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Validity of Markovian modeling for
transient memory-dependent epidemic
dynamics
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The initial transient phase of an emerging epidemic is of critical importance for data-driven model
building, model-based prediction of the epidemic trend, and articulation of control/prevention
strategies. Quantitative models for real-world epidemics need to be memory-dependent or non-
Markovian, but this presents difficulties for data collection, parameter estimation, computation, and
analyses. In contrast, such difficulties do not arise in the traditional Markovianmodels. To uncover the
conditions under which Markovian and non-Markovian models are equivalent, we develop a
comprehensive computational and analytic framework. We show that the transient-state equivalence
holds when the average generation time matches the average removal time, resulting in minimal
Markovianestimation errors in thebasic reproduction number, epidemic forecasting, andevaluationof
control strategy. The errors depend primarily on the generation-to-removal time ratio, while rarely on
the specific values and distributions of these times. Overall, our study provides a general criterion for
modeling memory-dependent processes using Markovian frameworks.

When an epidemic emerges, the initial transient phase of the disease
spreading dynamics before a steady state is reached is of paramount
importance, for two reasons1–11. First, estimating key indicators or para-
meters, e.g., the generation time, serial intervals, and basic reproduction
number, is crucial for predicting and formulating control strategies when
theunderlyingdynamical processhasnot reacheda steady state. Second, it is
during the transient phase that control and mitigation strategies can be
effectively applied to prevent a large-scale outbreak. Prediction and control
depend, of course, on a quantitative model of the epidemic process, which
can be constructed based on the key parameters estimated from data col-
lectedduring the transient phase. Inprinciple, since thedynamical processes
underlying real-world epidemics are generally memory-dependent in the
sense that the state evolution depends on the history, a rigorous modeling
framework needs to be of the non-Markovian type, but this presents great
challenges in terms of data collection, parameter estimation, computation
and analyses12–14. The difficulties can be alleviated by adopting the tradi-
tional simplified memoryless Markovian framework, which, however, may
potentially result in deviations15–26. An outstanding question is, are there

specific conditions under which a Markovian epidemic outbreak could be
equivalent to the non-Markovian counterpart during the transient phase,
enabling an accurate description of memory-dependent transmission
within the Markovian framework? Additionally, another important issue
remains, how are the errors of Markovian estimation determined? The
purpose of this paper is to provide a comprehensive answer to these
questions.

TheCOVID-19 pandemic has highlighted the need and importance of
understanding disease spreading and transmission to accurately predict,
control, and manage future outbreaks through non-pharmacological
interventions and vaccine allocation strategies1–10. To accomplish these
goals, accuratemathematicalmodeling of the disease-spreading dynamics is
key. In a general population, epidemic transmission occurs via some kind of
point process, where individuals become infected at different points in time.
It has been known that point processes in the real world are typically non-
Markovian with amemory effect in which the distribution of the interevent
times is not exponential2,23,27–41. For example, the interevent time distribu-
tion arising from the virus transmission with COVID-19 is not of the
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memoryless exponential type but typically exhibits memory-dependent
features characterized by theWeibull distribution2. Strictly speaking, from a
modeling perspective, disease spreading should be described by a non-
Markovian process. A non-Markovian approach takes into account his-
torical memory of disease progression, mathematically resulting in a com-
plex set of integro-differential equations in the form of convolution. (Note
that besides the transmission process, where the infection capacity is highly
dependent on the elapsed time from the infection, there are other types of
memory-dependent factors. For instance, in certain meta-population net-
work models, the infection capacity of a node is influenced by the trans-
mission path leading to that node, rather than solely relying on the time of
infection42. Thus, it is important to mention that we only take the elapsed
time into consideration in this work.)

There are difficulties with non-Markovian modeling of memory-
dependent disease spreading. The foremost is data availability. In particular,
while standard epidemic spreading models are available, the model para-
meters need to be estimated through data. A non-Markovian model often
requires detailed and granular data that can be difficult to get, especially
during the early stage of the epidemic where accurate modeling is most
needed12. From a theoretical point of view, it is desired to obtain certain
closed-form solutions for key quantities such as the onset and size of the
epidemic outbreak, but this is generally impossible for non-Markovian
models15,43. Computationally, accommodating memory effects in principle
makes the underlying dynamical system infinitely dimensional, practically
requiring solving an unusually large number of dynamical variables through a
large number of complex integro-differential equations13,14. In contrast, in an
idealized Markovian point process, events occur at a fixed rate, leading to an
exponential distribution for the interevent time intervals and consequently a
memoryless process. If the spreading dynamics were of the Markovian type,
the aforementioned difficulties associated with non-Markovian dynamics no
longer exist. In particular, aMarkovian spreading process can be described by
a small number of ordinary differential equations with a few parameters that
can be estimated even from sparse data, and the numerical simulations can be
carried out in a computationally extremely efficient manner15–26. For these
reasons, many recent studies of the COVID-19 pandemic assumed Marko-
vian behaviors to avoid the difficulties associated with non-Markovian
modeling3–10. The issue is whether such a simplified approach can be justified.
Addressing this issue requires a comprehensive understanding of the extent
to which theMarkovian approach represents a good approximation tomodel
non-Markovian type of memory-dependent spreading dynamics, and spe-
cifically of the conditions under which the Markovian theory can produce
accurate results that match those from the non-Markovian model. This
highlights the importance of studying the equivalence between non-
Markovian and Markovian dynamics.

There were previous studies of the so-called steady-state equivalence
betweenMarkovian and non-Markovianmodeling for epidemic spreading.
In particular, when the system has reached a steady state, such an equiva-
lence can be established through a modified definition of the effective
infection rate18,21,22. From a realistic point of view, the equivalence limited
only to steady states may not be critical as the transient phase of the
spreading process before any steady state is reached is more relevant and
important. For example, when an epidemic occurs, it is of fundamental
interest to estimate the key indicators such as the generation time (the time
interval between the infections of the infector and infectee in a transmission
chain), the serial interval (the time from illness onset in the primary case to
illness onset in the secondary case), and the basic reproduction number (the
average number of secondary transmissions from one infected person), but
they are often needed to be estimatedwhen the dynamics have not reached a
steady state2–11. It is the equivalence in the transientdynamics rather than the
steady state that determines whether the transmission features in the early
stages of a memory-dependent disease outbreak can be properly measured
through Markovian modeling. Moreover, it is only during the transient
phase that control and mitigation strategies can be effective in preventing a
large-scale outbreak. Discovering when and how a non-Markovian process
can be approximated by a Markovian process during the transient state is

thus of paramount importance. To our knowledge, such a “transient-state
equivalence”, where the Markovian and non-Markovian transmission
models produce similar behaviors over the entire transient transmission
period, has not been established. In fact, the conditions under which the
transient equivalence may hold are completely unknown at present.

In this paper, we present results from a comprehensive study of how
memory effects impact theMarkovian estimations in termsof the errors that
arise from theMarkovianhypothesis.We consider both the steady-state and
transient-state equivalences between non-Markovian and Markovian
models. We first rigorously show that, in the steady state, a memory-
dependent non-Markovian spreading process is always equivalent to certain
Markovian (memoryless) ones.We then turn to the transient states andfind
that an approximate equivalence can still be achieved but only if the average
generation time matches the average removal time in the memory-
dependent non-Markovian spreading dynamics. Qualitatively, the equality
of the two times gives rise to amemoryless correlation between the infection
and removal processes, thereby minimizing the impact of any memory
effects. We establish that equality gives the condition under which Mar-
kovian theory accurately describes memory-dependent transmission.

One fundamental quantity underlying an epidemic process is the basic
reproduction number R0. Our theoretical analysis indicates that, when the
average generation and removal times are equal, the transient-state
equivalence between memory-dependent and memoryless transmissions
willminimize the error of theMarkovian approach in estimatingR0 and lead
to its accurate epidemic forecasting and prevention evaluation. Another
finding is that the generation-to-removal time ratio plays a decisive role in
the accuracy of the Markovian approximation. Specifically, if the average
generation time is smaller (greater) than the average removal time, the
Markovian approximatewill lead to anoverestimation (underestimation) of
R0 and epidemic forecasting as well as the errors of the prevention evalua-
tion, which can also be verified based on readily accessible clinical data of
four types of real diseases.

The estimation accuracy is largely determined by the time ratio but
rarely depends on the particular forms of time distributions or the specific
values of the average generation and removal times. This property is of great
practical significance because it is in general challenging to obtain the
detailed distributions of the generation and removal times in the early stages
of the epidemic44, but their average values can be reliably estimated even
during the transient phase45–49. Moreover, based on this property, we have
developed a semi-empirical mathematical relationship that connects the
errors in estimating R0 with the generation-to-removal time ratio. This
relationship holds practical value as it can be utilized to rectify errors in real-
world scenarios. The rectification of R0 and epidemic forecasting can be
accomplished through our web-based application50.

Overall, our study establishes a general criterion for modeling
memory-dependent processes within the context of Markovian frame-
works. Once the condition for the existence of a transient-state equivalence
between Markovian and non-Markovian dynamics is fulfilled, epidemic
forecasting and prevention evaluation can be carried out using the Mar-
kovian model, again based solely on the data collected from the
transient phase.

Results
The overall structure of this work is depicted in Fig. 1. The section titled
“Model” presents the Model building of the age-stratified Susceptible-
Infected-Removed (SIR) spreading (Fig. 1a), highlighting the difference
between the Markovian (memoryless) and non-Markovian (memory-
dependent) dynamics (Fig. 1b). In the “Dynamical equivalence” section, we
demonstrate the equivalence between Markovian (memoryless) and non-
Markovian (memory-dependent) dynamics for steady state and transient
dynamics, which will further lead to the accurate description of memory-
dependent dynamics by the Markovian theory (Fig. 1c). The section
“Markovian approximation of memory-dependent spreading dynamics”
analyzes the errors of the Markovian approach in estimating R0, epidemic
forecasting, and prevention evaluation (Fig. 1d). (Note that this study
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involves numerous parameters and variables, all of which have been com-
prehensively detailed and listed for reference in Supplementary Table S1 of
Supplementary Note 1.)

Model
We articulate an age-stratified SIR spreading dynamics model, in which the
entire population is partitioned into various age groups with intricate age-
specific contact rates among them. The distribution of population across
different age groups is represented by an age distribution vector (p), with the
age-dependent contact matrix (A) quantifying the transmission rates between
different age groups. Both p and A can be constructed from empirical
data51,52. For convenience, to distinguish between the actual dynamical process
and its theoretical treatment, throughout this paper we use the terms
“memory-dependent” and “memoryless” to describe actual spreading pro-
cesses andMonte Carlo simulations, while in various theoretical analyses, the
corresponding terms are “non-Markovian” and “Markovian.”

The mechanism of disease transmission across different age groups
and the recovery or death of infected individuals can be described by the SIR
compartmentalmodel, as illustrated inFig. 1a,where the individuals possess
three types of states: susceptible (S), infected (I), and removed (R). Sus-
ceptible individuals (S) have not contracted the disease and are at risk of
being infected. Infected individuals (I) have contracted the disease and can
infect others. Removed individuals (R)who have recovered or died from the
disease. There are two dynamical processes: (1) infection during which

susceptible individuals become infected by others and transition to the I
state so as to become capable of infecting others, as shown in Fig. 1a(i–iii),
and (2) removal during which infected individuals recover or die from the
disease transmission and transition to the R state, as shown in Fig. 1a(iv).
The ability to infect others of an infected individual can be characterized by
the infection time distribution, ψinf ðτÞ where τ denotes the time elapsed
between the time the individual is infected and the current time, and the
probability of the infection process occurring during the time interval
[τ,τ+ dτ) is given byψinf ðτÞdτ, as shown in Fig. 1b(i). Likewise, the removal
process is described by the removal time distribution, ψrem(τ), where the
probability of a removal occurring within the time interval [τ,τ+ dτ) is
given by ψrem(τ)dτ, as shown in Fig. 1b(ii). The time distributions of the
infection and removal processes with memory effects are general, with the
exponential distributions associated with the memoryless process being a
special case of the memory-dependent process.

The generic memory-dependent SIR spreading dynamics can be
described by a set of deterministic integro-differential equations:

dslðtÞ
dt

¼ �slðtÞk
Xn
m¼1

Almpm

Z t

0
ωinf ðt � t0ÞΨremðt � t0Þdcmðt0Þ; ð1Þ

ilðtÞ ¼
Z t

0
Ψremðt � t0Þdclðt0Þ; ð2Þ

Fig. 1 | Overall structure of this work. a SIRModel. Each individual belongs to one
of the three states: susceptible (S), infected (I), or removed (R). When infected (i), a
susceptible individual will switch into the I state (ii) and gain the ability to infect
others (iii). An infected individual is removed (through recovery or death) with a
probability (iv).bNon-Markovian versusMarkovian process. The infection capacity
of an infected individual is characterized by the infection time distribution ψinf ðτÞ
and its removal can be described by the removal time distribution ψrem(τ). For the
non-Markovian process, the distributions can assume quite general forms, while the
distributions are exponential for a Markovian process. c Equivalence between non-

Markovian and Markovian processes: (i) steady-state equivalence holds under all
conditions; (ii) transient-state equivalence only holds when Tgen is equal to Trem.
dMarkovian estimation of memory-dependent process. (i) The initial phase of the
Monte Carlo simulation is used to fit the parameters according to the Markovian
theory. (ii) Important issues such as the estimation of R0, epidemic forecasting, and
the evaluation of vaccination strategies can be addressed by the theory. (iii) The
remaining data generated by theMonte Carlo simulation is used to test the accuracy
of the estimated R0, epidemic forecasting, and prevention evaluation.
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rlðtÞ ¼ �rl þ
Z t

0
½1� Ψremðt � t0Þ�dclðt0Þ; ð3Þ

where sl(t), il(t), and rl(t), respectively, denote the fractions of the sus-
ceptible, infected, and removed individuals in age group l. ŕl = rl(0)
represents the initial fraction of the removed individuals in age group
l. The term cl(t) = 1− sl(t) = il(t)+ rl(t) represents the fraction of
cumulative infections (including both infections and removals; note
that the physical meaning of dcl(t) is the new infected fraction in age

group l at time t, which can further spread the infection to others, so the
value of dcl(0) is considered as the fraction of infection seeds, where the
initial removed fraction is not taken into account) in age group l, while
pm denotes the m-th element of the vector p, Alm denotes the lm-th
element of matrix A, k is a parameter to adjust the overall contacts and n
is the total number of age groups. The quantity ωinf ðτÞ represents the
hazard function of ψinf ðτÞ, meaning the rate at which infection happens
at τ, given that the infection has not occurred before τ. Ψrem(τ) is the
survival function of ψrem(τ), meaning the probability that the removal has
not occurred by τ (see Method for detailed calculations for hazard and

Fig. 2 | Steady-state and transient-state equivalence betweenMarkovian andnon-
Markovian dynamics. a–c The solid brown, blue, and green curves represent the
theoretical results of the susceptible, infected, and removed fractions, while the solid
orange, red, and purple curves show the corresponding results of 100 independent
Monte Carlo simulations (αinf ¼ 3, βinf ¼ 4, αrem = 2.5, βrem = 3.6, where α and β
respectively represent the shape and scale parameters of time distributions of
Weibull types, and subscripts “inf” and “rem” indicate the time distributions of
infection and removal, respectively; R0 = 1.86). d The orange and green curves,
respectively, depict the removed fractions from the memory-dependent and
memoryless Monte Carlo simulations of 100 independent realizations with steady-
state equivalence (αinf ¼ 1:5, βinf ¼ 2:63, αrem = 2, βrem = 2.4 for memory-
dependent simulations; γ = 0.11 and μ = 0.14 for memoryless simulations; identical
basic reproduction number as R0 = 1.86 for the two types simulations). e Red+ and
blue × markers, respectively, represent the steady-state removed fractions of
memory-dependent and memoryless Monte Carlo simulations for different values
ofR0, where eachmarker is the result of averaging 100 independent simulations. The
orange curve is the numerical calculations from Eq. (7), and the vertical dashed line
denotes the critical point R0 = 1. f–g For Tgen = Trem in the non-Markovian theory
(αinf ¼ 1:57, βinf ¼ 5:57, αrem = 1.57, βrem = 7.79), the blue and green curves in (f)
denote the susceptible and removed fractions, while the black ×markers represent

the inferred susceptible fractions calculated by substituting removed fractions in Eq.
(11), which agrees with the susceptible curve calculated from Eq. (1). The red and
green curves in (g) denote the non-Markovian infected and removed fractions, while
the orange and purple dashed curves are the corresponding curves of theMarkovian
transmission (γ = 0.20, μ = 0.12) obtained from Eqs. (13, 14), which agree with the
non-Markovian results. They all have the same basic reproduction number, i.e.,
R0 = 1.87. (The Euler-Lotka equation assumes exponential growth of a disease
outbreak during the initial stage. As a result, the Markovian curves in (g) slightly
deviate from the non-Markovian ones as the cumulative infections increase.) h–i For
Tgen ≠ Trem in the non-Markovian theory (αinf ¼ 0:74, βinf ¼ 4:16, αrem = 3.32,
βrem = 7.80), the inferred susceptible curve in (h) does not match the numerical
result, and the infected and removed curves of the Markovian transmission in (i)
(γ = 0.41, μ = 0.28) obtained fromEqs. (13, 14) do notmatch the corresponding non-
Markovian results. They all have the same basic reproduction number, i.e.,R0 = 1.87.
j Five scenarios for the non-Markovian time-distribution setting (within each sce-
nario, T inf and Trem are fixed): Weibull, T inf ¼ 5, Trem = 7 (blue+); Weibull,
T inf ¼ 5, Trem = 5 (red × ); Weibull, T inf ¼ 7, Trem = 7 (purple □); log-normal,
T inf ¼ 5,Trem = 7 (greenΔ); gamma,T inf ¼ 5,Trem = 7 (orange♢). The value ofTgen
is modified to adjust ln η for better visualization.
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survival functions). When the infection and removal time distributions
are known, Eqs. ((1)–(3)) provide an accurate description of generic
(including memory-dependent and memoryless) SIR spreading Monte
Carlo simulations in an age-stratified population-based system. As
shown in Fig. 2a–c, the theory is validated by the agreement between the
numerical solutions of Eqs. ((1)–(3)) and the results from direct Monte
Carlo simulations (see Method for a detailed description of the Monte
Carlo simulation procedure).

Equations (1–3)provide a general framework encompassing bothnon-
Markovian and Markovian descriptions. If the infection and removal time
distributions are exponential: ψinf ðτÞ ¼ γe�γτ and ψrem(τ) = μe−μτ, Eqs.
(1–3) can be reformulated into a Markovian theory and further simplified
into a set of ordinary differential equations with the constant infection and
removal ratesγ andμ (a detailed derivationof these equations is presented in
Supplementary Note 2) :

dslðtÞ
dt

¼ �slðtÞkγ
Xn
m¼1

AlmpmimðtÞ; ð4Þ

dilðtÞ
dt

¼ slðtÞkγ
Xn
m¼1

AlmpmimðtÞ � μilðtÞ; ð5Þ

drlðtÞ
dt

¼ μilðtÞ: ð6Þ

While the non-Markovian and Markovian theories [Eqs. (1–3) and
Eqs. (4–6), respectively] accurately describe the memory-dependent and
memoryless Monte Carlo simulations, we focus on whether the Markovian
theory can accurately capture memory-dependent dynamics and how
memory effects influence its accuracy. For this purpose, we seek to establish
the equivalence between Markovian and non-Markovian approaches for
describing spreading dynamics.

Dynamical equivalence
Equations (1–6) provide a base to study the steady-state equivalence
and transient-state equivalence between non-Markovian and Marko-
vian theories, where a steady state characterizes the long-term
dynamics of disease spreading and a transient state is referred to as
the short-term behavior prior to system’s having reached the steady
state. As illustrated in Fig. 1c, note that steady-state equivalence means
that the two types of spreading dynamics attain identical steady
states18,21,22, whereas transient-state equivalence implies that two types
of dynamics are consistent throughout the entire transmission period.
Transient-state equivalence thus implies steady-state equivalence, but
not vice versa. Since Eqs. (1–6) also provides a numerical framework
for Monte Carlo simulations, the terms “steady-state equivalence” and
“transient-state equivalence” not only describe the connection
between non-Markovian and Markovian theories, but also illustrate
the relationship between memory-dependent and memoryless pro-
cesses. Therefore, the equivalence between the two theories implies
the equivalence between the two corresponding processes, and
vice versa.

Steady-state equivalence. Equations (1)–(3) give the following trans-
cendental equation for determining the steady state (see Supplementary
Note 3 for detailed derivation):

~sl ¼ �sle
� R0

Λmax

Pn

m¼1
kAlmpmð~rm��rmÞ; ð7Þ

where ~sl ¼ limt!þ1 slðtÞ and ~rl ¼ limt!þ1 rlðtÞ denote the fractions of
the susceptible and removed individuals in age group l at the steady state
(note that ~sl ¼ 1� ~rl , because at steady state, no infection exists), while
śl = sl(0) and ŕl = rl(0) represent the initial fractions of the susceptible and
removed individuals in this age group. For non-Markovian dynamics, basic

reproduction number R0 can be determined by:

R0 ¼ Λmax

Z þ1

0
ωinf ðτÞΨremðτÞdτ: ð8Þ

For Markovian dynamics, R0 is given by:

R0 ¼
γΛmax

μ
: ð9Þ

whereΛmax is themaximumeigenvalue of thematrix kA ∘p, and ∘ denotes a
row-wise Hadamard product between a matrix and a vector (see
Supplementary Note 3 for a detailed description). Since Eq. (7) applies to
both non-Markovian andMarkovian dynamics, an identicalR0 value in the
two cases will result in equivalent steady states from the same initial
conditions. Consequently, for a given non-Markovian spreading process,
there exists an infinite number of Markovian models with the same steady
state, as the R0 value is only determined by the ratio of γ to μ, but not by
either value.

As shown in Fig. 2d, memory-dependent and memoryless spreading
dynamics that reach the same steady state with the identical R0 value con-
firm the steady-state equivalence. Figure 2e demonstrates that, even for R0
ranging from 0.023 to 4.63, the equivalent memory-dependent and mem-
oryless spreading dynamics still produce highly consistent steady states that
can be calculated from Eq. (7), which share the same critical point of phase
transition at R0 = 1.

Transient-state equivalence. From the preceding section, we used the
basic reproduction number R0, a fundamental metric quantifying the
number of secondary infections generated by a single individual, to
characterize the steady-state equivalence. Here, we propose to quantify
the transient-state equivalence through the average generation time Tgen

that measures the “velocity” at which secondary infections occur. This
time can be calculated as2,53:

Tgen ¼
Z þ1

0
τψgenðτÞdτ;

where

ψgenðτÞ ¼
ωinf ðτÞΨremðτÞRþ1

0 ωinf ðτ0ÞΨremðτ0Þdτ0
ð10Þ

is the generation time distribution. Effectively, Tgen measures the average
duration of disease transmission from an infected individual to the next
generation of individuals. Likewise, the average infection time T inf and the
average removal time Trem are defined as the mean values of the infection
and removal time distributions:

T inf ¼
Z þ1

0
τψinf ðτÞdτ;

Trem ¼
Z þ1

0
τψremðτÞdτ:

In calculatingTgen, the individual’s removal is taken into account,while
T inf measures the average time of the first disease transmission of an
infectious individual without factoring in removal. In the classical mem-
oryless transmission with exponential distributions ψinf ðτÞ and ψrem(τ), the
equalityTgen = Trem holds. However, formemory-dependent spreading, the
possible scenarios are: Tgen = Trem, Tgen < Trem, or Tgen > Trem. Specifically,
because Tgen, T inf and Trem all represent the mean values of distributions, it
is possible for Trem to be shorter than Tgen or T inf in some situations. And
our web-based application demonstrates the impact of parameters on the
time distributions (infection, removal, and generation) as well as their
average times50.
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For a non-Markovian spreading process, if the equality Tgen = Trem
holds, it can be approximately equivalent to a Markovian one in the tran-
sient state, because it satisfies the following equation:

slðtÞ ’ �sle
� R0

Λmax

Pn

m¼1
kAlmpm½rmðtÞ��rm�; ð11Þ

which exhibits a memoryless transmission pattern similar to Markovian
dynamics (see SupplementaryNote 4 for a detailed analysis). Intuitively, the
equalityTgen = Trem signifies that the infection and removal processes occur
concurrently, which in turn leads to amemoryless relationship between the
two processes, thereby minimizing the memory effects. Furthermore, to
determine the corresponding Markovian parameters γ and μ of the Mar-
kovian transmissionwhich is equivalent to the non-Markovian dynamics in
the transient state, we need to utilize the Euler-Lotka equation45,53,54:

1 ¼ R0

Z þ1

0
e�gτψgenðτÞdτ; ð12Þ

where g denotes the growth rate of the non-Markovian dynamics and is
another measure of how quickly the epidemic is spreading within a
population. Therefore, we can calculate the values of the basic reproduction
number, R0, and growth rate, g, in the non-Markovian dynamic by using
Eqs. (8), (10), and (12). Additionally, the Markovian form of ψgen(τ)
according to Eq. (10) is μe−μτ, and the equivalent Markovian and non-
Markovian dynamics in the transient state have the same values of R0 and
the equal values of g. By substituting ψgen(τ) = μe−μτ and the calculated R0
and g into Eq. (12), we can determine the value of μ. Furthermore, using Eq.
(9), we can find the value of γ based on μ. Hence, theMarkovian parameters
γ and μ are determined as follows:

γ ¼ gR0

ΛmaxðR0 � 1Þ ; ð13Þ

μ ¼ g
R0 � 1

: ð14Þ

And we provide visualizations that illustrate how the values of γ and μ
are influenced by the distribution parameters in our web-based application50.

As illustrated in Fig. 2f–g, when the equality Tgen = Trem holds for the
non-Markovian dynamics, Eq. (11) holds, which can be seen by comparing
the susceptible curve calculated from Eq. (1) to that inferred from Eq. (11),
as shown in Fig. 2f. In this case, the Markovian spreading curves deduced
from Eqs. ((13) and (14)) closely align with the non-Markovian transient
curves, as shown in Fig. 2g. However, as shown in Fig. 2h–i, if the equality
does not hold, the equivalence in transient states breaks down. It is
important to note that the Euler-Lotka equation assumes an exponential
growth of a disease outbreak and is only reasonable at the initial stage.
Consequently, as the cumulative infections increase (Fig. 2g), theMarkovian
curves will exhibit slight deviations from the non-Markovian counterparts.
Meanwhile, because the equivalent dynamics share the same R0, they will
ultimately reach the samesteady state, ensuring thatdeviationswill diminish
while they approach the steady state.

To evaluate, under different values of the generation-to-removal time
ratio η≡ Tgen/Trem for non-Markovian dynamics we introduce a metric, ε,
to quantify the difference from the corresponding Markovian results cal-
culated fromEqs. ((13) and (14)) (see “Method” for detailed definition of ε).
Figure 2j shows, for non-Markovian numerical calculations, five scenarios
under various formsof timedistributionsψinf ðτÞ andψrem(τ) constrainedby
certain average infection and removal times: Weibull, T inf ¼ 5, Trem = 7;
Weibull, T inf ¼ 7, Trem = 7; Weibull, T inf ¼ 5, Trem = 5; log-normal,
T inf ¼ 5, Trem = 7; and gamma, T inf ¼ 5, Trem = 7 (see “Method” for
detailed definitions ofWeibull, log-normal, and gamma distributions). The
Tgen value is adjusted to obtain different values of ln η. For ln η ¼ 0, i.e.,
Tgen = Trem, the “distance” ε between the transient states of non-Markovian
and Markovian dynamics with parameters determined from Eqs.

((13)–(14)) is minimal. Otherwise, ε increases as ln η deviates from zero.
Meanwhile, Fig. 2j shows that ε depends primarily on the ratio of Tgen to
Trem, but rarely on the values of Tgen, T inf , or Trem. Meanwhile, the specific
form of the time distributions also has limited influence on it.

Furthermore, it is important to note that the condition where
Tgen = Trem in a non-Markovian dynamic ensures transient-state equiva-
lence between this non-Markovian transmission and aMarkovian one, but
according toEqs. (13) and (14), it does not imply that the average generation
and removal times of the non-Markoviandynamicmust be equal to those of
the equivalent Markovian one. For instance, if a non-Markovian dynamic
satisfies the condition of transient-state equivalence andwe keep its average
generation and removal times fixed, altering the shape of the corresponding
timedistributionswill change the transmission speed53. This change, in turn,
affects the infection and removal rates of the equivalent Markovian
dynamic, leading to different average generation and removal times for the
Markovian equivalent dynamic (see Supplementary Fig. S1 and Supple-
mentary Notes 5 and 6 for a detailed analysis).

Markovian approximation of memory-dependent spreading
dynamics
As illustrated in Fig. 1d, testing the applicability of Markovian theory for
memory-dependent spreading dynamics requires three steps. The first step
is fitting, where the memory-dependent Monte Carlo simulation data are
divided into two parts: (a) a short early stage used as the training data for
fitting the Markovian parameters in Eqs. ((4)–(6)), and (b) the remaining
testing data for evaluating the performance of the Markovian model (see
“Method” for details of the fitting procedure). The second step is to employ
the Markovian model, equipped with fitted Markovian parameters, to
accomplish various tasks, such as estimating R0, predicting outbreaks and
assessing the prevention effects of different vaccination strategies. The third
step is testing, i.e., evaluating the accuracy of the Markovian model, e.g., by
comparing the estimated and actual R0 values, disease outbreaks and pre-
vention effects. As real-world disease spreading is subject to environmental,
social and political disturbing factors, for the fitting and testing steps, we
conduct Monte Carlo simulations of stochastic memory-dependent disease
outbreaks to generate the training and testing data.

Here, we first analyze the influence of η on the estimation of R0 using
the Markovian theory, and design two tasks to evaluate the applicability of
the theory in epidemic forecasting and prevention evaluation of memory-
dependent spreading. For comparison, we also generate the corresponding
results from the non-Markovian theory in the two tasks.

Estimation of basic reproduction number. Estimating basic repro-
duction number R0 is crucial for determining the ultimate prevalence of
disease spreading and for assessing the effectiveness of various disease
containment measures45,53,54. When using the Markovian theory to fit the
early-stage transmission of a memory-dependent process, a key para-
meter that can affect the estimation of R0 is the ratio η. To develop an
analysis, recall the basic principle for estimating R0: disease spreading
dynamics can be viewed as a combination of two parallel processes:
infection and removal. In particular, the infection process is the repro-
duction of the disease within each generation, where each infected
individual generates an average of R0 newly infected individuals in the
subsequent generation after a mean time period Tgen. In the removal
process, infected individuals are removed from the spreading chain,
where each generation takes an average time Trem to be removed. For a
Markovian type of dynamics with constant γ and μ, the equality
Tgen = Trem holds. Consequently, during the Markovian fitting step, the
average number of new infections upon the removal of a single infected
individual is taken as the value of R0. For memory-dependent spreading,
if the equality Tgen = Trem holds, the memory-dependent spreading
curves will possess an approximate memoryless feature so that R0 can be
still be estimated by counting the number of new infections at the time
when the current generation of infections is removed, as shown in Fig. 3a.
However, for Tgen < Trem, more than one generation is produced while
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the current generation is removed, R0 estimated by theMarkovian theory
will represent an overestimate, as shown in Fig. 3b. For Tgen > Trem, less
than one generation is created during Trem, the Markovian theory will
give an underestimate of R0, as shown in Fig. 3c.

Figure 3d shows the Markovian fitting for memory-dependent
spreading simulation curves, which exhibit identical values of R0 under
Tgen = Trem (red curves), Tgen < Trem (blue curves), and Tgen > Trem (green
curves). When the equality Tgen = Trem holds, the Markovian theory with
fitted parameters generates accurate predictions of the future evolution
(red × symbols). For Tgen < Trem, the outbreak in the initial stage is accel-
erated, resulting in an overestimation by the Markovian theory (blue+
symbols). ForTgen > Trem, the initial outbreaks are decelerated, leading to an
underestimation by the Markovian approach (green Δ symbols).

The above qualitative insights lead to a semi-empirical relationship
between the Markovian-estimated basic reproduction number R̂0 and its
actual value R0 as:

R̂0 ¼ ðR0Þη
�a
; ð15Þ

where a is a positive coefficient (see “Method” for a detailed derivation). The
value of a is a crucial and constant parameter in Eq. (15), and it needs to be
determined by fitting it to the data. Once this constant a is obtained, the

actual value of R0 can be derived by adjusting the estimated R̂0 based on Eq.
(15), and more accurate steady state can be calculated by using Eq. (7).

Equation (15) implies the relationship lnðlnR0= ln R̂0Þ ¼ a ln η. We
use Weibull time distributions ψinf ðτÞ and ψrem(τ) constrained by certain
average infection and removal times: T inf ¼ 5, Trem = 7; T inf ¼ 7, Trem = 7;
T inf ¼ 5, Trem = 5; T inf ¼ 7, Trem = 5; and T inf ¼ 6, Trem = 6 for memory-
dependentMonteCarlo simulations. Figure 3e shows the linear relationship
between lnðlnR0= ln R̂0Þ and ln η, providing support for our qualitative
analysis of theMarkovian estimation. The estimation of R0 also depends on
the ratio η and is relatively insensitive to the specific values of Tgen, T inf , or
Trem for the same formof time distribution. The results in the inset of Fig. 3e
further confirm that the estimated R̂0 approaches 1whenTgen ismuch larger
than Trem and tends to+∞when Tgen is much smaller than Trem. By fitting
the available data, we have determined the value of a to be 1.59. After
obtaining the value of a, we can develop our web-based application for
rectifying R0 and epidemic forecasting50. We also plot additional experi-
mental results for log-normal and gamma distributions (log-normal,
T inf ¼ 5, Trem = 7; and gamma, T inf ¼ 5, Trem = 7) in Supplementary
Note 7. Referring to Supplementary Fig. S2, various forms of time dis-
tributions may affect the Markovian estimation of R0. However, their
influence appears less compared to the impact of the value ofη.Hence, it can
be concluded that the distribution form seldom affects the estimation of R0.

Fig. 3 | Estimation of R0. a–c Mechanism of the R0 estimation. The red arrows
represent the infection process of the next generation by the current generation,
while the dashed arrows denote the removal of the current generation. The rela-
tionship between Tgen and Trem influences the number of new infections when the
current generation of infections is removed. For Tgen = Trem, the number of new
infections is exactly R0. For Tgen < Trem, the number of new infections is greater than
R0. ForTgen > Trem, the number of new infections is smaller thanR0.dThere are three
distinct categories of memory-dependent disease spreading, all sharing the same
value of the basic reproduction number R0 as 1.86: Tgen < Trem (blue curves;
αinf ¼ 1:5, βinf ¼ 4:64, αrem = 2.5, βrem = 5), Tgen = Trem (red curves; αinf ¼ 2:5,
βinf ¼ 5, αrem = 2.5, βrem = 5), and Tgen > Trem (green curves; αinf ¼ 3:5, βinf ¼ 5:32,
αrem = 2.5, βrem = 5), where the fractions of cumulative infected individuals (i.e., sum

of infected and removed fractions) are simulated using 100 independent realizations.
The predicted future evolution of the spreading dynamics by the Markovian theory
with the fitted parameters are also shown: Tgen < Trem (blue+ symbols), Tgen = Trem
(red × symbols), andTgen > Trem (greenΔ symbols). The gray areamarks the training
data (seeMethod for detailed approach of training data selection). eThe relationship
between lnðlnR0= ln R̂0Þ (R0 represents the real basic reproduction number, while R̂0

denoted the estimated one) and ln η. The horizontal and vertical dotted lines show
that the equality between Tgen and Trem results in an accurate estimation of R0 and
the dashed line represents a linear fitting with the slope 1.59. Inset: the relation
between ln R̂0 and η with the asymptotic behaviors: for η→ 0, R̂0 ! þ1 (i.e.,
ln R̂0 ! þ1), and for η→+∞, R̂0 ! 1 (i.e., ln R̂0 ! 0).
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Epidemic forecasting. As suggested in Fig. 1d, we evaluate the efficacy of
Markovian theory for epidemic forecasting. We use the early stage of
MonteCarlo simulation data tofit parameters under bothMarkovian and
non-Markovian hypotheses and then to predict future disease outbreaks.
The remaining simulation data are leveraged to evaluate the accuracy of
the Markovian and non-Markovian forecasting results. Regardless of the
forms of time distributions in the memory-dependent Monte Carlo
simulations (Weibull, log-normal, or gamma), the non-Markovian
model fits the training data in a consistent manner, i.e., by assuming the
actual time distributions as unknown and treating them as Weibull time
distributions.

Figure 4a–c shows the evolution of the spreading dynamics from three
types of memory-dependent Monte Carlo simulations with Weibull infec-
tion and removal distributions, where the shape parameters αinf and αrem
are selected according to ln αinf ¼ �0:3; ln αrem ¼ 1:2 (Fig. 4a), ln αinf ¼
0:45; ln αrem ¼ 0:45 (Fig. 4b), and ln αinf ¼ 1:2; ln αrem ¼ �0:3 (Fig. 4c),
forT inf ¼ 5 andTrem = 7. For theWeibull distributions,wehaveαinf < αrem,
αinf ¼ αrem and αinf > αrem, corresponding to Tgen < Trem, Tgen = Trem, and
Tgen > Trem, respectively. We compare the simulated cumulative infected
fractions to those predicted by theMarkovian and non-Markovian theories.
In general, the non-Markovian theory provides more accurate predictions
than the Markovian theory. For the specific parameter setting ln αinf ¼
0:45; ln αrem ¼ 0:45 (i.e., Tgen = Trem), both theories yield a high accuracy.

The accuracy can be assessed through the forecasting error ε+ that
evaluates whether a theory overestimates or underestimates the steady-state
cumulative infection, i.e., quantifying the extent of deviation between the
results obtained from Markovian or non-Markovian theories and those
derived fromMonteCarlo simulations (see “Method” for detailed definition
of ε+). A plus value of ε+means overestimation while minus value indicates

underestimation. We evaluate the accuracy measure ε+ in the parameter
plane of ln αinf and ln αrem, ranging from−0.3 to 1.2. Figure 4d, e shows that
theMarkovian accuracy is sensitive to parameter changes: underestimated if
αinf is greater than αrem (Tgen > Trem), overestimated when αinf is smaller
than αrem (Tgen < Trem), and a high forecasting accuracy is achieved only for
αinf ¼ αrem (Tgen = Trem). In contrast, the non-Markovian theory yields
highly accurate results in the whole parameter plane, with only a slight
underestimation for αinf≫αrem. This can be primarily attributed to the
growing challenge of fitting simulation data, where the absolute derivatives
of R0 with respect to parameters become extremely high, making the fitting
process much sensitive to the parameters55,56. This occurs when αinf is
greater than αrem or Tgen is much larger than Trem, causing theMonte Carlo
curves to become more sensitive to the parameters and potentially deviate
from the accurate theoretical curves (see Supplementary Fig. S3 and Sup-
plementary Note 8 for details).

Using the five scenarios specified in Fig. 2j for memory-dependent
Monte Carlo simulations, we obtain the relationship between ε+ and ln η, as
shown in Fig. 4f. It can be seen that, in the Markovian framework, an
overestimation arises for Tgen < Trem, and an underestimation occurs for
Tgen > Trem. Only when Tgen = Trem is an accurate estimate achieved. In
general, the non-Markovian theory provides much more accurate fore-
casting than the Markovian theory, especially when Tgen and Trem are not
equal. The results further illustrate that the specific values of Tgen, T inf , or
Trem have little impact on forecasting accuracy, and the impact of the time
distribution forms is much lower compared to the influence exerted by the
η value.

To establish the relevance of these results to real-world diseases, we
obtain the distributions of ψinf ðτÞ and ψrem(τ) for four known infectious
diseases, includingCOVID-19, SARS,H1N1 influenza, and smallpox, using

Fig. 4 | Epidemic forecasting. a–c Predicted evolution of the cumulative infected
fraction (i.e., sum of infected and removed fractions) by the Markovian (orange
dotted curves) and non-Markovian (red dashed curves) theories, in comparisonwith
theMonte Carlo simulations withWeibull time distributions (blue solid curves), for
three sets of simulation parameters, respectively. The results are the averages of 100
independent realizations with the standard deviations indicated by the shaded
regions. And all the memory-dependent Monte Carlo simulations exhibit a similar
R0 value of 1.83. The gray area marks the training data (see “Method” for detailed
approach of training data selection). d, eThe forecasting errors ε+ ofMarkovian and

non-Markovian theories with respect to the memory-dependent Monte Carlo
simulations in the parameter plane of ln αinf and ln αrem in the range [−0.3, 1.2]. The
green, blue and red squares mark the parameters of Monte Carlo simulations in
(a–c), respectively. f The forecasting errors ε+ from the Markovian and non-
Markovian theories for different values of ln η under five scenarios of time dis-
tribution setting for Monte Carlo simulations. The corresponding estimations for a
number of real-world diseases (COVID-19, SARS, H1N1 and Smallpox) are also
included.
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the information in refs. 2,33–40.We then calculate the corresponding values of
ε+ and ln η based on the Markovian and non-Markovian approaches. As
demonstrated in Fig. 4f, the positions of the four diseases in the (ln η, ε+)
plane are consistent with the results of our estimations. Because the data
were from the reports of laboratory-confirmed cases incorporating the
effects of the quarantine and distancing from susceptible individuals after
the confirmation of the diagnosis, Tgen of the four diseases are all smaller
than the corresponding values of Trem, leading to some overestimation for
the Markovian forecasting results.

Evaluation of vaccination strategies. In the development and appli-
cation of a theory for disease spreading, assessing the effects of different
vaccination strategies is an important task. Here we consider five prior-
itization strategies for vaccine distribution5: individuals under 20 years
(denoted asm = 1), adults between 20 and 49 years (m = 2), adults above
20 years (m = 3), adults above 60 years (m = 4), and all age groups (m = 5),
and implement these strategies in Monte Carlo simulations (see
“Method” for the detailed procedure of vaccination in Monte Carlo
simulations). Figure 5a shows the results of epidemic evolutionwith these
vaccination strategies, where the shape parameters are chosen according
to ln αinf ¼ 0:45 and ln αrem ¼ 0:45 (Tgen = Trem). Figure 5b–c shows the
results from the Markovian and non-Markovian theories, respectively,
with the corresponding fitted parameters for the vaccination strategies
(see “Method” for the detailed procedure of vaccination in theoretical

calculations). These results indicate that the Markovian and non-
Markovian theories yield the correct epidemic evolution and future
outbreaks under different vaccination scenarios, when Tgen = Trem.

To characterize the effectiveness of different vaccination strategies in
blocking disease transmission, we introduce a vaccination effectiveness
vector, δ, whose m-th element quantifies the cumulative infected fraction
with the m-th vaccination strategy in the steady state: δm ¼ ~cm, for
m = 0,…, 5 (subscript m = 0 indicates the results without vaccination).
Figure 5d shows that the δ vectors from the Monte Carlo simulation,
Markovian and non-Markovian theories from Fig. 5a–c, respectively.

We further introduce a metric, the so-called prevention evaluation
error ε*, that gauges the ability of the Markovian and non-Markovian
theories to estimate the total effectiveness of vaccination, i.e., measuring
the disparity between the results calculated by the Markovian or non-
Markovian theories and those obtained through Monte Carlo simula-
tions considering various vaccination strategies (see “Method” for the
detailed definition of ε*). Figure 5e, f shows the average values of ε* of
the two theories in the simulation parameter plane using 100 inde-
pendent realizations, which are similar to those in Fig. 4d–e, indicating
that the error mainly comes from the R0 estimation. In general, the
Markovian theory performs well only in the diagonal area of the
parameter plane where αinf ¼ αrem, as shown in Fig. 5e, and the non-
Markovian theory outperforms the Markovian counterpart in most
cases, as shown in Fig. 5f.

Fig. 5 | Evaluation of vaccination strategies. a–c For simulation parameters chosen
according to ln αinf ¼ 0:45 and ln αrem ¼ 0:45, the cumulative infected fraction (i.e.,
sum of infected and removed fractions) curves from Monte Carlo simulations and
the corresponding Markovian and non-Markovian theories with fitting parameters
for five vaccination strategies. The average results are obtained from 100 indepen-
dent realizations with the shaded regions representing the standard deviations. And
all the memory-dependent Monte Carlo simulations exhibit a similar R0 value of
1.83. The gray area marks the training data (see “Method” for detailed approach of
training data selection). d Vector δ calculated from the results in Fig. 5a–c. e, f The
prevention evaluation errors ε* of Markovian and non-Markovian theories for
evaluating the effects of vaccination prevention in the parameter plane
ðln αinf ; ln αremÞ. The green squares mark the selected parameters in (a–c). g, h The

optimization failure probabilities ε̂ arising from theMarkovian and non-Markovian
within the parameter plane ðln αinf ; ln αremÞ. The green squares mark the selected
parameters in (a–c). i The prevention evaluation errors ε* from the Markovian and
non-Markovian theories versus ln η under five scenarios of time distribution setting
forMonteCarlo simulations. The estimated errors for four real diseases (COVID-19,
SARS, H1N1, and Smallpox) are also shown. j The optimization failure probabilities
ε̂ from theMarkovian and non-Markovian theories against ln η in five different time
distribution scenarios for Monte Carlo simulations. The optimization failure
probabilities for four real diseases (COVID-19, SARS, H1N1, and Smallpox) are also
presented. The color and symbol theme is the same as (i).
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Meanwhile, we assess the ability of both the Markovian and non-
Markovian theories to detect the optimal vaccination strategy. We also
define a quantity, optimization failure probability ε̂, to quantify the prob-
ability of a theory failing to identify the optimal strategy, i.e., that leads to the
lowest cumulative infection among these strategies (see “Method” for the
detailed definition of ε̂). Figure 5g–h illustrates the results of ε̂ for the two
theories within the parameter plane ðln αinf ; ln αremÞ. While the non-
Markovian theory still demonstrates superior performance, the Markovian
approach proves capable of identifying the optimal strategy across a larger
parameter space compared to the Markovian results depicted in Fig. 5e.

We obtain the relationships between ε* and ln η, as well as between ε̂
and ln η, as shown in Fig. 5i–j with the same five time-distribution scenarios
as in Fig. 2j. In all cases of Fig. 5i, ε* reaches a minimum for ln η ¼ 0 and
increases as ln η deviates from zero. The results from the five scenarios
further illustrates that the specific values of Tgen, T inf , or Trem play little role
in the errors in vaccination evaluation, and the effect of time distribution
forms is also limited. Figure 5i also includes the values of ε* for the real-
world infectious diseasesCOVID-19, SARS,H1N1 influenza, and smallpox,
which are consistent with those from the non-Markovian and Markovian
theories. Regarding the results depicted in Fig. 5j, it is observed that the non-
Markovian theories consistently outperform the Markovian counterparts.
On the other hand, within a wide range of ln η values around 0, the Mar-
kovian theories successfully identify the optimal vaccination strategy among
various commonly employed ones. When the value of ln η deviates from 0,
Markovian theories become ineffective in determining the optimal strategy.
(Note that on the left side ofFig. 5j,weonlypresent the failures ofMarkovian
theories to identify the optimal strategy in theMonteCarlo simulationswith
log-normal distribution. This is primarily due to the fact that the parameters
associated with the Weibull and gamma distributions fall outside the
acceptable range when we keep T inf and Trem fixed to modify ln η to a very
low value.) Furthermore, we demonstrate that even when employing
Markovian approaches, the optimal vaccination strategy can still be deter-
mined among these strategies considered for the four distinct real diseases.

Conducting accurate evaluations in prevention serves as the sufficient
condition of the successful identification of the optimal strategy. In com-
parison to the prevention evaluation errors ε* of Markovian theories, the
optimization failure probability ε̂ exhibits a wider range of ln η values that
result in the lowest value. The lack of mathematical continuity among these
strategies is the primary reason for this. It indicates that there is no smooth
transition or mathematical relationship connecting these strategies, result-
ing in the rankof the strategiesnot changingpromptlywhen the value of ln η
deviates from 0. Therefore, only large errors from the Markovian theories
can result in the failure to detect the optimal strategy. Based on this analysis,
the extent to which ln η deviates from 0, leading to the failure of Markovian
theories, as well as whether such failure will occur, depends on the selection
of the tested strategies.

Discussion
The COVID-19 pandemic has emphasized the importance of investigating
disease transmission in human society through modeling. Empirical
observations have consistently demonstrated strongmemory effects in real-
world transmission phenomena. The initial transient stage of an epidemic is
critical for data collection, prediction, and articulation of control strategies,
but an accurate non-Markovian model presents difficulties. In contrast, a
Markovian model offers great advantages in parameter estimation, com-
putation, and analyses. Uncovering the conditions under whichMarkovian
modeling is suitable for transient epidemic dynamics is necessary.

We have developed a comprehensive mathematical framework for
both Markovian and non-Markovian compartmentalized SIR disease
transmissions in an age-stratified population, which allows us to identify
two types of equivalence between Markovian and non-Markovian
dynamics: in the steady state and transient phase of the epidemic. Our
theoretical analysis reveals that, in the steady state, non-Markovian
(memory-dependent) transmissions are always equivalent to the Marko-
vian (memoryless) dynamics. However, transient-state equivalence is

approximate and holds when the average generation and removal times
match each other. In particular, when the average generation time is
approximately equal to the average removal time, the disease transmission
and removal of an infected individual exhibit a memoryless correlation,
therebyminimizing thememory effects of the dynamic process. This results
in highly accurate results from the Markovian theory that captures the
characteristics ofmemory-dependent transmission based solely on the early
epidemic curves. Our analysis also suggests that the Markovian accuracy is
mainly determined by the value of generation-to-removal time ratio in
disease transmission, where a larger-than-one (smaller-than-one) ratio can
lead to underestimation (overestimation) of the basic reproduction number
and epidemic forecasting, as well as the errors in the evaluation of control or
prevention measures. The estimation accuracy primarily depends on this
ratio, but not greatly affected by the specific values at the various times
associated with the epidemic; although distribution forms might affect
accuracy to someextent, their influence ismuch less compared to the impact
of the ratio. This property exhibits substantial practical importance, because
the average generation and removal times can be readily assessed based on
sparse data collected from the transient phase of the epidemic, but to esti-
mate their distributions with only sparse data is infeasible. These results
provide deeper quantitative insights into the influence ofmemory effects on
epidemic transmissions, leading to a better understanding of the connection
and interplay between Markovian and non-Markovian dynamics.

There were previous studies of the equivalence between Markovian
and non-Markovian transmission in the SIS model18,21,22. However, these
studies addressed the steady-state equivalence rather than the transient-
state equivalence. To our knowledge, our work is the first to investigate the
transient-state equivalence of the SIR model. In addition, previous studies
mainly examined the impact of the average generation time on the trans-
missiondynamics, suchas how the shapeof the generation timedistribution
affects the estimation of R0

53 or the use of serial time distributions in esti-
mating R0 during an epidemic45. There was a gap in the literature regarding
how generation times affect the accuracy of differentmodels. Our paperfills
this gap by providing a criterion for usingMarkovian frameworks tomodel
memory-dependent transmission based on the relationship between the
average generation and removal times.

From an application perspective, our study suggests that the impact of
the time distribution forms on Markovian estimation accuracy is limited,
making it easier to select models between Markovian and non-Markovian
dynamics in the initial outbreak of an epidemic based primarily on the
generation-to-removal time ratio. This insight is especially useful since
detailed time distribution forms are often harder to detect than their corre-
sponding mean values. In addition, we note that in previous studies, it was
observedthat invariousscenarios,serial intervals,albeitwithlargervariances,
areanticipatedtopossessaconsistentmeanvaluewiththeaveragegeneration
time and are more straightforward tomeasure2,45–49. Given the practical dif-
ficultiesinobservingthegenerationtime,ourfindingofminimalimpactfrom
the distribution forms suggests that the average serial interval can be utilized
asa substituteof theaveragegeneration time todetermine theapplicabilityof
the Markovian theories for modeling purposes without compromising
accuracy, although numerous studies have indicated that replacing the
generation time distribution with the serial interval distribution may affect
the analysis of transmission dynamics44,45,57.Meanwhile, basedonEq. (15), if
we determine the ratio of generation-to-removal time, the estimated R0
obtained through theMarkovian approach can be adjusted to approximate
the true value.Andourweb-based application showcases thedemonstration
of rectifying R0 and epidemic forecasting50.

Our study highlights the critical importance of accurately quantifying
R0 for achieving precise epidemic forecasting and prevention evaluation. A
previous work54 revealed that the value of R0 depends on three key com-
ponents: the duration of the infectious period (e.g., ψrem(τ)), the probability
of infection resulting from a single contact between an infected individual
and a susceptible one (e.g., ψinf ðτÞ), and the number of new susceptible
individuals contacted per unit of time. However, given the practical lim-
itations inherent in obtaining all three components, numerous methods
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have been developed for estimating R0. Although our work presents a
specific approach, which fits the parameters of exponential or non-
exponential time distribution by using the initial outbreak curves, it is not
the only one available. For example, when contact patterns are unknown,R0
can be estimated by fitting the growth rate g and the generation time dis-
tribution ψgen(τ), and then applying them in the Euler-Lotka equation45,53,54.
However, since the focus of our work is on epidemic forecasting and eva-
luation of prevention measure where the data of contact patterns are given,
R0 can be directly calculated once ψinf ðτÞ and ψrem(τ) are fitted, without
requiring the fitting of any additional quantity such as growth rate g. The
estimation of R0 can also be achieved by using data in the steady state, such
as the final size of an epidemic or equilibrium conditions54. However, this
method is not suitable for the transient phase where only early-stage curves
are available. Utilizing the approach delineated in this paper is practically
more appropriate for estimating R0.

While our study focused on transmission within the SIR framework,
extension to SEIR or SIS models is feasible. While we emphasized the
significance of the transient-state equivalence in disease transmission,
transient dynamics are more relevant or even more crucial than the steady
state in nonlinear dynamical systems58. For example, in ecological systems,
transient dynamics play a vital role in empirical observations and are
therefore a key force driving natural evolution59–64. In neural dynamics,
transient changes in neural activity canmediate synaptic plasticity, a crucial
mechanism for learning and memory65–67. Therefore, the identification of
suitable conditions for choosing between Markovian and non-Markovian
dynamicsmaynot be limited to epidemicdynamics alone andmay serve as a
valuable reference for other fields as well.

Taken together, our study establishes an approximate equivalence
between Markovian and non-Markovian dynamics in the transient state,
assuming that time distributions followWeibull forms (see Supplementary
Note 4 for details). While the applicability of our findings to most synthetic
and empirical distributions has been analyzed qualitatively, a quantitative
analysis requires further studies. For extreme cases with non-Weibull dis-
tributions, the transmission should be evaluated using other specific
methods. While we have provided a qualitative analysis of the mechanism
underlyingwhy timedistribution forms haveminimal impacts on the errors
of Markovian estimations, a more rigorous theoretical analysis is needed
and requires further exploration.Meanwhile, in the spreading process, there
are othermemory effects beyond the “temporal”memory considered in our
study, for example, the transmission capacity can be influenced by the
previous transmissionpath42,which is referred to as “spatial”memory effect.
However, our study specifically focuses on analyzing the impact of “tem-
poral”memory effects. To understand how “spatial”memory effects affect
the accuracy of the Markovian approach, further research is needed. In
addition, due to the complexity of the nonlinear transmission, our study has
produced a semi-empirical relationship to estimate the overestimation and
underestimation of Markovian methods. Further research is required to
develop a rigorous formula that can accurately predict these effects. Addi-
tionally, the non-Markovian SIR model utilized in this study shares simi-
laritieswith theHawkesorHawkesNprocess41,68 (see SupplementaryNote 9
for details). These processes are commonly employed for the statistical
modeling of events in diverse fields, where random events exhibit self-
exciting behavior. We anticipate that our research will offer fresh perspec-
tives and valuable insights to advance the understanding of related studies in
this area.

Method
Monte Carlo simulation
In the simulation, we classify N individuals into n subgroups based on the
age distributionp. The index of the subgroup towhich an individual belongs
is denoted by l (where 1 ≤ l ≤ n), and the index of the individual within the
subgroup is denotedbyu (where1 ≤ u ≤ plN). The state of the individualu in
the age group l is represented by Xlu, which includes the states S (suscep-
tible), I (infected), W (recovered), and D (dead), where W and D both
represent R (removed), while I and R both represent C (cumulative

infected). For each individual, we also record the absolute time of infection
and removal using two variables: tinflu and tremlu , respectively. The absolute
time of the system is denoted by t, and we implement the total spreading
simulation step by step using a finite time step Δt as follows:

i. Initialization: set t = 0, Xlu for every individual is set to S.
ii. Set infection seeds: choose a set of individuals as the infection seeds and

the correspondingXlu are set to I, the corresponding tinflu are set to0, and
tremlu are set to a random value following the removal time distribu-
tion ψrem(τ).

iii. Infection in one time step: calculate the infection rate, ω̂inf
lu ðtÞ, of

infected individual u in age group l during the current time step by

ω̂inf
lu ðtÞ ¼ 1� Ψinf ðt � tinflu þ ΔtÞ=Ψinf ðt � tinflu Þ:

The probability �ωinf
l ðtÞ of each susceptible individual in age group l

being infected can be calculated by

�ωinf
l ðtÞ ¼

Xn
m¼1

pm 1� 1�
P

v2ImðtÞω̂
inf
mvðtÞ

pmN

 !kAlm
2
4

3
5;

where ImðtÞ is the index set of the infected individuals in age group m at
time t. Thenumber of the susceptible individuals being infected in age group
l follows a binomial distribution Bðs?l ðtÞplN; �ωinf

l ðtÞÞ, where s?l ðtÞ denotes
the fraction of susceptible individuals in age group l at time t. Then generate
a random numberNl(t) following this binomial distribution and randomly
select Nl(t) susceptible individuals in age group l to set them as I state. The
corresponding tinflu of the new infected individuals are set to the current t and
tremlu are set to τrem+ t, where the random τrem follow the removal time
distribution ψrem(τ).

iv. Removal in one time step: check if tremlu of each infected individual is
during the current time step. If this condition is satisfied, set their state
toDwith the probability σl and toWotherwise, where σl is the infection
fatality rate of age group l69. Then let t ← t+Δt.

v. Repeat the process iii) and iv), until no individual with I index exists.

Time distributions
In the numerical calculations orMonte Carlo simulations, we employ three
typesof timedistributions, i.e.,Weibull, log-normal, andgamma, todescribe
the non-Markovian or memory-dependent transmission process.

For Weibull time distribution, it follows:

ψðτÞ ¼ α

β

τ

β

� �α�1

e�ðτβÞα ;

where α and β denote the shape and scale parameters, respectively.
The log-normal time distribution is defined as follows:

ψðτÞ ¼ 1

τβ
ffiffiffiffiffi
2π

p exp � ðln τ � αÞ2
2β2

� �
:

The gamma time distribution is expressed as follows:

ψðτÞ ¼ 1
ΓðαÞβα τ

α�1e�
τ
β;

where Γ(⋅) denotes gamma function, while α and β represent the shape and
scale parameters, respectively.

Additionally, the survival function could be calculated by:

ΨðτÞ ¼
Z þ1

τ
ψðτ0Þdτ0;
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while the hazard function could be derived from:

ωðτÞ ¼ ψðτÞRþ1
τ ψðτ0Þdτ0

:

For time distribution, survival function, hazard function and the cor-
responding parameters, incorporating subscripts “inf” and “rem” signifies
those related to infection and removal, respectively. For example, ψinf ðτÞ
represents the time distribution of infection, while αinf denotes its shape
parameter.

Derivation of semi-empirical estimation of basic
reproduction number
Intuitively, the period of Trem can accommodate Trem/Tgen = 1/η time
intervals of length Tgen, corresponding to the result of 1/η generations of
infections. This can lead to an exponential increase in the number of
infections during Trem. This intuition suggests a relationship between the
fitted basic reproduction number R̂0 and the actual R0, which can be
expressed as an exponential function:

R̂0 ¼ Rf ð1=ηÞ
0 ;

where f(⋅) is a monotonically increasing function that satisfies three con-
ditions. First, f(1) = 1, indicating that R̂0 can be accurately estimated when
Tgen = Trem. Second, f(0) = 0, meaning that if Trem is an extremely small
fraction of Tgen, the transmission will take a long time to reach the steady
state, causing the curve to be flat in the initial stage and potentially causing
theMarkovian fitting to produce the estimate R̂0 ¼ 1. Third, f(+∞) =+∞,
implying that if Trem is extremely large compared to Tgen, the transmission
will quickly reach the steady state, causing the Markovian fitting to give an
extremely large estimate of R̂0. Because the actual transmission process
involves many complicated nonlinear relationships, identifying the specific
form of the function f(⋅) is a challenging task. We thus assume

f ðxÞ ¼ xa;

where a is an unknown positive coefficient. This leads to Eq. (15).

Definition of errors
The difference ε between non-Markovian and the corresponding Marko-
vian results calculated from Eqs. ((13), (14)) is defined as:

ε ¼
X

xz;xy2fðsz;syÞ;ðiz;iyÞ;ðrz;ryÞg

k xz � xyk2;Tz
θ

k xzk2;Tz
θ

;

where the pairs (s‡, s†), (i‡, i†) and (r‡, r†) correspond to the non-Markovian
andMarkovian susceptible, infected and removed curves, respectively. The

2-norm k�k2;Tz
θ
on time durationTz

θ ensures that εmeasures the “distance”

between non-Markovian and the Markovian transient states. It is not
appropriate to set time duration as the total transmission period because the
cumulative infected fraction approaches the steady-state value asymptoti-
cally,making it difficult to determine the exact time point of the steady state.

To address this issue, we chooseTz
θ as ½0; tzθ�, where tzθ is the time when the

non-Markovian cumulative infected fraction c‡(t) reaches the θ percentile
point within the range that spans from its initial value to its steady-state
value. For instance, let ć‡ denote the cumulative infected fraction in non-
Markovian calculation at time 0, i.e., ć‡ = c‡(0), while ~cz represents this

fraction at the steady state, i.e., ~cz ¼ limt!þ1 czðtÞ. tzθ is determined to
satisfy the following equation:

czðtzθÞ ¼ �cz þ ð~cz � �czÞθ
100

¼ ~czθ þ ð100� θÞ�cz
100

:

Therefore, θ determines the time period during which we measure
the “distance” ε between non-Markovian and the Markovian transient
states. The value of θ in Fig. 2j is selected as 50 (see Supplementary
Figs. S4, S5 and Supplementary Note 10 for more selection of θ and
detailed analysis).

The forecasting error ε+ that evaluates whether a theory overestimates
or underestimates the steady-state cumulative infected fraction is defined as:

εþ ¼ c♢ð~t?Þ � c?ð~t?Þ
c?ð~t?Þ ;

where ~t? denotes the time when the Monte Carlo stochastic simulation
reaches the steady state when no infection occurs in the population, c♢ð~t?Þ
and c?ð~t?Þ are the cumulative infected fractions from theory and simulation,
respectively. A positive value of ε+ indicates overestimation, whereas a
negative value indicates underestimation.

The prevention evaluation error ε*, which gauges the ability of the
Markovian and non-Markovian theories to estimate the total effectiveness
of vaccination, is defined as:

ε� ¼ k δ? � δ♢k2
k δ?k2

;

where δ⋆ is the result fromMonte Carlo simulation, δ◇ represents the result
from theoretical calculation and ∥ ⋅ ∥2 is the 2-norm of a vector.

The optimization failure probability ε̂, which measures the probability
that a theory fails to identify the optimal vaccination strategy, is defined as:

ε̂ ¼
Pz

l¼1 ξðlÞ
z

;

where

ξðlÞ ¼
0 if argmin δ?ðlÞ ¼ argmin δ♢ðlÞ
1 otherwise

(
;

δ?ðlÞ and δ♢ðlÞ represent the vectors, δ⋆ and δ◇, for the l-th experiment,
respectively, and z denotes the total number of experiments (in this
paper, z is set to 100). Consequently, ε̂ quantifies the fraction of
experiments in which a theory fails to identify the optimal vaccination
strategy, and serves as a measure of the probability of failure in opti-
mizing the vaccination strategy.

Selection of training data
In our study, we selected the curves of all states that occurred prior to the
time point at which the cumulative infected fraction reached a specific
percentile ζ situated between the initial and steady-state cumulative infected
fractions, as the training data. For example, let ć⋆ denote the cumulative
infected fraction at time0,while~c? represents this fractionat the steady state.
The selection of the maximum time point of the time duration T?

ζ for
training data, denoted as t?ζ , is determined to meet the following equation:

c?ðt?ζ Þ ¼ �c? þ ð~c? � �c?Þζ
100

¼ ~c?ζ þ ð100� ζÞ�c?
100

:

Therefore, ζ determines the time duration, i.e., T?
ζ ¼ ½0; t?ζ �, of the

training data, which could vary over different Monte Carlo simulations. In
our study, we consistently choose ζ to be 20. Note that choosing a specific
constant time period as the training data may not be appropriate, as it can
result in an overabundanceof data points forfitting due to some instancesof
fast transmission already having reached the steady state, while some
instances of slow transmission may not have spread out yet, leading to
invalid training data.
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Fitting method
Because the removal process is independent of the infection one, we divide
the fitting method into two parts: removal parameter fitting and infection
parameter fitting. Specifically, we use c⋆(t) and r⋆(t) to denote the cumu-
lative infected and removed fractions of aMonte Carlo simulation at time t.
These two types of data are substituted into the Eq. (3) to fit the parameters
of ψrem(τ). To explain further, we can define a loss function:

Lrem ¼
Z t?

ζ

0
½̂r?ðtÞ � r?ðtÞ�2dt;

where t?ζ represents the maximum time point of the training data, r̂?ðtÞ
denotes the removed fraction calculated by cumulative infected fraction, i.e.,

r̂?ðtÞ ¼ �r? þ
Z t

0
½1� Ψremðt � t0Þ�dc?ðt0Þ:

In this equation, Ψrem(τ) is the survival function of a specific removal
time distribution ψrem(τ), such as Weibull, log-normal, or gamma dis-
tributions for the non-Markovian framework, and exponential distribution
for theMarkovian framework. Byminimizing the loss function Lrem, we can
determine the optimal parameters for removal time distribution ψrem(τ).
This can be accomplished using the L-BFGS-B optimization algorithm,
which is well-suited for minimizing the loss function70.

Likewise, we use c?l ðtÞ to denotes the cumulative infected fraction of
age group l of a Monte Carlo simulation at time t and s?l ðtÞ ¼ 1� c?l ðtÞ
represents the corresponding susceptible fraction (note that cumulative
infected fraction is precisely defined as the sum of the infected and
removed fractions, which is accurately expressed as c?l ðtÞ ¼ i?l ðtÞþ
r?l ðtÞ ¼ 1� s?l ðtÞ, leading to s?l ðtÞ ¼ 1� c?l ðtÞ). After obtaining the
removal parameters, these two types of data are put into Eq. (1) to fit the
infection time distribution parameters. In details, we define a loss
function Linf , which is given by:

Linf ¼
Z t?

ζ

0

Xn
l¼1

pl ½̂c?l ðtÞ � c?l ðtÞ�
( )2

dt;

where ĉ?l ðtÞ represents the cumulative infected fraction of age group l at time
t calculated by the cumulative infected fractions of simulation data by using
the equation:

ĉ?l ðtÞ ¼�c?l þ
Z t

0
k½1� c?l ðt0Þ�

Xn
m¼1

Almpm

Z t0

0
ωinf ðt0 � t00ÞΨrem

ðt0 � t00Þdc?mðt00Þdt0:

In this equation, ωinf ðτÞ is the hazard function of a specific infection
time distribution ψinf ðτÞ, such as Weibull, log-normal, or gamma dis-
tributions for the non-Markovian framework, and exponential distribution
for the Markovian framework. And Ψrem(τ) is the survival function of the
removal time distribution ψrem(τ), which is already obtained by fitting. To
determine theoptimal parameters for the infection timedistributionψinf ðτÞ,
we minimize the loss function Linf using the L-BFGS-B optimization
algorithm70.

Vaccination method
We assume that the individuals will build enough immune protection from
the disease κ days after vaccination with the probability ρ, where ρ is the
vaccine efficacy. InMonte Carlo simulations, if a susceptible individual gets
vaccinated at time tvac, he/she will be marked with the probability ρ. When
the absolute time reaches tvac+ κ, if this individual has not been infected, he/
she will be set to a state called protected state, indicating that this individual
is protected from the disease and will never be infected.

In theoretical calculation, when a fraction of individuals in age
group l get vaccinated with the detailed vaccination fraction υl, vacci-
nation time tvac and the fraction of susceptible individuals, which have
not been vaccinated by time t, is recorded (denoted as sl,*(tvac)). When
the absolute time reaches tvac+ κ, the corresponding value of sl(tvac+ κ)
will be set as slðtvac þ κÞ½1� ρυl

sl;�ðtvacÞ�.

Data availability
All relevant data are available at https://github.com/fengmi9312/Validity-
of-Markovian-for-Memory/tree/main/FigureData.

Code availability
The web-based application can be visited at https://cns.hkbu.edu.hk/
toolbox/Validity-of-Markovian-for-Memory/main.html. The GitHub
repository, which includes the source code for all the figure results, the web-
based application, and an additional Python application, can be accessed at
https://github.com/fengmi9312/Validity-of-Markovian-for-Memory.git.
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