f parameters (or initial condition) can re-direct the trajectory to take
nother route to escape to a different attractor.

Our theoretical study has several important messages for ecosystem
anagement, species conservation and, potentially, disease control.

irstly, the existence of long transients makes forecast of population
16

ynamics rather complicated, a major issue being our incapability p
to distinguish between a transient and asymptotic regimes by sim-
ply observing the corresponding time series. Both considered models
suggest that some transients can persist for hundreds of thousands of
generations, which is well beyond all realistic horizons of prediction.
On the other hand, a switch of the system from a long transient to a
different state can be abrupt and take only a few generations. In other
words, a regime shift according to the long transient scenario would
occur almost suddenly and without variation of model parameters.
Prediction of regime shifts due to the presence of transients would
require implementing dynamical modelling, i.e. choosing a certain
model, fitting it to data and predicting its dynamics based on model
equations [5]. Secondly, even if we are well aware that the regime
of the system under consideration is actually a long transient and our
model is correct, it is still hard to predict its lifetime. This is because
of the high sensitivity of the transient lifetime to a small variation
of model parameters and the initial condition (see Figs. 4, 8, 9). For
example, the length of a chaotic transient is generally highly variable
(see SM3), so one can only estimate the statistical distribution of the
lifetime of a transient, rather than predicting its exact value. Thirdly,
we find that transients can occur in cascades, i.e. one transient regime
can follow another one, i.e. for a constant set of parameters several
regime shifts can occur before the system eventually approaches its
asymptotic attractor.

From the ecosystem management point of view, one can be in-
terested in maintaining a transient regime as long as possible, if a
switch to another regime is undesirable. For example, we are interested
in avoiding a population collapse and species extinction. This task is
typical for species conservation [6]. Another practical task consists in
intentionally ‘destructing’ an undesirable ecological transient and push-
ing the system towards some healthy state. This scenario can happen
in pest management as well as in ecosystem restoration [6,47]. For
both pre-mentioned tasks, direct manipulating with species densities
(e.g. via adding or removing a certain amount of organisms), without
changing ecosystem parameters, can provide a solution. For example,
to artificially maintain a desirable transient one needs to re-send the
trajectory to a vicinity of a ghost attractor or a saddle when the system
starts leaving some transient state. In the case where the transient
regime can persist for a long time, such an adaptive management
strategy does not need frequent (e.g. seasonal) application. This will be
convenient from the practical point of view of ecosystem management.

We briefly studied effects of noise on long transients in the popula-
tion dynamics models: the presence of stochasticity (due to internal or
environmental factors) is inevitable in any realistic ecosystem. It was
previously reported that noise can affect long transients in deterministic
systems in a variety of ways [4,5,7,48,49]. We found that random
fluctuation of model parameters would reduce the transient lifetime (on
average) for transients due to non-chaotic saddles and ghost attractors
by pushing the trajectory away from the vicinity of a fixed point (or
its ghost). On the other hand, stochasticity can trigger long transients
by kicking the system away from its stable equilibrium or trapping
regions [7]. Indeed, the trajectory, which would otherwise stay within
a small trap of size 𝜖 ≪ 1, can be repeatedly kicked out by an external
oise with a small amplitude. This mechanism would be similar to that
reviously found in excitable systems [50]. Since trajectory absorbing
raps are found in both models (3) and (8) within a wide range of
arameters, adding noise to the system will make transients even more
mnipresent. Our brief investigation into the effects that different types
f noise (e.g. positively or negatively correlated) can have on transients
eveals a few distinctly different scenarios, where for the same level of
oise, having positive and negative correlations can either suppress or
rigger transients. We however stress that further investigation will be
eeded to properly explore the role of positive/negative correlations in

arameter fluctuations on long transients.
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Fig. A. Defining the boundary of the trapping region in the one species model (3) for a generic single-humped function 𝐹 (𝑋). The trapping region is located around the point of
discontinuity of the model 𝑋∗. The upper (i) and the bottom (ii) panels show two bifurcation cases considered in the construction of the boundary. For detailed explanations see
the text.
5. Conclusions

In this paper, we emphasise the importance of long transients
in models in ecology which utilise discrete maps. Here we consider
a single species model as well as a predator–prey system. In both
models, dispersal of species is assumed to be density dependent and is
characterised by discontinuity of the underlying map. In each model,
we reveal and classify the main types of transients. They are gener-
ated by: non-chaotic saddles, periodic ghost attractor, chaotic repellers
or/and saddles, and various mechanisms of intermittency (including
chaotic and non-chaotic transient phases). We find that the average
transient lifetime is scaled according to either the logarithmic law or
the power law (see Table 1). The presence of discontinuity largely
promotes the emergence of transients since new transient patterns
occur which are possible within a wide range of model parameters. The
constructed parametric diagrams show a complex structure of domains
17
corresponding to long transients. By allowing for random fluctuation of
parameters, we found that stochasticity can shorten, extend or create
new types of transients in models of population dynamics.
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Appendix A

Here, for the single species model (3), we derive the expression
for the boundary which separates the domain in the parameter space,
for which the trajectory 𝑋𝑡 gets eventually trapped near the point of
discontinuity 𝑋∗ and stays in the trapping region forever (the point of
discontinuity is defined from the condition 𝑋∗ = 𝐹 (𝑋∗)).

We consider a generic single-humped function 𝐹 (𝑋), which is sug-
gested to be decreasing around the point of discontinuity. The structure
of the trapping region around is shown in Fig. 2C of the main text.
There are two main conditions for the trapping region to exist. One
condition is that a trajectory starting at some point 𝑋0 > 𝑋∗ as close as
ossible to 𝑋∗ should return after three consecutive iterations to a point
3(𝑋0) < 𝐻(𝑋0), i.e. to the left of the first iteration. The corresponding

ritical condition, beyond which the trapping region does not exist any-
ore is analytically determined by lim𝑋→𝑋∗+ 𝐻(𝑋) = lim𝑋→𝑋∗+ 𝐻3(𝑋),

nd graphically it is shown in Fig. A, the upper panel. This is equivalent
o the following expression 𝐹 (𝑋∗)(1+𝜖) = 𝐹 (𝐹 (𝐹 (𝑋∗)(1+𝜖))(1+𝜖))(1−𝜖),
r
∗(1 + 𝜖) = 𝐹 (𝐹 (𝑋∗(1 + 𝜖))(1 + 𝜖))(1 − 𝜖). (A.1)

In a similar way, one can derive the symmetric condition for the
oundary of the trapping region starting from a point on close to 𝑋∗

n the left. The corresponding schematic flowchart is shown in the
ottom panel in Fig. A. For the trajectory to stay inside the trapping
egion, we require that starting from a point 𝑋0 as close as possible to
∗ from the left, we will return after three consecutive iterations to a
oint 𝐻3(𝑋0) > 𝐻(𝑋0), i.e. to the right of the first iteration. The critical
ondition for the boundary in the parameter space separating the
rapping domain becomes lim𝑋→𝑋∗− 𝐻(𝑋) = lim𝑋→𝑋∗− 𝐻3(𝑋), which
s equivalent to 𝐹 (𝑋∗)(1 − 𝜖) = 𝐹 (𝐹 (𝐹 (𝑋∗)(1 − 𝜖))(1 − 𝜖))(1 + 𝜖), or
∗(1 − 𝜖) = 𝐹 (𝐹 (𝑋∗(1 − 𝜖))(1 − 𝜖))(1 + 𝜖). (A.2)

Based on the above, the trapping region near 𝑋∗ is defined by the
system of inequalities

𝑋∗(1 + 𝜖) < 𝐹 (𝐹 (𝑋∗(1 + 𝜖))(1 + 𝜖))(1 − 𝜖), (A.3)

𝑋∗(1 − 𝜖) > 𝐹 (𝐹 (𝑋∗(1 − 𝜖))(1 − 𝜖))(1 + 𝜖) (A.4)

Therefore, for 𝜖 ≪ 1, for parameters inside the domain (A.3) and
close to its boundaries, long transients due to slow-fast intermittency
can emerge.

Note that for some functions 𝐹 (𝑋), only one boundary can be
feasible. For example logistic function 𝐹 (𝑋) = 𝜇𝑋(1 − 𝑋), with 𝑋∗ =
(𝜇 − 1)∕𝜇, the curve (A.2) becomes unfeasible for positive 𝜖 ≪ 1, 𝜇,
i.e. the required trapping condition starting from the left of 𝑋∗ is always
18

satisfied.
ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.chaos.2023.113707.
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