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Epidemic dynamics with non-Markovian travel in
multilayer networks
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In our modern time, travel has become one of the most significant factors contributing to

global epidemic spreading. A deficiency in the literature is that travel has largely been treated

as a Markovian process: it occurs instantaneously without any memory effect. To provide

informed policies such as determining the mandatory quarantine time, the non-Markovian

nature of real-world traveling must be taken into account. We address this fundamental

problem by constructing a network model in which travel takes a finite time and infections

can occur during the travel. We find that the epidemic threshold can be maximized by a

proper level of travel, implying that travel infections do not necessarily promote spreading.

More importantly, the epidemic threshold can exhibit a two-threshold phenomenon in that it

can increase abruptly and significantly as the travel time exceeds a critical value. This may

provide a quantitative estimation of the minimally required quarantine time in a pandemic.
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Epidemic spreading on networks has been an active research
area in modern network science. Earlier, the interplay
between epidemics and network structures was a focus1–4.

Human behaviors are then recognized as a major factor affecting
the epidemic trajectories on local and global scales5–8. Among the
diverse behaviors, human mobility is key to disease spreading9.
From the daily short-term commuters in large metropolitan areas
to long-range travel via flights, trains, and buses, human
mobility10–12 plays a key role in shaping the spatiotemporal
patterns of global epidemics13–15. Indeed, the modern transpor-
tation infrastructures of varying scales have made human beings
much more connected16,17. Infectious diseases thus propagate
unprecedentedly faster and more widely and can evolve into a
global pandemic18. For example, the rapid spread of SARS-CoV-2
all over the world leading to the COVID-19 pandemic can largely
be attributed to travel19.

In terms of mathematical modeling, a number of frameworks
are presently available for studying the impacts of human
mobility on epidemic spreading, e.g., metapopulation network
dynamics at the population level and multilayer networks at the
individual level. In a metapopulation network, nodes represent
subpopulations such as communities, cities, or countries, whereas
edges between nodes describe human mobility between two
subpopulations and the edge weights characterize the scale or
strength of human mobility20. Epidemic spreading among the
subpopulations can be modeled as reaction-diffusion and
reaction-commuting processes21–25, where the reaction process
describes the infection dynamics within the subpopulations, dif-
fusion and commuting represent the mobility of population
among the nodes. In this type of model, infected populations
move and carry pathogens between the nodes, leading to an
outbreak of infectious disease at the scale of the whole system. An
example is the modeling of the COVID-19 pandemic, where
models based on the metapopulation networks were developed to
fit and predict the spreading trajectories and to evaluate the
effects of different non-pharmaceutical interventions15,26. At the
individual level, multilayer networks have been used to study the
impacts of mobility on epidemic spreading27,28. In a multilayer
network, the layers represent different types of connections
among nodes, such as social contacts of individuals in different
cities or on different social platforms, transportation by different
modes, and different types of financial business among
banks17,29, where the dynamical interplay and couplings between
the layers can alter the global epidemic threshold and the
spreading dynamics3,30,31.

While human mobility has been recognized as an important
factor in modeling epidemic spreading in society, the roles of
infection and recovery during travel that make the process fun-
damentally non-Markovian have not been addressed. It was
recognized that infectious diseases can be transmitted and spread
during air or land travel32–34, which not only changes the spatial
distribution of the hosts but also accelerates the spreading process
and increases the total size of infection35. Based on the human
mobility data, models that incorporate the infection during travel
can predict the evolution and peaks of the pandemic well36–38. In
these works, the travel process was assumed to be “instantaneous”
without any memory effect. In particular, travel between different
regions was modeled by a rate parameter—the probability that
individuals start from one region and arrive in another, and the
future occurrence can be predicted based solely on the present
state of the system. Mathematically, such a process is said to be
Markovian. However, many human activities, from commu-
nications to mobility, are not memoryless, which should be
modeled as non-Markovian processes39–41. In network epidemics,
a non-Markovian process with memories can significantly alter
the spreading dynamics42–46. When individuals conduct a long-

distance journey, they may travel by flights, trains, buses or boats.
During travel, infections can occur when travelers take the same
transportation means with similar departure and arrival times. It
takes a certain amount of time for the travelers to contact and
infect each other during the travel process. Meanwhile, when a
pandemic breaks out, such as COVID-19, travelers may be
quarantined for a period of time when arriving in a new city, a
new district, or a country. These observations suggest the
necessity to treat travel with infections as a non-Markovian
dynamical process. To our knowledge, incorporating non-
Markovian travel dynamics into the epidemic spreading model
represents a knowledge gap in the field. The purpose of our work
is to fill this gap.

This paper presents a comprehensive treatment of epidemic
spreading dynamics incorporating non-Markovian travel in
multilayer networks. For simplicity, we consider a double-layer
system, where infection and recovery occur both within the layers
and during the travel between the layers. We introduce a quantity
to characterize the non-Markovian travel process: the travel age
that records the time a traveler is in transit. In particular, a tra-
veler is exposed to contact with other travelers but only of the
same travel direction and travel age. When the travel age is equal
to the time required to arrive at the destination, the trip is
regarded as completed. Based on the quenched mean-field theory
(QMF), we derive the non-Markovian dynamical equations to
describe the spreading dynamics in the double-layer system. We
find that travel infections do not necessarily promote the
spreading in the whole system in the sense of a reduced epidemic
threshold but, counter-intuitively, can even increase it under
different travel strengths (see below for a definition). An optimal
travel strength can emerge at which the epidemic threshold
reaches a maximum. Strikingly, with an increase in the travel time
between the layers, the epidemic threshold first decreases and
then enters a two-threshold region where, due to the recovery of
the infected individuals during the travel, the outbreak size of the
epidemic with a small infection rate is larger than that of an
epidemic with a large infection rate. When the travel time is
sufficiently large (e.g., with quarantine), the epidemic threshold
finally reaches a high value. The time at the onset of the high
threshold value can be taken as the minimally required time for
quarantine. It is worth emphasizing that, in the Markovian travel
model, only the outbreak peak is reduced as the travel time
increases, while the outbreak time and the epidemic duration
rarely change. In contrast, non-Markovian travel will result in a
higher epidemic threshold, a delayed outbreak time and a longer
epidemic duration. Our results thus justify that, for our simple
model with non-Markovian travel, by increasing the travel time
or the quarantine time, one can flatten the infection curve to
mitigate the epidemic.

Results
Epidemic spreading model with travel infections. We articulate
an epidemic spreading model supported on a double-layer net-
worked system with non-Markovian travel infections. The system
hosts two kinds of individuals: permanent residents in each layer
and travelers; permanent residents stay within the layer, and
travelers can either stay within a layer or travel between the layers
along the interlayer edges. Permanent residents have connections
only in their local layer, while travelers have connections in both
layers. For travelers, the network connections within a layer are
activated only when they are in that layer. Travelers can make
contact with others and spread the disease within the layers and
during the travel.

Figure 1 presents a schematic diagram of our non-Markovian
model, where the networks in layers A and B have the same size
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N. Each traveler generates an interlayer link. Let mN be the
number of travelers in the system, where 0 <m < 1. The total
number of individuals in the network layers is then Ntot= (2−
m)N. At each time step, a number of travelers from layer A (B)
initiate their trip at the rate qA (qB) and then travel along the
interlayer link A→ B (B→A). For simplicity, we set qA= qB= q.
Travelers who travel in the same direction and have the same
travel age can contact with each other at the probability α. The
time travelers have spent on the trip is their travel age l. When the
travel age l equals the travel time tT—the total time required to
arrive at the destination layer since starting a trip (including
quarantine time, if any), the trip is completed. For simplicity, we
use a fixed value of α for the travel time and quarantine period.
However, in reality, the contact rates should be different for travel
and quarantine periods, where the contact rate in quarantine
should be relatively low in a controlled environment. As the
travelers take a certain time to arrive at the destination layer, the
memory effect is naturally integrated into the model, making the
process non-Markovian. (In contrast, for a Markovian travel
process, the travelers would jump to the destination layer
instantaneously44 at the rate 1/tT. In this case, since there is no
travel age, all travelers on the trip contact with each other at the
rate α/tT.)

In the real world, the number of travelers between two cities is
generally stable over a long period of time, while an epidemic
typically occurs in an abrupt manner. It is thus reasonable to
assume in our model that the distribution of travelers between the
two layers has reached a steady state before the epidemic begins.
We use the standard SIR model to describe the spreading
dynamics within each layer and on the trip, where a node can be
in one of the three states: susceptible (S), infected (I) and
recovered (R). At each time step, an I-node contacts and
transmits disease to its susceptible neighbors at the rate β (the
infection rate) and then transitions to the R-state at the rate μ (the
recovery rate). Nodes in the R-state will not be infected anymore

and remain in this state. The epidemic process terminates when
there are no longer any I nodes in the system. An epidemic
outbreak occurs when the infection rate β is greater than a critical
value47, denoted as the epidemic threshold βc, and the outbreak
size is the fraction of R nodes in the steady state. The epidemic
threshold can be determined empirically by calculating the
outbreak size31,48: the threshold is the minimal value of the
infection rate β at which the outbreak size exceeds a small but not
insignificant value (0.01 in our work). For SIR spreading
dynamics, the approach of discrete-time modeling has been
extensively used4. In general, there are two types of state updating
rules for individual nodes: synchronous and asynchronous
updating. In synchronous updating, infection occurs first,
followed by recovery3,49,50. In this case, the order of events is
definite: in one time step with interval Δt, a susceptible node i
becomes infected with the probability 1� ð1� βΔtÞni is the
number of this node’s infected neighbors. Then, all infected nodes
recover with the probability μΔt. When μΔt or Δt is sufficiently
small, the discrete-time dynamics associated with synchronous
updating approach those with the asynchronous updating
rule51,52. We use the synchronous updating method to simulate
the spreading process, which requires careful parameter selection
to ensure simulation accuracy53.

Impacts of travel strength on epidemic threshold. We first study
the impacts of travel strength on the spreading dynamics, where
the travel strength is characterized by the fraction m and the
travel rate q of the travelers. Figure 2a–c shows the change in the
epidemic threshold as a function of the traveler fraction m for
different travel time tT, denoted as βTc . For tT= 1, an optimal
travel fraction arises (m ≈ 0.15) at which the epidemic threshold is
the highest, where βTc first increases and then decreases at tT= 1,
as shown in Fig. 2a. This behavior can be understood by noting
that the departure of the travelers reduces the mean active degree
within each layer, thereby leading to an increase in the epidemic
threshold, while contacts during the trip promote the infections
among the travelers so as to reduce the threshold. As a com-
parison, we calculate the epidemic threshold βHc of a two-layer
system with travelers hopping between layers but without travel
infections31, as well as the epidemic threshold βSc for a single-layer
network. Without travel infections, the threshold βHc increases
monotonically with m and is larger than βTc and βSc , as the result
of reduced contacts and infections within the layers due to the
travel. When travel infections are taken into account, the epi-
demic threshold βTc first increases and then decreases to values
smaller than that of the single layer. For tT= 4, βc is nearly
constant for m < 0.1 and then decreases rapidly for m > 0.1, as
shown in Fig. 2b. For tT= 16, the epidemic threshold βTc reaches a
local maximum at m ≈ 0.5, as shown in Fig. 2c. These results
indicate that travel infections can have a significant effect on the
dynamics with a complicated dependence of the epidemic
threshold on the travel time.

Figure 2d–f shows the epidemic threshold versus the travel rate
q for three different values of the travel time tT: tT= 1, 4, and 16,
respectively. For tT= 1 [Fig. 2d] and 4 [Fig. 2e], βTc decreases with
q initially but tends to a constant (approximately) for q≳ 0.5. The
initial decrease in the epidemic threshold is the result of
increasing contact among travelers as more individuals begin to
travel, thereby promoting the disease spreading. However, when
the travel rate q becomes large, the travelers do not stay in one
layer for a relatively long time, so the spreading dynamics in each
layer are suppressed. For a sufficiently long travel time, e.g.,
tT= 16 [Fig. 2f], the threshold is hardly impacted by the travel
rate q.

Layer A

Layer B

Contact
networks
during travel

………

Fig. 1 Schematic illustration of the proposed epidemic spreading model
with non-Markovian travel infections. There are four types of nodes in the
network: the layer permanent residents (green solid circles), travelers in
layer A or on the A→ B interlayer links (yellow solid circles), travelers in
layer B and on the B→ A interlayer links (blue solid circles), and the nodes
left by the travelers (open circles). A traveler has a pair of nodal positions,
one in each layer, which are connected by an interlayer link. When travelers
stay in a layer, they can contact with their neighbors within the layer (solid
lines within each layer). Otherwise, their connections are deactivated
(dashed lines in both layers). Travelers departing from the same layer at
the same time form a fully connected subnetwork during the trip with the
contact rate α. Travelers will arrive at the destination layer when their travel
age l equals the travel time tT.
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The behaviors in Fig. 2a–f entail that the impacts of different m
and q values on the epidemic threshold can be understood in
terms of the contact activities. Especially for a fixed q value, an
optimal m value can emerge at which the epidemic threshold is
the highest (see Supplementary Note 1 for details). We have also
studied double-layer network configurations with the hetero-
geneous ER-SF (scale-free) and SF-SF combinations and obtained
similar results (Supplementary Note 2).

Impacts of travel time on epidemic spreading dynamics.
Figure 2a–f illustrates that the dependence of the epidemic
threshold on the traveler fraction m and travel rate q can vary
with the travel time tT resulting from, e.g., different transporta-
tion modes (airplane, train, or boat). Since the hallmark of non-
Markovian travel is a finite travel time in our model, it is useful to
investigate the effects of the travel time tT on the spreading
dynamics. Figure 3a, b shows how the steady-state outbreak size
R(∞) is affected by tT and the infection rate β. In particular,
Fig. 3a reveals that, for β= 0.1, the outbreak size decreases with
tT. However, for β= 0.02 or β= 0.04, R(∞) first increases and
then decreases with tT. Figure 3b shows that the dependence of
R(∞) on β also varies for different values of tT. For example, for
tT= 8, R(∞) first increases and then decreases toward an
approximately near zero value but finally increases rapidly with β.
The results in Fig. 3a, b suggest rather complex impacts of the
travel time on the spreading dynamics.

To understand the impact of non-Markovian travel on the
spreading dynamics, we have developed a theoretical framework
based on the quenched mean-field (QMF) approximation (see
“Methods”). Figure 3c, d presents the theoretically predicted and
numerically calculated phase diagram of the steady-state infection
size R(∞), respectively, in the parameter plane (tT, β). In Fig. 3c,

we divide the diagram into three regions according to the travel
time tT: tT 2 1; 7½ Þ, tT 2 7; 12½ � and tT 2 12; 20ð �. In the first
region, R(∞) increases with the infection rate β. In the second
region, R(∞) first increases with β, and the epidemic breaks out at
the first threshold. The infection size then decreases with β to a
small value under 0.01. The epidemic breaks out again as β
increases through a second threshold, and R(∞) continues to
increase with β afterward. This is a two-threshold phenomenon
due to the interplay between the infection and recovery of the
travelers during the travel process where, when β varies between
the two thresholds, the infection size with a low infection rate is
larger than that associated with a high infection rate. In the third
region, where the travel time is relatively long, the infection size
first increases slowly with β and remains small for a large range of
β. When β is sufficiently large, an outbreak occurs, and R(∞)
increases with β. In spite of the slightly larger theoretical value of
R(∞) due to the “echo chamber” effect in solving the dynamical
evolution equations54, there is a general agreement between the
theoretical and numerical results.

The two-threshold phenomenon illustrated in Fig. 3 is the
result of the recovery involved in the non-Markovian travel
dynamic, which can either promote or suppress epidemic in the
whole double-layer system. In particular, the black dashed line in
Fig. 3c, d represents the epidemic threshold when there is only
infection but no recovery (recovery rate μ= 0) during the travel,
which agrees with the low epidemic threshold predicted by the
QMF theory. The low threshold decreases with tT, indicating that
the travel infections promote epidemic spreading in the system.
The black dash-dotted line represents the epidemic threshold
when there are contacts and infections only at the first time step
in the travel process, while in the remaining tT− 1 time steps,
there is only recovery. This corresponds to the real-world
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Fig. 2 Dependence of epidemic threshold on the travel strength. a–c Epidemic threshold as a function of traveler fraction m for tT= 1, 4, and 16,
respectively, for q= 0.1. In (a), βTc (blue squares), βHc (orange circles), and βSc (the gray line) are the epidemic thresholds from the model with travel
infections, the interlayer hopping model without travel infections, and a single-layer network, respectively. The increase of βHc with m is due to the departure
of the travelers from each layer, which is larger than βSc . The threshold βTc first increases and then decreases with m, where the former is due to the
departure-induced reduction of infection in each layer, and the latter is caused by travel infections. For a long travel time, βTc exhibits a peak (c).
d–f Epidemic threshold versus the travel rate q for tT= 1, 4 and 16, respectively, for m= 0.2. Other parameters are α= 1 and μ= 0.5. Each layer is an ER
random network with size N= 1 × 104 and average degree 〈k〉= 10. Each data point is averaged over 103 network realizations.
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situation where travelers are quarantined for a period of time
when they arrive at their destinations. In this case, increasing the
travel time (quarantine time) can result in an increase in the
epidemic threshold that agrees with the high epidemic threshold
predicted by our theory, indicating that travel recovery suppresses
the epidemic spreading in the whole system.

To understand how the infection within the layers and during
travel affect the outbreak size of the entire system, we calculate
and analyze the numbers of two types of individuals: the
cumulative numbers of individuals infected within the layers
and during the travel, denoted as nLL and nEE, respectively. We
also calculate the number nEL of the infected individuals
switching from the travel process to the layers and the cumulative
number nLE of the infected individuals transitioning from layers
to the interlayer edges. (Details of how nLL, nEE, nEL and nLE are
calculated are given in Supplementary Note 3). We also find that
the critical (small) tT value at which the two-threshold
phenomenon disappears is mainly determined by the recovery
rate μ, where a large value of μ leads to a small critical tT
(Supplementary Note 4). The reason is that if the infected
individuals are able to recover in a short time, they will have
sufficient time to recover during the trip, even when the travel
time tT is small. Furthermore, when the contact ability α during
travel reduces to values less than one, insofar as the contacts
between travelers are more frequent than those within each layer,
the two-threshold phenomenon persists (see Supplementary
Note 4 for details), where the low threshold increases as α

decreases. The phenomenon ceases to exist but only when α is
reduced to a quite small value, e.g., 0.1, where the average degrees
of the contact network during travel and of the layer are equal. It
is worth noting that such small values of α are not physically
meaningful, as the contacts during travel are typically much more
frequent than those within a layer in our model, which is the case
for respiratory disease and in large-capacity public vehicles such
as trains and airplanes. In addition, we preliminarily explore the
impact of the restricted number of contacts during travel on the
two-threshold phenomenon, as is detailed in Supplementary
Note 5. It is found that the two-threshold phenomenon may be
susceptible to the risk of interlayer infection and becomes more
obvious with increasing the network size. However, it is also
necessary to explore the impact of the restricted number of
contacts during travel on the epidemic dynamics in multilayer
networks, especially to find out whether all the results are finite
size-dependent and do hold in the thermodynamic limit.

Figure 4 presents the time evolution of the prevalence ρ(t) for
different values of the infection rate β. For low infection rates
(β= 0.02 in Fig. 4a and β= 0.04 in Fig. 4b), multiple outbreak
peaks arise. In this case, the epidemic does not break out in the
layers [Supplementary Fig. 4c in Supplementary Information]. On
the contrary, travelers with the same travel age and direction are
fully connected during the trip, leading to an outbreak and an
increase in ρ(t). When some travelers have arrived at the
destination layer, ρ(t) decreases because the infection rate is too
small to induce an outbreak within the layer. However, when the
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Fig. 3 Dependence of epidemic outbreak size on travel time and infection rate. Outbreak size versus a the travel time tT for different values of the
infection rate and b the infection rate β for different travel times. c Theoretical prediction and d the corresponding numerical results of the final infection
size R(∞) shown as color-coded values in the parameter plane (tT, β). For tT > 1, a two-threshold phenomenon arises, where the black dashed line in each
panel represents the epidemic threshold when there is only infection but no recovery during the travel, and the black dash-dotted line denotes the epidemic
threshold when infection occurs only once—at the first time step during the travel, while there is only recovery for the remaining travel time, a situation
that arises when a mandatory quarantine is imposed at the travel destination. The emergence of the second (higher) threshold can thus be interpreted as
the result of quarantine. Other parameters are m= 0.4, q= 0.1, α= 1 and μ= 0.5. Each layer is an ER network of size N= 1 × 104 and average degree
〈k〉= 10. Each data point is the result of averaging over 103 statistical realizations.
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travelers start to travel again, ρ(t) can increase. The non-
Markovian travel process with the memory effect well captures
the feature of the multiple peaks when travel infections dominate
the epidemic dynamics in the system. For β= 0.04, since the
infection and recovery are faster than those for β= 0.02, the
number of infections arriving at the destination layer decreases.
This results in a rapid decrease in the subsequent infection peaks.
For β= 0.1 [Fig. 4c], infections can break out both within the
layers and during the travel, so ρ first increases and then
decreases. For t ≈ 4, a small peak in ρ arises due to the fact that,
during a few initial time steps, infections within the layers have
not broken out, and they mainly come from the travel process.

Comparison with Markovian travel process. To emphasize the
fundamental importance of non-Markovian travel in epidemic
spreading, we carry out a comparison study of the spreading
dynamics with Markovian and non-Markovian travel. Figure 5

shows that, due to the memory effects in travel infections, non-
Markovian travel leads to a higher epidemic threshold than that
with Markovian travel. In particular, in a non-Markovian travel
process, only travelers with the same travel age and direction can
form a connected network to spread the disease, which lasts for a
time length of tT. However, for a Markovian travel process,
infected individuals can contact with all other travelers and return
to the layer at the rate 1/tT, while the infected individuals
remaining in the travel state can continue to infect other travelers,
which in turn promote the infections in the layers. Note that, for
both types of travel, the epidemic threshold decreases with m
[Fig. 5a] and q [Fig. 5b], indicating that travel, in general, pro-
motes epidemic spreading. When q is large, βc with non-
Markovian travel increases. This is because travelers cannot stay
in one layer for a relatively long time, which in turn suppresses
the epidemic spreading in each layer. The change of the epidemic
threshold with m and q at different tT is analyzed in Supple-
mentary Note 6.

A remarkable phenomenon occurs for epidemics with non-
Markovian travel, where the epidemic threshold remains low and
nearly constant until the travel time exceeds a large critical value,
at which an abrupt increase in the threshold occurs. A
representative result is shown in Fig. 5c, where the epidemic
threshold βc versus the travel time tT for both types of travel
dynamics is displayed. For the non-Markovian process, βc first
decreases with tT. When tT varies in the range [7, 12], a two-
threshold phenomenon occurs where, for a certain tT, a small-
scale epidemic breaks out at a low epidemic threshold. As the
infection rate increases, the infection size decreases to a small
value of about 0.01. Only when the infection rate increases
through the second (higher) epidemic threshold will another
outbreak become possible. For sufficiently long travel, e.g., tT > 12,
the epidemic threshold increases with tT. A long travel time, in
general, is the result of government-imposed quarantine, and
Fig. 5c provides a quantitative criterion to determine the minimal
quarantine time: quarantine must be sufficiently long to ensure
that a high epidemic threshold is achieved! In the particular
setting of Fig. 5c, the minimal quarantine time should be about
tT ~ 12. It should be noted that, in the Markovian travel model,
travel between the network layers is an instantaneous process that
occurs at the rate 1/tT, so tT here is a mere model parameter: it is
not indicative of any kind of actual travel time. In this case, as
shown by the orange circles and curve in Fig. 5c, βc decreases
rapidly for small tT as travel promotes spreading and then starts
to increase slowly because of the continuous reduction in the
switching rate from the trip to the layers, implying that
quarantine would have no effect in suppressing the epidemics
and rendering invalid any model with Markovian travel.

We have also examined the time evolution of the prevalence ρ
for different values of the infection rate β for the non-Markovian
and Markovian travel models, as shown in Fig. 6a–d. It can be
seen that the non-Markovian travel model has a lower infection
peak, a delayed outbreak time, and a longer infection duration
than that of the Markovian travel model. The difference can be
quite significant, especially for small values of β, as shown in
Fig. 6a because, in this case, the infections incurred during the
travel are the main contributing factor to the epidemic in the
whole system. The multiple outbreaks exemplified in Fig. 6a are
the result of the memory effects associated with non-Markovian
travel. As β increases, the epidemic can break out both within the
layers and during travel, so the differences from the travel process
become less significant, as shown in Fig. 6b, c, and exemplified in
Fig. 6d. These results indicate that, compared with the more
realistic non-Markovian travel model, the Markovian travel
model overestimates the epidemic threshold and the infection
peak but underestimates the spreading time. Furthermore, we
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Fig. 4 Time evolution of prevalence. Shown is the evolution of ρ(t) for
a β= 0.02, b β= 0.04 and c β= 0.1. The travel time is tT= 8. The distinct
feature is the occurrence of multiple peaks in ρ(t) during its time evolution
—see text for details. Other parameter values are m= 0.4, q= 0.1, α= 1
and μ= 0.5.
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find that increasing the travel time tT leads to a reduced outbreak
peak, a delayed outbreak time and a longer epidemic duration in
the non-Markovian travel model, which are not found in the
Markovian travel model, as shown in Supplementary information
Note 6 (Supplementary Fig. 9). The non-Markovian travel model
provides evidence for the effectiveness of travel time in
moderating the development of epidemic.

Additional insights into the difference between the non-
Markovian travel and Markovian travel epidemic dynamics can
be gained by distinguishing the evolution of the prevalence from
the layers and the travel process, denoted as ρL(t) and ρE(t),
respectively. Figure 6e–h shows that, as the infection rate β
increases from 0.05 to 0.4, the fraction of the infections from
travel decreases, indicating that the effect of travel infections is
more significant when the infection rate is small. Since, for non-
Markovian travel, the travelers return to layers when their travel

age is tT, multiple infection peaks in ρE can arise, as shown in
Fig. 6e, where the highest peak is lower and occurs later than that
from the Markovian travel model. For the Markovian travel
model, infected individuals return to the layer at the rate 1/tT, and
the remaining infected individuals in the travel process can
continue to infect other travelers, leading to an earlier onset of the
epidemic outbreak than that in the non-Markovian travel model.
As β increases and the effects of travel infections decrease
[Fig. 6f–h], the differences between the two travel models become
less significant.

Discussion
In large-scale epidemic spreading such as the COVID-19 pan-
demic, travel is an indispensable and perhaps one of the most
significant contributing factors. To properly incorporate travel
into epidemics is essential to rendering the model predictions

Fig. 5 Comparison between epidemic dynamics with non-Markovian and Markovian travel. Shown is the epidemic threshold βc versus the traveler
fraction m, the travel rate q, and the travel time tT for non-Markovian travel and Markovian travel: a βc versus m for q= 0.1 and tT= 8, b βc versus q for
m= 0.2 and tT= 8, and c βc versus tT for q= 0.1 and m= 0.4. In both cases, βc decreases continuously with m and q. However, as the travel time increases,
a two-threshold phenomenon occurs for the non-Markovian travel model: the threshold remains low until a critical time is reached, at which the threshold
abruptly increases to a much larger value. This means that the epidemic is greatly suppressed if the travel time is longer than the critical time, providing a
quantitative criterion to determine the necessary quarantine time to effectively suppress the epidemic because, after the quarantine, the infection rate
needs to be much higher (possibly biologically infeasible) to lead to an outbreak. In stark contrast, the Markovian travel spreading model, by design, is
unable to take quarantine into account, rendering it inapplicable to modeling real-world epidemics that involve travel. The symbols are numerical results,
and the curves are the corresponding theoretical predictions from the dynamical equations (solid) and the Jacobian matrix method (dashed). Other
parameters are set as α= 1 and μ= 0.5.

Fig. 6 Comparison of time evolution of prevalence between non-Markovian travel (NMT) and Markovian travel (MT) epidemic models. a–d Time
evolution ρ(t) and e–h time evolution of the layer prevalence ρL(t) (dashed curves) and the travel prevalence ρE(t) (solid curves) for β= 0.05, 0.1, 0.2, and
0.4, respectively. Other parameters are set as m= 0.4, q= 0.1, tT= 4, α= 1 and μ= 0.5.
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relevant to the real world. Previous models taking travel into
account used an overly simplistic approach: travel has been
treated as a Markovian process without any memory effect, i.e.,
travel is assumed to occur instantaneously at a certain rate.
Because of this idealization, issues pertinent to making travel
policies and guidelines during the pandemic cannot be addressed
by models with Markovian travel. To provide informed policies
backed up by quantitative science, the non-Markovian nature of
the travel process must be taken into account. For example, when
a large epidemic occurs, an important issue is for the authorities
to determine the minimal quarantine time based on quantitative
model predictions. Our present work represents an initial step in
this direction by developing a framework to incorporate realistic,
non-Markovian travel into epidemic modeling. While there are
many mechanisms by which a spreading process can become
non-Markovian, e.g., through a non-exponential distribution of
infectiousness, for spreading dynamics incorporating travel, an
intuitive and reasonable way is to set a non-zero, constant travel
time.

Our model is a two-layer network system, where travel between
the layers is non-Markovian, a process that requires a finite
amount of time to complete. In spite of the complexity intro-
duced by the non-Markovian travel, the model is analytically
tractable. Through mathematical analyses and extensive numer-
ical simulations, our model captures a number of phenomena.
First, due to the non-Markovian nature, travel infections do not
necessarily promote the epidemic spreading in the system. In fact,
there is an optimal travel strength at which the epidemic
threshold reaches a maximum. Second, but more importantly, as
the travel time increases, the epidemic threshold can exhibit a
remarkable two-threshold behavior. In particular, when the travel
time is below a critical value, the epidemic threshold is low,
making a large-scale outbreak possible. The finding is an abrupt
and significant increase in the threshold as the travel time exceeds
the critical value. This means that to suppress the epidemic, the
travel time should be longer than some critical value. Third, we
have analyzed the effects of contact ability in the travel process
and found that, for infectious diseases with a high infection rate,
reducing the contact in travel is generally ineffective in suppres-
sing the disease (Supplementary Note 7). Compared with epi-
demic models with the simplistic Markovian travel process, our
non-Markovian model induces a higher epidemic threshold and a
delayed outbreak time at the price of a longer infection period
and also generates the real-world phenomenon of multiple
infection peaks.

Our non-Markovian travel-based framework provides a com-
plex network approach to addressing the role of human behaviors
in spreading dynamics. The framework is demonstrated to be
successful in capturing real-world phenomena, such as the
effectiveness of quarantine strategy and the occurrence of mul-
tiple outbreak peaks as widely witnessed since the beginning of
the COVID-19 pandemic. The emergence of a two-threshold
region in the epidemic threshold with respect to the traveling
time may provide a quantitative estimation of the necessary
quarantine time for travelers. The delayed outbreak time and a
longer epidemic duration in our non-Markovian model imply the
effects of travel time and quarantine time on flattening the
infection curve, where a moderate epidemic has the advantage of
causing less stress on the healthcare system. The results of our
comparative analysis have essentially denied the use of Markovian
travel-based epidemic models to capture the role of real-world
travel in epidemics. All these indicate the absolute necessity to use
a non-Markovian process to incorporate human behaviors into
epidemic modeling.

In our model, there are some simplifying assumptions,
including a fixed travel time (as opposed to a distribution) to

characterize non-Markovian travel, the assumption of a fully
connected network during trips, the adoption of Markovian
epidemic spreading dynamics, and the absence of additional non-
pharmacological interventions. A potential topic for future
investigation is considering more realistic travel processes with
larger-scale populations (such as metapopulation networks and
agent-based models), where travel times exhibit a distribution and
individual heterogeneity is taken into account. The traveler on
trip should be further divided into different connected groups to
represent that travelers will be within different vehicles of fixed
capacity. Another open issue is to integrate travel infections into
travel-based non-pharmaceutical interventions aimed at effective
epidemic control. Introducing non-Markovian travel into more
realistic models holds promise for yielding meaningful outcomes
distinct from previous findings.

Methods
Matrix to describe node positions. QMF is an individual-based
mean-field method, where the adjacency matrix of the network is
integrated to calculate the probability of each individual being in
any one of the possible states4. To describe the spreading
dynamics on a multilayer network with interlayer travel infec-
tions, we define a supra-adjacency matrix GC of size 4N × 4N to
describe the contacts between individuals in the system, which is

GC ¼

GA 0 0 0

0 GE 0 0

0 0 GE 0

0 0 0 GB

2
6664

3
7775;

where GA and GB are the adjacency matrices characterizing the
contacts in layers A and B, respectively, and GE is the contact
matrix of travelers during the trip [eij= 1 if both i and j (i ≠ j) are
travelers, otherwise eij= 0]. Different from a network adjacency
matrix, cij in matrix GC represents the possible contact between
the individuals at positions i and j. These positions can be the
nodal positions in layers A and B, and they can also be on the
interlayer edges A→ B and B→ A. Specifically, i 2 1;N½ � indi-
cates that it is a nodal position in layer A, i 2 N þ 1; 2N½ � signifies
that the node is located on the interlayer edge A→ B, i 2
2N þ 1; 3N½ � specifies a node on the interlayer edge B→ A, and
i 2 3N þ 1; 4N½ � gives that the node is in layer B. For the travelers
to form the contact network on the trip, they must have the same
travel age and directions (the distribution of the travelers at dif-
ferent locations is analyzed in Supplementary Note 8). The
average degree of the contact network depends on the total
number of travelers, the contact ability and the travel time, as
stipulated by Eq. (S3).

To describe the impacts of travel behaviors of individuals, we
define the following travel matrix GH:

GH ¼

�GT 0 GT 0

GT �GT 0 0

0 0 �GT GT

0 GT 0 �GT

2
6664

3
7775;

where each row of the matrix quantifies the travel-induced
change (due to the departure and arrivals of the travelers) in the
active nodes at the nodal positions in layer A, trip from A to B,
trip from B to A, and the positions in layer B, respectively. The
matrix GT is diagonal with the size N ×N, where tii= 1 if node i is
a traveler, otherwise tii= 0. Let Hi,j denote the elements of GH.
The relation H1,1=−GT means that the departure of travelers
from layer A will reduce the number of active nodes in layer A,
and H1,3 represents that travelers along the interlayer edge B→ A
to layer A will increase the number of active nodes in layer A.
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Similarly, H2,2, H3,3 and H4,4 represent the decrease in the active
nodes due to the departure of travelers from A→ B, B→ A and
layer B, respectively, and H2,1, H3,4 and H4,2 represent the increase
in the active nodes due to the arrival of the travelers at A→ B,
B→ A and layer B, respectively. To facilitate the derivation of the
dynamical equations and theoretical analyses, we divide GH into
two matrices: GF and GD given by

GF ¼

0 0 GT 0

GT 0 0 0

0 0 0 GT

0 GT 0 0

2
6664

3
7775;

and

GD ¼

�GT 0 0 0

0 �GT 0 0

0 0 �GT 0

0 0 0 �GT

2
6664

3
7775:

Spreading dynamics in multilayer network with Markovian
travel. We define si(t), ρi(t) and ri(t) as the probabilities of a
position i holding an individual being in state S, I and R at time t,
respectively, where i represents one of the nodal positions in layer
A, A→ B, B→A and layer B, as in matrices GC and GH. Perma-
nent residents stay in one of the layers, and travelers can be in one
of the four possible positions. Let pi be the probability of the nodal
position i being active (an individual is actually there). The details
involved in the calculation of pi can be found in Supplementary
Note 8. As an individual can be in one of the three possible disease
states, we have si(t)+ ρi(t)+ ri(t)= pi. As the individuals within
the layers and on the travel process have different spreading
dynamics, we divide the nodes into two groups: ΩL ¼
i i 2 ½1;N�∪ ½3N þ 1; 4N�
��� �

and ΩE ¼ i i 2 ½N þ 1; 3N�
��� �

,
representing, respectively, the sets of nodes within layers and on
the interlayer edges. The set of differential equations describing the
spreading dynamics in the multilayer system with Markovian
travel infections can then be written as

dsiðtÞ
dt

¼

�siðtÞλiðtÞ þ q ∑
4N

j¼1
dij 1� λjðtÞ
� �

sjðtÞ

þ 1
tT
∑
4N

j¼1
f ij 1� λjðtÞ
� �

sjðtÞ; i 2 ΩL;

�siðtÞλiðtÞ þ 1
tT
∑
4N

j¼1
dij 1� λjðtÞ
� �

sjðtÞ

þq ∑
4N

j¼1
f ij 1� λjðtÞ
� �

sjðtÞ; i 2 ΩE;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

dρiðtÞ
dt

¼

siðtÞλiðtÞ � μρiðtÞ þ q ∑
4N

j¼1
dij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i

þ 1
tT
∑
4N

j¼1
f ij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i
; i 2 ΩL;

siðtÞλiðtÞ � μρiðtÞ þ 1
tT
∑
4N

j¼1
dij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i

þq ∑
4N

j¼1
f ij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i
; i 2 ΩE;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ

driðtÞ
dt

¼

μρiðtÞ þ q ∑
4N

j¼1
dij rjðtÞ þ μρjðtÞ
� �

þ 1
tT
∑
4N

j¼1
f ij rjðtÞ þ μρjðtÞ
� �

; i 2 ΩL;

μρiðtÞ þ 1
tT
∑
4N

j¼1
dij rjðtÞ þ μρjðtÞ
� �

þq ∑
4N

j¼1
f ij rjðtÞ þ μρjðtÞ
� �

; i 2 ΩE:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

The first term on the right side of Eq. (1) for i∈ΩL represents the
nodes being infected by neighbors within the layers, the second
term represents the decreases in si due to the departure of the S-
state travelers, and the third term describes the increase in si due to
the arrival of the S-state travelers. In these equations, q is the travel
rate of travelers starting from a layer, and 1/tT is the rate of travelers
jumping instantaneously from the interlayer edges to a layer.
Similarly, for i∈ΩE in Eq. (1), the first term represents the change
in the S-state nodes due to the infection on the interlayer edges, and
the second and third terms, respectively, describe the change in the
S-state nodes due to the departure of travelers from the interlayer
edges and the arrival of the travelers at the interlayer edges.
Equations (2) and (3) describe the dynamics of the infected and
recovered nodes, respectively. The probability λi(t) of an individual
being infected by its neighbors at node i at time t is given by

λiðtÞ ¼
1� Q4N

j¼1
1� βcijρjðtÞ

� �
; i 2 ΩL;

1� Q4N
j¼1

1� 1
tT
αβcijρjðtÞ

� �
; i 2 ΩE:

8>>><
>>>:

ð4Þ

We have derived the analytical epidemic thresholds using the
Jacobian matrix method (Supplementary Note 9).

Spreading dynamics in multilayer network with non-
Markovian travel process. Let sliðtÞ, ρliðtÞ and rliðtÞ be the prob-
abilities of i (i∈ΩE) with travel age l being in the state of S, I, R at
time t, respectively. The spreading dynamics in the multilayer
system with non-Markovian process can be described as follows.

For i∈ΩL, we have

siðt þ ΔtÞ ¼ 1� λiðtÞ
� �

siðtÞ

þ q ∑
4N

j¼1
dij 1� λjðtÞ
� �

sjðtÞ

þ ∑
4N

j¼1
f ij 1� λtT�Δt

j ðtÞ
� �

stT�Δt
j ðtÞ;

ð5Þ

ρiðt þ ΔtÞ ¼ 1� μ
� �

ρiðtÞ þ siðtÞλiðtÞ

þ q ∑
4N

j¼1
dij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i

þ ∑
4N

j¼1
f ij 1� μ

� �
ρtT�Δt
j ðtÞ

h

þstT�Δt
j ðtÞλtT�Δt

j ðtÞ
i
;

ð6Þ

riðt þ ΔtÞ ¼ riðtÞ þ μρiðtÞ

þ q ∑
4N

j¼1
dij rjðtÞ þ μρjðtÞ
� �

þ ∑
4N

j¼1
f ij rtT�Δt

j ðtÞ þ μρtT�Δt
j ðtÞ

� �
;

ð7Þ
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where the first term on the right side of Eq. (5) represents the S-
state nodes not being infected, the second term captures the
departure of susceptible travelers from the layers, and the third
term describes the arrival of susceptible travelers with travel age
l= tT− Δt at the previous time step. Similarly, Eqs. (6) and (7)
describe the spreading dynamics of the I and R nodes, respectively.

For i ∈ΩE: we have

sliðt þ ΔtÞ ¼

ð1� λl�Δt
i ðtÞÞsl�Δt

i ðtÞ;
l ¼ Δt; 2Δt; ¼ ; tT � Δt;

q ∑
4N

j¼1
f ij 1� λjðtÞ
� �

sjðtÞ; l ¼ 0;

0; l ≥ tT ;

8>>>>><
>>>>>:

ð8Þ

ρliðt þ ΔtÞ ¼

ð1� μÞρl�Δt
i ðtÞ þ λl�Δt

i ðtÞsl�Δt
i ðtÞ;

l ¼ Δt; 2Δt; ¼ ; tT � Δt;

q ∑
4N

j¼1
f ij 1� μ

� �
ρjðtÞ þ sjðtÞλjðtÞ

h i
; l ¼ 0;

0; l ≥ tT ;

8>>>>><
>>>>>:

ð9Þ

rliðt þ ΔtÞ ¼

rl�Δt
i ðtÞ þ μρl�Δt

i ðtÞ;
l ¼ Δt; 2Δt; ¼ ; tT � Δt;

q ∑
4N

j¼1
f ij rjðtÞ þ μρjðtÞ
� �

; l ¼ 0;

0; l ≥ tT :

8>>>>><
>>>>>:

ð10Þ

The first case described by Eq. (8) means that the probability of
node i in the S-state at time t+ Δt depends on that of the
previous time step, where the current travel age of the travelers is
l and their travel age at the previous time step is l− Δt. The
second case in Eq. (8) is that the travelers are about to start their
trip with the travel age l= 0. The third case is where, when the
travel age is equal to or greater than the travel time between the
layers, the travelers return to the layers and are not on the
interlayer edge. Equations (9) and (10) describe the dynamics of I
nodes and R nodes in a similar way.

The probability λi(t) of an individual being infected at node i in
layers by its neighbors at time t is

λiðtÞ ¼ 1�
Y4N
j¼1

1� βcijρjðtÞ
� �

; i 2 ΩL; ð11Þ

and the probability of a traveler with travel age l being infected at
node i on the interlayer edge at time t is

λliðtÞ ¼ 1�
Y4N
j¼1

1� αβcijρ
l
jðtÞ

� �

; i 2 ΩE and l ¼ 0;Δt; ¼ ; tT � Δt:

ð12Þ

The number of dynamical equations required to model the
spreading dynamics with non-Markovian travel depends on the
value of tT/Δt.
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