
Computers in Biology and Medicine 194 (2025) 110391 

0

 

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed  

Inflammation dynamics of atopic dermatitis: Phase transition and scaling law 

of remission time
Yoseb Kang a ,1, Jaewoo Hwang b,1, Yong Hyun Jang c, Ying-Cheng Lai d,e , Younghae Do b ,∗

a Department of Mathematics, Institute for Future Earth, Pusan National University, Busan, 46241, Republic of Korea
b Department of Mathematics, Nonlinear Dynamics & Mathematical Application Center, Kyungpook National University, Daegu, 41566, Republic of Korea
c Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
d School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, 85287, USA
e Department of Physics, Arizona State University, Tempe, 85287, USA

A R T I C L E  I N F O

Keywords:
Phase transition
Logarithm scaling law
Atopic dermatitis

 A B S T R A C T

Atopic dermatitis (AD) is a prevalent skin disorder affecting individuals globally, with many patients experi-
encing a range of symptoms. A pronounced clinical phenomenon associated with AD is the cyclic alternation 
of two distinct phases in time: inflammation and remission, depending on patients’ immune response and skin 
permeability. Frequent and relatively long inflammatory times lead to symptoms that can severely deteriorate 
the quality of life for the patient. Through mathematical modeling, we find that patients with similar AD 
symptoms can be categorized into two phases depending on the skin permeability and immune response 
that constitute the most clinically relevant parameter plane: the inflammatory time is shorter or longer than 
the remission time, respectively and the transition between the two phases is of the second-order type. In 
the parameter plane, a critical threshold curve emerges, which separates the two phases. Computing the 
frequency and duration of the inflammatory response, we uncover a logarithmic scaling law governing the 
inflammatory and remission times and discuss its clinical implications. In particular, when the skin condition 
is managed to be near the phase transition point, the benefits of treatment are more pronounced. However, 
at this stage, the effectiveness of skincare in reducing flare-ups tends to be less noticeable, making it difficult 
to evaluate the success of the treatment, largely due to the nature of logarithmic decay in the remission time. 
Our study provides insights into the mechanisms of AD that can enhance diagnostic accuracy and treatment 
by understanding the alternation between inflammation and remission periods.
1. Introduction

Utilizing the principles and methodologies of nonlinear dynamics 
for understanding diseases has a long history [1,2]. The pioneering 
work by Glass and Mackey proposed that certain physiological disor-
ders may be understood as dynamical diseases [1,3], where the diseases 
are viewed as the manifestation of often sudden qualitative changes in 
the dynamics of the underlying physiological control mechanism [4,5]. 
Another extensively studied dynamical disease is epilepsy [6,7], where 
the occurrence of an epileptic seizure is believed to be related to the 
onset of some kind of synchrony or hypersynchrony among the neurons 
in certain brain regions [8]. There is extensive literature on applying 
nonlinear dynamics to analyzing and understanding the mechanism of 
epilepsy, including those based on the Lyapunov exponents [9,10], the 
correlation dimension [11], and phase synchronization [12].
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In this paper, we apply nonlinear dynamics to a major class of 
human skin diseases: atopic dermatitis (AD). It is a prevalent skin 
condition influenced by the complex interplay among genetic, im-
munological, and environmental factors [13]. The disease manifests 
differently across various age groups, ethnicity, and genders, making it 
difficult to develop universally effective methods of treatment [14–20]. 
Another complicating issue is the absence of reliable animal models, 
making it difficult for turning research findings into clinical therapeu-
tic methods. Recently, in-vivo, in-vitro, and in-silico approaches have 
been developed for understanding the pathophysiological mechanisms 
underlying AD [21–26]. These methods also aim to identify key ther-
apeutic targets and biomarkers. AD evolves continuously in time and 
there are different clinical stages of AD, which can thus be viewed 
as the result of the evolution of a nonlinear, nonautonomous dynam-
ical system with time-varying parameters. As such, mathematical and 
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computational models can play a role in understanding the underlying 
disease mechanism [24–26].

Investigating the AD progression in time is critical to understanding 
the underlying mechanisms of the disease and developing treatments. 
A key clinical manifestation of AD is inflammation, also known as the 
inflammatory response. It is a biological reaction of the immune system 
triggered by various factors such as pathogens, damaged cells, and toxic 
substances [20,27,28], which plays a crucial role in the body’s immune 
defenses. Common symptoms of inflammation include swelling, heat, 
and pain. Patients with AD frequently experience recurring inflamma-
tory responses and their daily lives consist of alternating periods of 
inflammatory responses and periods without such responses. The time 
during which an inflammatory response occurs is the inflammatory 
time, denoted as 𝜏𝐼 , while the period without an inflammatory response 
is the remission time 𝜏𝑅. From the standpoint of dynamics, the daily 
lives of patients with AD involve oscillations between the inflamma-
tory and remission periods, as pictorially illustrated in Fig.  1(a). The 
duration and intensity of these inflammatory episodes can vary among 
patients with the same AD phenotype, influenced by individual factors 
such as the immune response levels and skin permeability [24,25]. This 
raises a basic question: what roles do the inflammatory oscillation patterns 
play in the symptoms, phenotype, and progression of AD?

A necessary step towards addressing this question is to obtain infor-
mation about the inflammatory response time. Measuring the duration 
of the inflammatory response in AD using the traditional in-vivo and
in-vitro methods is challenging. Realistically, it is infeasible to track the 
inflammatory response in AD patients with various symptoms over an 
extended period of time. To overcome this difficulty, we shall adopt an
in-silico approach by which the inflammatory response time is simulated 
using the recently developed mathematical model for AD [24–26] based 
on a reasonable description of the characteristics of the disease. A pio-
neering model was proposed based on the mechanisms underlying the 
pathogenesis of AD, including genetic defects in skin barrier function 
and immune cell activity related to barrier dysfunction [24]. In this 
regard, In silico computational experiments utilizing various nominal 
values corresponding to the human body functions associated with AD 
have provided valuable insights into the progression of the disease 
over time. Especially, through a dynamical analysis of AD model, four 
stages of AD with distinct symptoms were identified: recovery, chronic 
damage, mild oscillations, and severe oscillations [24–26].

Our present study focuses on the characteristics of inflammatory and 
remission times under different physiological/biological conditions. 
Two key parameters can be used to characterize these conditions: 
the skin permeability 𝜅𝑝 and the immune response 𝛼𝐼 . We set out 
to investigate how 𝜏𝐼  and 𝜏𝑅 vary on the parameter plane (𝜅𝑝, 𝛼𝐼 ), 
with a special eye towards the mild and severe oscillations of the AD 
symptoms. The main findings of this work are as follows. Patients 
with similar AD symptoms can be categorized into two phases in the 
parameter plane: the inflammatory time is shorter or longer than the 
remission time: 𝜏𝐼 < 𝜏𝑅 or 𝜏𝐼 > 𝜏𝑅, respectively. A critical threshold 
curve arises in the parameter plane, with the behaviors 𝜏𝐼 < 𝜏𝑅 or 𝜏𝐼 >
𝜏𝑅 occurring on the two sides of the curve. As the parameters change, 
the system’s movement across the critical curve is effectively a second-
order phase transition, as both 𝜏𝐼  and 𝜏𝑅 vary continuously through 
some critical point. A pertinent issue is the frequency and duration 
of the inflammatory response and the impact on the ‘‘quality of life’’ 
of the patients. Our computations reveal that the values for AD onset 
conditions change significantly before and after the phase transition, 
indicating that even in patients with similar AD symptoms, different 
variants can occur, depending on the skin permeability and immune 
response. In clinical terms, a prolonged activation of a particular switch 
underlying AD (the R switch - to be introduced in model description 
below) is indicative of an extended period during which the patient 
experiences symptoms such as itching and scratching, leading to an 
unhealthy period. Understanding the duration in which the R switch 
remains active or inactive within a day can be useful for determining 
2 
Fig. 1. AD modeled as a nonsmooth nonlinear dynamical system. (a) A cycle of 
processes with or without an inflammatory response. (b) A schematic representation of 
the processes involved in AD. (c) Oscillatory behavior of the skin barrier 𝐵 over time for 
two in-silico symptoms 𝑂𝑚 and 𝑂𝑠, illustrating the periods of activation (inflammatory 
time, 𝜏𝐼 ) and inactivation (remission time, 𝜏𝑅) of the 𝑅-switch, as well as the activation 
of the 𝐺-switch.

the appropriate treatment strategy. Clinically, when the skin condition 
is managed such that the system is close to the phase transition point, 
the benefits of treatment are more pronounced. A logarithmic scaling 
law governing the inflammatory and remission times with parame-
ter changes has been computationally uncovered and mathematically 
explained. The key clinical implication of the logarithmic scaling is 
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that it provides a significant window of opportunity for treating the 
disease. Overall, our computations and analysis have generated insights 
into the dynamical mechanisms of AD for improving the diagnosis and 
treatment, giving another demonstration of the power of nonlinear 
dynamics in probing into human diseases to garner a mechanistic 
understanding.

2. Nonlinear dynamics of atopic dermatitis

2.1. AD modeled as a nonsmooth dynamical system

We conduct an in-silico study on inflammation and remission times 
by using the recently developed mathematical model of AD [24–26]. 
Fig.  1(b) shows the progression of AD pathogenesis [24], highlight-
ing the dynamical interplay between skin barrier, immune regulation, 
and environmental stress. Under normal conditions, small amounts of 
pathogens that enter through compromised skin barriers are typically 
contained and do not pose a significant threat. However, when the 
amount of pathogens exceeds a certain threshold, it activates physi-
ological mechanisms such as toll-like receptors (TLRs) and protease-
activated receptor 2 (PAR2), leading to an AD flare. The immune re-
sponse involves the release of antimicrobial peptides that fight against 
the invading pathogens and signal various immune processes that mobi-
lize dendritic cells to the lymph nodes. If the pathogen load decreases 
below a deactivation threshold, these physiological mechanisms shut 
off, halting the flare. Conversely, if the dendritic cell count in the 
lymph nodes exceeds a critical threshold, it can lead to a significant 
and irreversible change in the immune state, which may exacerbate the 
skin condition considerably.

Quantitatively, the AD mechanism can be described by the follow-
ing set of nonlinear differential equations [24]:
𝑑𝑃
𝑑𝑡

=
𝑃env𝜅𝑃

1 + 𝛾𝐵𝐵(𝑡)
− 𝛼𝐼𝑅(𝑡)𝑃 (𝑡) − 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
𝑑𝑡

=
𝜅𝐵[1 − 𝐵(𝑡)]

[1 + 𝛾𝑅𝑅(𝑡)][1 + 𝛾𝐺𝐺(𝑡)]
− 𝛿𝐵𝐾(𝑡)𝐵(𝑡), (1)

𝑑𝐷
𝑑𝑡

= 𝜅𝐷𝑅(𝑡) − 𝛿𝐷𝐷(𝑡),

where the dynamical variables 𝑃 (𝑡), 𝐵(𝑡) and 𝐷(𝑡) represent the in-
filtrated pathogen load (in milligrams per milliliter), the strength of 
barrier integrity (relative to the maximum strength), and the concen-
tration of dendritic cells (DCs) in the lymph node (cells per milliliter), 
respectively. We have 𝑃 (𝑡) ≥ 0, 0 ≤ 𝐵(𝑡) ≤ 1 and 𝐷(𝑡) ≥ 0. 
The parameter values and their description are listed in Table  A.2 in 
Appendix  A.

A key aspect of the AD model is the use of three switches with 
an on-off function to describe the inflammatory responses, which play 
a crucial role in the progression of AD. The three switches 𝑅(𝑡), 𝐺(𝑡)
and 𝐾(𝑡) control the levels of activated immune receptors, Gata3 tran-
scription (relative to the maximum transcription level), and active 
kallikreins, respectively, and are described as

𝑅(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅off, if 𝑃 (𝑡) < 𝑃− or
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅off},

𝑅on, if 𝑃 (𝑡) > 𝑃+ or
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅on},

(2)

𝐾(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐾off, if 𝑃 (𝑡) < 𝑃− or
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅off},

𝑚on𝑃 (𝑡) − 𝛽on,  if 𝑃 (𝑡) > 𝑃+ or
{𝑃− ≤ 𝑃 (𝑡) ≤ 𝑃+, 𝑅(𝑡−) = 𝑅on},

(3)

𝐺(𝑡) =

{

𝐺off,  if 𝐷(𝑡) < 𝐷+ and 𝐺(𝑡−) = 𝐺off,
𝐺on,  if 𝐷(𝑡) ≥ 𝐷+  or 𝐺(𝑡−) = 𝐺on,

(4)
3 
where 𝑅on, 𝑅off, 𝐺on, 𝐺off and 𝐾off indicate the activating or inactivat-
ing constant-level of each switch, but only 𝐾on depends on 𝑃 (𝑡): 𝐾on =
𝑚on𝑃 (𝑡) − 𝛽on. Note that the switches 𝑅 and 𝐾 are hysteretic, which 
activate and cease AD flares. In contrast, switch 𝐺 is irreversible: once 
activated, it remains on permanently. Because of the on-off switches, 
the AD model Eq. (1) constitutes a nonsmooth dynamical system with 
subsystems. That is, the main system can evolve into a subsystem 𝑆𝑖
as the AD system evolves. All subsystems of the AD system Eq. (1) are 
described in Appendix  B.

For a clinical classification of the AD phenotypes, we use the SCO-
RAD (SCORing Atopic Dermatitis) index to evaluate the extent and 
severity of eczema, which is associated with cytokine levels [20]. There 
are four classifications in SCORAD: none, mild, moderate and severe. In 
the in-silico study of AD, four attractors of AD were found [24–26]: Re-
covery (𝑅), Mild Oscillation (𝑂𝑚), Serious Oscillation (𝑂𝑠) and Chronic 
damage (𝐶).

2.2. Oscillation states associated with AD

The two attractors, namely 𝑅 and 𝐶, do not exhibit any oscillatory 
behaviors: their skin integrity correspond to 𝐵 = 1 (healthy skin 
state) and 𝐵 = 0 (severe damage in skin), respectively. However, the 
attractors 𝑂𝑚 and 𝑂𝑠 present oscillating behavior in skin integrity, 
providing insights into the dynamical evolution of AD and treatment. 
In particular, depending on responses of inflammation or activation 
of the immune receptors, either 𝑂𝑚 or 𝑂𝑠 can arise. Fig.  2(a) shows 
the onset conditions [25] of 𝑂𝑚 (blue) and 𝑂𝑠 (red) with respect to 
the parameters 𝜅𝑝 and 𝛼𝐼 , In the overlapping region of two onset 
conditions, the outcomes can be either 𝑂𝑚 or 𝑂𝑠, depending on the 
initial condition. To study the oscillating behavior of AD in a concrete 
way, we focus on the parameter region highlighted by the two colors in 
Fig.  2(a). For a fixed parameter pair (𝜅𝑝, 𝛼𝐼 ) in this region, the steady-
state attractors 𝑅 and 𝐶 might also arise due to the multistability [25]. 
Fig.  1(c) shows, for 𝜅𝑝 = 0.85 and 𝛼𝐼 = 0.13, the oscillating behaviors 
from the attractors 𝑂𝑚 and 𝑂𝑠. The corresponding switch activation is 
illustrated in Fig.  1(c). The skin integrity of mild oscillatory attractor 
𝑂𝑚, shown on the left in Fig.  1(b), is close to a healthy state (𝐵 = 1), 
while the attractor 𝑂𝑠 with serious oscillations, shown on the right in 
Fig.  1(b), approaches chromatic damage (𝐵 = 0). A difference between 
the two oscillatory attractors is activation of the 𝐺 switch, as shown 
in Fig.  1(c), where the state of 𝐺 switch of 𝑂𝑚 (𝑂𝑠) is always off (on), 
respectively.

How do the oscillatory states 𝑂𝑚 and 𝑂𝑠 emerge? The subsystems 
involved in the creation of 𝑂𝑚 are 𝑆1 and 𝑆3. In particular, when 
𝑆1 is activated, AD progresses to a healthy state. However, the 𝑆3-
subsystem leads to a progression of AD when its inflammatory response 
is triggered (𝑅 and 𝐾 switches turned on). The oscillating behavior 
of 𝑂𝑚 thus results from the repeated involvement of the subsystems: 
𝑆1 ⇆ 𝑆3, from periodic inflammation and remission of AD. Similarly, 
𝑂𝑠 is generated by utilizing different subsystems: 𝑆2 ⇆ 𝑆4 when the 𝐺-
switch is turned on (Table  1). That is, periodic inflammatory responses 
in AD, combined with an activated immune response, contribute to the 
emergence of 𝑂𝑠. As a general rule, the oscillatory behavior consists of 
a repetition between a inflammatory time 𝜏𝐼  (𝑅 and 𝐾 switches-on) and 
a remission time 𝜏𝑅 (𝑅 and 𝐾 switches-off ) of AD. Understanding these 
oscillatory states is crucial for more accurate prediction of the clinical 
outcome and for improving the quality of life in patients with AD.

3. Emergence of phase transition and scaling laws governing in-
flammatory and remission times

3.1. Comparison of inflammatory and remission times and clinical signifi-
cance

When the inflammatory response of AD as triggered by the 𝑅 and 
𝐾-switches is activated, commonly the patients will experience pain or 
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Fig. 2. Two distinct AD oscillation states. (a) Onset conditions for 𝑂𝑚 (blue) and 𝑂𝑠
(red) in the (𝜅𝑝 , 𝛼𝐼 ) space. (b, c) Cycles of inflammatory and remission times, along with 
the corresponding skin barrier 𝐵 for 𝑂𝑚 and 𝑂𝑠, respectively. (d, e) Distributions of 
inflammatory and remission times observed under the corresponding onset conditions 
for 𝑂𝑚 and 𝑂𝑠, respectively.

Table 1
Properties of 𝑂𝑚 and 𝑂𝑠 from a dynamical point of view.
 Property 𝑂𝑚 𝑂𝑠 Time  
 Value of 𝐵 high low  
 𝑅,𝐾-switches off ⇆ on off ⇆ on 𝜏𝑅 ⇆ 𝜏𝐼 
 𝐺-switch off on  
 Subsystems of AD 𝑆1 ⇆ 𝑆3 𝑆2 ⇆ 𝑆4  

Fig. 3. Comparison of inflammatory and remission times. (a) Inflammatory and 
remission times 𝜏𝑚,𝑠𝐼,𝑅 versus 𝜅𝑝 for 𝛼𝐼 = 0.13, where two dashed lines denote the 
critical onset points: 𝜅𝑚

𝑝  and 𝜅𝑠
𝑝 . The red and blue colors represent the inflammatory 

and remission times for 𝑂𝑠 and 𝑂𝑚, respectively. (b) Scaling of the remission time on 
logarithmic and linear scales for 𝛼𝐼 = 0.13. The critical onset point 𝜅∗

𝑝  corresponds to 
𝜅𝑚
𝑝  for 𝑂𝑠 and 𝜅𝑠

𝑝 for 𝑂𝑚. (c, d) Similar to (a, b), respectively, but for 𝛼𝐼 = 0.1.
4 
discomfort due to symptoms such as itching and scratching. During the 
time periods without inflammation, the skin begins to heal towards a 
return to the healthy state. The characteristics of the inflammatory and 
remission times are mainly determined by the parameters 𝜅𝑝 and 𝛼𝐼 . 
Understanding the relationship between two different times and their 
scaling behaviors is critical for both clinical assessment and therapeutic 
decision-making.

Based on the fact that AD patients with different nominal values 
(𝜅𝑝, 𝛼𝐼 ) can show the same symptoms, we investigate the inflamma-
tory and remission times in terms of the onset conditions of the two 
oscillating states 𝑂𝑚 and 𝑂𝑠, represented by the blue and red colored 
parameter regions in Fig.  2(a), respectively. Figs.  2(b) and  2(c) present 
the cycles of inflammatory and remission times, along with the corre-
sponding skin barrier 𝐵 for 𝑂𝑚 and 𝑂𝑠, respectively. Fig.  2(d) presents 
the probabilistic distributions of 𝜏𝑚𝐼  and 𝜏𝑚𝑅 associated with the 𝑂𝑚
symptoms. For 𝜏𝑚𝐼 , the mean and variance are approximately 0.29 and 
0.01, respectively, while those for 𝜏𝑚𝑅 are 1.00 and 0.18. The relatively 
small variance of 𝜏𝑚𝐼  suggests that AD patients exhibiting the 𝑂𝑚 symp-
tom tend to have a nearly consistent inflammatory response time. The 
remission time 𝜏𝑚𝑅 demonstrates a broader distribution characterized by 
an exponential tail, indicating that AD patients with the 𝑂𝑚 symptom 
generally experience a similar duration of pain before entering the 
recovery phase.

For 𝑂𝑠, we also examine the inflammatory and remission times 
associated with its onset condition, and their probabilistic distributions 
are shown in Fig.  2(e). Compared to the those for 𝑂𝑚, the two distri-
butions exhibit a significant overlap. The mean and variance of 𝜏𝑠𝐼  are 
approximately 0.36 and 0.02, respectively, while those for 𝜏𝑠𝑅 are 0.64 
and 0.10. Overall, the mean value of 𝜏𝑠𝑅 is approximately twice of that 
of 𝜏𝑠𝐼 . For 𝑂𝑚, the mean value of 𝜏𝑚𝑅 is approximately four times larger 
than that of 𝜏𝑚𝐼 . We also have that the mean value of 𝜏𝑚𝐼  is slightly larger 
than that of 𝜏𝑠𝐼 . These observations can be summarized as
⟨𝜏𝑠𝑅⟩ ≈ 1.77⟨𝜏𝑠𝐼 ⟩, ⟨𝜏

𝑚
𝑅⟩ ≈ 3.51⟨𝜏𝑚𝐼 ⟩, and ⟨𝜏𝑚𝐼 ⟩ ≈ 1.26⟨𝜏𝑠𝐼 ⟩,

indicating that AD patients with 𝑂𝑠 endure a longer duration of pain 
compared to those with 𝑂𝑚.

3.2. Phase transition and logarithmic scaling of inflammatory and remission 
times

We examine how the inflammatory time 𝜏𝐼  and the remission 
time 𝜏𝑅 depend on the skin permeability 𝜅𝑃  under the distinct onset 
conditions of 𝑂𝑚 and 𝑂𝑠, for a fixed rate 𝛼𝐼  of pathogen eradication by 
innate immune responses. In this case, the critical onset points: 𝜅𝑚

𝑝  for 
𝑂𝑚 and 𝜅𝑠

𝑝 for 𝑂𝑠, are different, as exemplified in Fig.  2(a). For example, 
for 𝛼𝐼 = 0.13, we have 𝜅𝑚

𝑝 ≈ 0.82 and 𝜅𝑠
𝑝 ≈ 0.77. Fig.  3(a) illustrates 𝜏𝑚𝐼,𝑅

and 𝜏𝑠𝐼,𝑅 as a function of 𝜅𝑝 for the two states 𝑂𝑚 and 𝑂𝑠, represented in 
blue and red, respectively. It can be seen that the remission time 𝜏𝑅 for 
both types of oscillation decreases sharply as 𝜅𝑝 increases beyond the 
onset. In contrast, the inflammatory time 𝜏𝐼  increases as 𝜅𝑝 increases 
from the critical point, indicating that, as the skin integrity deteriorates, 
the patients begin to experience longer periods of inflammation and 
shorter periods of remission.

Under the onset condition of 𝑂𝑚 with 𝛼𝐼 = 0.13, we observe that 
the remission time is consistently longer than the inflammatory time: 
𝜏𝑚𝐼 < 𝜏𝑚𝑅 , suggesting that the patients with 𝑂𝑚 spend the majority of 
their time in the remission phase, experiencing only occasional pain 
due to inflammatory responses. Clinically, the AD patients with the 𝑂𝑚
symptoms spend a considerable amount of time during which their skin 
conditions improve. In contrast, for patients exhibiting the 𝑂𝑠 symp-
toms, there exists a critical value 𝜅𝑐

𝑃  beyond which the relationship 
between the remission and inflammatory times exchanges, as shown 
in Fig.  3(a). Specifically, for 𝜅𝑝 < 𝜅𝑐

𝑝 , the inequality 𝜏𝑠𝐼 < 𝜏𝑠𝑅 holds. 
However, for 𝜅𝑝 > 𝜅𝑐

𝑝 , this relationship reverses. We have
𝜏𝑠 < 𝜏𝑠 ,  if 𝜅 < 𝜅𝑐 , and
𝐼 𝑅 𝑝 𝑝
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𝜏𝑠𝐼 > 𝜏𝑠𝑅,  if 𝜅𝑝 > 𝜅𝑐
𝑝 , (5)

signifying a second-order phase transition at 𝜅𝑐
𝑝 . Clinically, when the 

skin permeability of the patients exhibiting the 𝑂𝑠 symptom exceeds a 
critical threshold, they are likely to remain in an inflammatory state 
most of the time. As a result, patients may experience constant pain all 
times, compromising their quality of life.

To quantify the change in the remission time 𝜏𝑅 after the onset 
of AD symptoms, we plot 𝜏𝑅 on a logarithmic-linear scale: 𝜏𝑚,𝑠𝑅  versus 
𝜅𝑝−𝜅∗

𝑝 , where 𝜅∗
𝑝  corresponds to 𝜅𝑚

𝑝  for 𝑂𝑚 or 𝜅𝑠
𝑝 for 𝑂𝑠. The results are 

shown in Fig.  3(b), suggesting the following scaling laws:
𝜏𝑚𝑅 ∼ 𝑚𝑅 log(𝜅𝑝 − 𝜅𝑚

𝑝 ) for 𝑂𝑚, and (6)

𝜏𝑠𝑅 ∼ 𝑠𝑅 log(𝜅𝑝 − 𝜅𝑠
𝑝) for 𝑂𝑠, (7)

with the respective slopes 𝑚𝑅 ≈ −0.45 and 𝑠𝑅 ≈ −0.1. As 𝜅𝑝 approaches 
the critical value 𝜅∗

𝑝 , the remission time exhibits a logarithmic decay 
law.

What are the clinical implications of the logarithmic scaling law? To 
address this question, we note that the variation of the remission time 
for the AD patient depends on the specific AD symptoms and decrease 
as 𝜅𝑝 undergoes a slight change from the onset point 𝜅∗

𝑝 . Because of 
the constraint 𝑚𝑅 < 𝑠𝑅, the remission time for 𝑂𝑠 decreases more 
quickly than that for 𝑂𝑚. For 𝜅𝑝 is far above 𝜅∗

𝑝 , a reduction in the 
remission time occurs at a much slower rate due to the nature of the 
logarithmic decay, suggesting that taking care of the skin immediately 
after the onset of AD can significantly prolong the remission period. 
In contrast, when AD progresses to a stage where 𝜅𝑝 is greater than 
𝜅∗
𝑝 , the impact on the remission time becomes minimal. Specifically, 
when the skin condition is managed so that 𝜅𝑝 is close to 𝜅∗

𝑝  (𝜅∗
𝑝 ⪅

𝜅𝑝), the benefits of treatment are more pronounced. However, at this 
stage, the effectiveness of skincare in reducing flare-ups tends to be less 
noticeable, making it difficult to evaluate the success of the treatment, 
largely due to the nature of logarithmic decay in the remission time.

We now investigate the dependence of the inflammatory and remis-
sion times on 𝜅𝑝 as the immune response is reduced. For this purpose, 
we set 𝛼𝐼 = 0.1. The results are shown in Fig.  3(c), where there is a 
phase transition for both the 𝑂𝑚 and 𝑂𝑠 states:
𝜏𝑚𝐼 < 𝜏𝑚𝑅 ,  if 𝜅𝑝 < 𝜅𝑐1

𝑝 , 𝜏𝑠𝐼 < 𝜏𝑠𝑅,  if 𝜅𝑝 < 𝜅𝑐2
𝑝 ,

𝜏𝑚𝐼 > 𝜏𝑚𝑅 ,  if 𝜅𝑝 > 𝜅𝑐1
𝑝 , 𝜏𝑠𝐼 > 𝜏𝑠𝑅,  if 𝜅𝑝 > 𝜅𝑐2

𝑝 . (8)

The scaling of the remission time remains to be logarithmic [(6)], as 
shown in Fig.  3(d). Considering that, at a higher level of immune 
response (𝛼𝐼 = 0.13), only the 𝑂𝑠 state exhibits a phase transition, as 
shown in Fig.  3(a), we see that a reduced level of immune response can 
lead to a phase transition in both the 𝑂𝑚 and 𝑂𝑠 states.

To further explore the phase transition phenomenon between 𝜏𝑅
and 𝜏𝐼 , we examine these times under the onset conditions of the two 
oscillating states. Figs.  4(a) and 4(b) illustrate the critical points of the 
phase transition for 𝑂𝑚 and 𝑂𝑠 (marked in black). Remarkably, the 
numerically determined critical points form a straight line, as shown 
by the black lines in Figs.  4(a) and 4(b):
𝛼𝐼 ≈ 0.253𝜅𝑝 − 0.119, for 𝑂𝑚, and (9)

𝛼𝐼 ≈ 0.283𝜅𝑝 − 0.121 for 𝑂𝑠. (10)

These are the critical phase-transition line, denoted as 𝑃𝑙𝑖𝑛𝑒. For the 
onset condition of 𝑂𝑚, the critical line 𝑃𝑙𝑖𝑛𝑒 is positioned close to the 
boundary of this condition. The proximity indicates a relatively small 
area below the line 𝑃𝑙𝑖𝑛𝑒 in the onset condition of 𝑂𝑚. As a result, the 
AD patients with 𝑂𝑚 are less likely to experience the phase transition. 
In contrast, for the onset condition of 𝑂𝑠, the area below the line 𝑃𝑙𝑖𝑛𝑒
is significantly larger, indicating that the AD patients with 𝑂𝑠 are more 
likely to experience the phase transition, which could complicate the 
progression of the AD symptoms. Overall, for both 𝑂𝑚 and 𝑂𝑠, the 
inequality 𝜏𝑚 < 𝜏𝑚 holds in the area above the straight line, while 
𝐼 𝑅

5 
Fig. 4. Phase transition associated with the 𝑂𝑚 and 𝑂𝑠 states. (a, b) Critical phase-
transition line 𝑃𝑙𝑖𝑛𝑒 marked by black line with respect to the onset conditions of 𝑂𝑚
and 𝑂𝑠, respectively. In the (𝜅𝑝 , 𝛼𝐼 ) plane, the critical points of phase transitions are 
indicated by the black lines on the onset conditions of 𝑂𝑚 and 𝑂𝑠, corresponding to 
the blue and red regions, respectively.

opposite holds below the line. Consequently, depending on the immune 
responses 𝛼𝐼  and skin permeability 𝜅𝑃 , the order in the length of the 
inflammatory and remission time can be changed: 
𝜏𝑚𝐼 < 𝜏𝑚𝑅 → 𝜏𝑚𝑅 < 𝜏𝑚𝐼 and 𝜏𝑠𝐼 < 𝜏𝑠𝑅 → 𝜏𝑠𝑅 < 𝜏𝑠𝐼 , (11)

implying a significant disparity in the quality of life for patients with 
AD, even when they exhibit similar symptoms, as characterized by the 
scaling relation (9).

3.3. Behaviors of inflammatory response

Associated with the inflammatory response, the key dynamical vari-
able underlying the AD, namely the strength of barrier integrity 𝐵(𝑡), 
exhibits periodic oscillations, as exemplified in Figs.  2(a) and 2(b). Each 
period contains a cycle of inflammation and remission. As stronger 
inflammatory responses lead to more severe AD symptoms, a question 
is how frequent these cycles are. To address this question, we define 
the frequencies of the inflammatory response for the 𝑂𝑚 and 𝑂𝑠 states 
as 
𝐹𝑚 = 1

𝜏𝑚𝐼 + 𝜏𝑚𝑅
and 𝐹𝑠 =

1
𝜏𝑠𝐼 + 𝜏𝑠𝑅

. (12)

Figs.  4(c) and 4(d) show the values of 𝐹𝑚 and 𝐹𝑠 under their respective 
onset conditions in the parameter plane (𝜅𝑝, 𝛼𝐼 ). As 𝜅𝑝 increases, the 
maximum frequencies occur just above the critical line 𝑃𝑙𝑖𝑛𝑒, indicating 
a correlation between the frequency and phase transition. Especially, 
when the immune response and skin permeability are near the critical 
line, the frequency of the inflammatory response is significantly ele-
vated. Within each oscillatory state, the frequency distribution is wide: 
the ranges of 𝐹  and 𝐹  are (0.3, 1.2) and (0.4, 1.5), respectively.
𝑚 𝑠
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Within a cycle, the fraction of the inflammatory time can also vary 
widely, depending on the parameter values. The fractions associated 
with the 𝑂𝑚 and 𝑂𝑠 states are given by 

𝑃𝑚 =
𝜏𝑚𝐼

𝜏𝑚𝐼 + 𝜏𝑚𝑅
and 𝑃𝑠 =

𝜏𝑠𝐼
𝜏𝑠𝐼 + 𝜏𝑠𝑅

. (13)

As 𝑃𝑚,𝑠 approaches the value 1, patients will incur persistent inflam-
mation most of the time. Figs.  4(e) and 4(f) illustrate the values of 𝑃𝑚
and 𝑃𝑠, respectively, in the parameter plane (𝜅𝑝, 𝛼𝐼 ). Below the critical 
line 𝑃𝑙𝑖𝑛𝑒, the fraction of time that the system is in an inflammatory 
state is large, due to the occurrence of a phase transition. In general, 
the fractions can vary significantly, depending on the severity of the 
AD symptoms: the ranges of 𝑃𝑚 and 𝑃𝑠 are (0.04, 0.6) and (0.04, 0.8), 
respectively.

Clinically, maintaining a healthy quality of life is an important goal 
for any AD patient, as prolonged flare-ups will significantly impact 
both the physical and emotional well-being. These symptomatic periods 
disrupt daily activities and sleep, further compounding the effects on 
the patient’s Quality of Life (QoL). Conversely, inactivation of the 
R-switch represents periods of remission or reduced disease activity, 
during which the patients experience relief from symptoms. In general, 
when the condition of the skin worsens, patients experience symptoms 
such as itching, swelling, heat, and pain due to inflammation [28–30]. 
The health-related QoL for AD patients is determined by the dynami-
cal behaviors of the oscillatory states 𝑂𝑚 and 𝑂𝑠. Quantitatively, the 
QoL can be assessed by examining how the degree of inflammatory 
response varies with the skin integrity. To this end, we define a measure 
reflecting the QoL: 
𝑄𝐿 = (1 − ⟨𝐵⟩)𝑃𝑚,𝑠, (14)

where ⟨𝐵⟩ is the average skin integrity throughout a cycle that includes 
both inflammatory and remission periods. A near zero value of 𝑄𝐿
indicates that the skin condition of the patients is good or that the 
inflammation levels are low. In contrast, as 𝑄𝐿 approaches one, a high 
level of inflammatory response can be expected, signifying poor skin 
conditions.

Figs.  4(g) and 4(h) show the variations of 𝑄𝐿 in the parameter plane 
(𝜅𝑝, 𝛼𝐼 ) the 𝑂𝑚 and 𝑂𝑠 states, respectively. While the AD symptoms 
may vary, an AD patient’s quality of life can diminish when their skin 
condition falls below a critical threshold of phase transition. When the 
oscillations are mild (𝑂𝑚), the values of 𝑄𝐿 range from 0.01 to 0.4. In 
contrast, for the severe oscillation state 𝑂𝑠, 𝑄𝐿 ranges from 0.01 to 0.7, 
indicating a more significant decline of the quality of life as compared 
with the case of mild oscillations.

For a fixed value of 𝜅𝑝 = 0.85, we examine how changes in the 
immune response parameter 𝛼𝐼  affect the inflammatory and remission 
times, the frequency of the inflammatory response, the fraction of time 
spent in inflammation, and the overall quality of life, as shown in Fig. 
5. In Fig.  5, each column corresponds to one type of symptom and the 
dashed lines indicate the values of 𝛼𝐼  on the critical phase-transition 
line 𝑃𝑙𝑖𝑛𝑒 in Fig.  4, corresponding to 𝜅𝑝 = 0.85. As 𝛼𝐼  increases beyond 
the dashed critical line, the inflammatory time 𝜏𝐼 , the fraction of time 
𝑃𝑚,𝑠 spent in inflammation, and the measure 𝑄𝐿 of the quality of life 
all decrease, while the remission time 𝜏𝑅 increases. This suggests that 
a stronger immune response is associated with better health outcomes. 
Notably, the local maximum of the inflammatory response frequency 
𝐹𝑚,𝑠 occurs right after the critical dashed line and subsequently begins 
to decrease. As a result, after the phase transition, a delay arises before 
the frequency of the inflammatory response begins to change.

4. Discussion

A unique feature common to the AD disease is the emergence of 
oscillations. For example, as the skin conditions deteriorate, before 
severe damage occurs, the symptoms as determined by the strength of 
barrier integrity can undergo periodic cycles, with each cycle consisting 
6 
Fig. 5. Effect of varying the immune response parameter 𝛼𝐼 on the dynamics of AD. 
For a fixed 𝜅𝑝 = 0.85, the effects of varying 𝛼𝐼 on inflammatory and remission times 
(a, b), the frequency of the inflammatory response (c, d) the fraction of inflammatory 
time (e, f), and quality of life (g, h). The left and right columns correspond to mild 
and severe oscillations, respectively.

of two characteristically distinct types of behaviors: inflammation and 
remission. During the inflammatory time, severe discomfort can arise, 
making low the quality of life for the patients, whereas not much 
discomfort occurs during the remission time. Qualitatively, two distinct 
types of oscillations in the skin integrity exist among the AD patients: 
depending on the inflammatory and immune responses of the patient, 
the oscillations can be mild or severe. Regardless of the type of oscil-
lations, to effectively reduce the inflammatory time or, equivalently, 
to prolong the remission time in a cycle of oscillation is a goal for 
treatment strategies. To achieve this goal, it is necessary to uncover the 
quantitative dependence of the inflammatory and remission times on 
the skin condition. Due to the long time span of the AD, clinical tests to 
determine this dependence are infeasible, and mathematical modeling 
provides a viable approach to gaining insights into how the inflamma-
tory and remission times change as some parameter characterizing the 
skin condition changes.

The two findings of our work are: (1) the emergence of a phase 
transition in the inflammatory and remission times and (2) a logarith-
mic scaling law governing the remission time. In particular, as a key 
bifurcation parameter, the skin permeability, continuously increases 
from a small, healthy value so that the skin’s barrier becomes less and 
less effective to protect the body from harmful substances, either mild 
or severe oscillations in the strength of the barrier integrity can arise, 
depending on the skin conditions of the individuals. At the onset of the 
oscillations, the remission time is much larger than the inflammatory 
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time. As the skin permeability increases further, the remission time de-
creases, accompanied by a corresponding increase in the inflammatory 
time. At the critical value of the skin permeability, the two types are 
equal, after which the inflammatory time surpasses the remission time, 
signifying a phase transition. Since both times change continuously 
through the critical point, the phase transition is of the second-order 
type. Prior to the critical point, the discomfort is less serious. A balance 
between comfort and discomfort is reached at the critical point, after 
which the time period of discomfort exceeds that of comfort, leading to 
a decrease in patient’s quality of life. Measuring the skin permeability 
parameter from the onset of the oscillations, the remission time de-
creases logarithmically with the parameter increment from the onset. 
From a clinical point of view, the logarithmic dependence is beneficial 
as it provides a time window for treatment or intervention.

It is worth stressing that, while the findings in this work are from 
mathematical modeling and a dynamical analysis of the AD, to verify 
the findings clinically is infeasible at the present time. For understand-
ing the AD, mathematical model will continue to be effective to provide 
insights into the underpinnings of the skin disease for better treatment 
strategies.

In summary, previous studies on the inflammatory response in AD 
have primarily focused on the immune system’s biological reactions to 
various factors, including pathogens and toxic substances [20,27,28]. 
These studies typically employed in-vivo and in-vitro methods. However, 
these approaches can complicate the assessment of inflammation dura-
tion in AD. By utilizing well-established AD models [24] that accurately 
reflect its pathophysiology, for instance, it can evaluate the effects of 
treatments [31,32] and identify new phenotypes [25]. In the absence 
of real-world data, our in-silico study has produced two significant 
findings: (1) a phase transition between periods of inflammation and re-
mission, and (2) a logarithmic scaling law that governs the duration of 
remission. These findings highlight the crucial role of in-silico research 
in improving our understanding of AD.
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Table A.2
Description and values of the parameters of the AD system Eq.  (1).
 Parameter Description Value  
 𝑃env Environmental stress load 95 (mg/mL)  
 𝛾𝐵 Barrier-mediated inhibition 1  
 of pathogen infiltration  
 𝜅𝑝 Nominal skin permeability (1/day)  
 𝛼𝐼 Rate of pathogen eradication (1/day)  
 by innate immune responses  
 𝛿𝑃 Basal pathogen death rate 1 (1/day)  
 𝜅𝐵 Barrier production rate 0.5 (1/day)  
 𝛾𝑅 Innate immunity-mediated inhibition 10  
 of barrier production  
 𝛿𝐵 Rate of kallikrein-dependent 0.1  
 barrier degradation  
 𝛾𝐺 Adaptive immunity-mediated inhibition 1  
 of barrier production  
 𝜅𝐷 Rate of DC activation by receptors 4 cells/(mL 3 day) 
 𝛿𝐷 Rate of DC degradation 0.5 (1/day)  
 𝑃 − Receptor inactivation threshold 26.6 (mg/mL)  
 𝑃 + Receptor activation threshold 40 (mg/mL)  
 𝐷+ 𝐺𝑎𝑡𝑎3 activation threshold 85 (cells/mL)  
 𝑅off Receptor off level 0  
 𝑅on Receptor on level 16.7  
 𝐺off 𝐺𝑎𝑡𝑎3 off level 0  
 𝐺on 𝐺𝑎𝑡𝑎3 on level 1  
 𝐾off Kallikrein off level 0  
 𝑚on Slope of the linear relation 0.45  
 between 𝑃 (𝑡) and 𝐾on  
 𝛽on Y-intercept of the linear relation 6.71  
 between 𝑃 (𝑡) and 𝐾on  

Appendix A. Parameters of AD model

Parameters of the AD system Eq. (1) and their description are listed 
in Table  A.2.

Appendix B. Subsystem of AD model

Depending on status of three switches or inflammation responses, 
the AD model Eq. (1) can have a different form or representation, 
leading to the following subsystems.
𝑆1-subsystem. All switches in the AD system Eq. (1) are off: (𝑅,𝐾,𝐺) =
(𝑅off, 𝐾off, 𝐺off) = (0, 0, 0), leading to 
𝑑𝑃
𝑑𝑡

=
𝑃𝑒𝑛𝑣 ⋅ 𝜅𝑝
1 + 𝛾𝐵𝐵(𝑡)

− 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
𝑑𝑡

= 𝜅𝐵[1 − 𝐵(𝑡)], (B.1)

𝑑𝐷
𝑑𝑡

= −𝛿𝐷𝐷(𝑡),

𝑆2-subsystem. Only the 𝐺 switch is on, indicating a deficiency in the 
immune response: (𝑅,𝐾,𝐺) = (𝑅off, 𝐾off, 𝐺on = 1). The system becomes
𝑑𝑃
𝑑𝑡

=
𝑃𝑒𝑛𝑣 ⋅ 𝜅𝑝
1 + 𝛾𝐵𝐵(𝑡)

− 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
𝑑𝑡

=
𝜅𝐵[1 − 𝐵(𝑡)]
[1 + 𝛾𝐺𝐺on]

, (B.2)

𝑑𝐷
𝑑𝑡

= −𝛿𝐷𝐷(𝑡),

𝑆3-subsystem. Only the 𝑅 and 𝐾 switches are on: (𝑅,𝐾,𝐺) = (𝑅on, 𝐾on,
𝐺off = 0). In this case, the environment is such that a critical level of 
the infiltrated pathogen load is exceeded. The system becomes
𝑑𝑃
𝑑𝑡

=
𝑃𝑒𝑛𝑣 ⋅ 𝜅𝑝
1 + 𝛾𝐵𝐵(𝑡)

− 𝛼𝐼𝑅on𝑃 (𝑡) − 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
=

𝜅𝐵[1 − 𝐵(𝑡)]
− 𝛿𝐵𝐾(𝑡)𝐵(𝑡), (B.3)
𝑑𝑡 [1 + 𝛾𝑅𝑅on]
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𝑑𝐷
𝑑𝑡

= 𝜅𝐷𝑅on − 𝛿𝐷𝐷(𝑡),

𝑆4-subsystem. All switches in the AD system are on, (𝑅,𝐾,𝐺) = (𝑅on, 𝐾o
signifying the situation where the AD immune response is deficient and 
the environmental infiltrated pathogen load exceeds a critical level. The 
system equations are
𝑑𝑃
𝑑𝑡

=
𝑃𝑒𝑛𝑣 ⋅ 𝜅𝑝
1 + 𝛾𝐵𝐵(𝑡)

− 𝛼𝐼𝑅on𝑃 (𝑡) − 𝛿𝑝𝑃 (𝑡),

𝑑𝐵
𝑑𝑡

=
𝜅𝐵[1 − 𝐵(𝑡)]

[1 + 𝛾𝑅𝑅on][1 + 𝛾𝐺𝐺on]
− 𝛿𝐵𝐾(𝑡)𝐵(𝑡), (B.4)

𝑑𝐷
𝑑𝑡

= 𝜅𝐷𝑅on − 𝛿𝐷𝐷(𝑡),

Appendix C. Logarithmic scaling governing the remission time

When the 𝑅 and 𝐾 switches are turned off, the remission time 𝜏𝑅
represents the travel time from the point (𝑃−, 𝐵1) to (𝑃+, 𝐵2), as illus-
trated in Fig.  C.6(a). Therefore, we can determine the remission time 
from the 𝑆1-system, Eq. (B.1), by satisfying the following conditions:
𝑃 (0) = 𝑃−, 𝐵(0) = 𝐵1  at 𝑡 = 0,

𝑃 (𝜏𝑅) = 𝑃+, 𝐵(𝜏𝑅) = 𝐵2  at 𝑡 = 𝜏𝑅.

From Eq. (B.1), we can easily find 𝐵(𝑡): 
𝐵(𝑡) = 1 + (𝐵1 − 1)𝑒−𝜅𝐵 𝑡. (C.1)

By substituting this into the equation for 𝑃 , we get 
𝑑𝑃
𝑑𝑡

=
𝑃𝑒𝑛𝑣 ⋅ 𝜅𝑝

1 + 𝛾𝐵
[

1 + (𝐵1 − 1)𝑒−𝜅𝐵 𝑡
] − 𝛿𝑝𝑃 (𝑡). (C.2)

Using the parameter values provided in Table  A.2, i.e., 𝛿𝑃 = 1, 𝛾𝐵 = 1
and 𝜅𝐵 = 0.5, and then multiplying both sides by 𝑒𝑡, we obtain 
𝑑
𝑑𝑡
(𝑒𝑡𝑃 (𝑡)) = 𝑒𝑡𝑃 ′(𝑡) + 𝑒𝑡𝑃 (𝑡) =

𝑒𝑡

𝑐1 + 𝑐2𝑒−𝑡∕2
, (C.3)

where 𝑐1 =
2

𝑃𝑒𝑛𝑣𝜅𝑃
 and 𝑐2 =

(𝐵1 − 1)
𝑃𝑒𝑛𝑣𝜅𝑃

. Thus, we get 

𝑃 (𝑡) = 𝑒−𝑡
(

∫
𝑒𝑥

𝑐1 + 𝑐2𝑒−𝑥∕2
𝑑𝑡

)

≡ 𝑒−𝑡𝐼(𝑡). (C.4)

Let 𝑢(𝑡) = 𝑐1𝑒𝑡∕2 + 𝑐2, then 𝐼(𝑡) can be calculated by the following way:

𝐼(𝑡) = ∫
𝑒𝑥

𝑐1 + 𝑐2𝑒−𝑥∕2
𝑑𝑡 = ∫

𝑒3𝑥∕2

𝑐1𝑒𝑥∕2 + 𝑐2
𝑑𝑡

= ∫

(

𝑢 − 𝑐2
𝑐1

)3 1
𝑢
2
𝑐1

𝑐1
𝑢 − 𝑐2

𝑑𝑢

= 2
𝑐31

(

(𝑐1𝑒𝑡∕2 + 𝑐2)2∕2 − 2𝑐2(𝑐1𝑒𝑡∕2 + 𝑐2)

+ 𝑐22 log |𝑐1𝑒
𝑡∕2 + 𝑐2|

)

+ 𝐶,

where 𝐶 is a constant of integration. Using the initial condition 𝑃 (0) =
𝑃−, we can determine the constant, 𝐶:

𝐶 = 𝑃− −
2

𝑐31

{

(𝑐1 + 𝑐2)2

2
− 2𝑐2(𝑐1 + 𝑐2) + 𝑐22 log |𝑐1 + 𝑐2|

}

.

Therefore, we finally obtain 𝑃 (𝑡) as the following form from Eq. (C.4): 
𝑃 (𝑡) = 𝑒−𝑡𝐼(𝑡) = 𝑑1𝑒

−𝑡 + 𝑑2𝑒
−𝑡∕2 + 𝑑3, (C.5)

where

𝑑1 =
2

𝑐31

{

−
3𝑐22
2

+
𝑐31
2
𝐶 + 𝑐22 log(𝑐1𝑒

𝑡∕2 + 𝑐2)

}

, (C.6)

𝑑2 = −
2𝑐2
2
=

1
(1 − 𝐵1)𝑃𝑒𝑛𝑣𝜅𝑝, (C.7)
𝑐1 2

8 
), 

Fig. C.6. (a) Illustration of oscillation between two points (𝑃 − , 𝐵1) and (𝑃 + , 𝐵2), for 
the remission and inflammatory times. For the fixed value of 𝛼𝐼 = 0.13, (b–d) display 
the numerically calculated coefficients 𝐵1, 𝑑1, and 𝑑2 associated with 𝜅𝑝. Each dashed 
line (or curve) in (b–d) represents the fitted regression results.

𝑑3 =
1
𝑐1

=
𝑃𝑒𝑛𝑣𝜅𝑝

2
. (C.8)

Since the remission time 𝜏𝑅 is a solution that satisfies 𝑃 (𝜏𝑅) = 𝑃+, 
we need to solve the following algebraic equation: 

𝑃+ = 𝑑1𝑇
2 + 𝑑2𝑇 + 𝑑3, (C.9)

where 𝑇 = 𝑒−𝑡∕2. Eq. (C.9) is implicit because the coefficient 𝑑1 depends 
on the variable 𝑡 and 𝐵1 is determined by its relationship with 𝜅𝑝, 
making it infeasible to obtain an analytic solution. We thus resort to 
numerically solving the coefficients 𝐵1, 𝑑1, and 𝑑2 using the data 𝜏𝑅 in 
Fig.  3 with the fixed 𝛼𝐼 = 0.13. The results are illustrated in Figs.  C.6(b–
d). In particular, Figs.  C.6(c) and C.6(d) demonstrate that 𝑑1 has a linear 
relationship with 𝜅𝑝 and 𝑑2 exhibits a quadratic relationship, with the 
correlation coefficients of 𝑅2 = 0.9998 and 𝑅2 = 1, respectively. These 
relations enable us to express the coefficients in the following forms:

𝑑1 = 𝑚1𝜅𝑝 + 𝑛1, (C.10)
𝑑2 = 𝑚2𝜅

2
𝑝 + 𝑛2𝜅𝑝,

where 𝑚1 ≈ −163.1, 𝑚2 ≈ 120, 𝑛1 ≈ 114.2 and 𝑛2 ≈ −87.97. For different 
values of 𝛼𝐼 , we have verified that the coefficients 𝑑1 and 𝑑2 retain the 
same form as in Eq. (C.10).

Solving Eq. (C.9) for 𝑇 , we obtain: 

𝑇 =
− 𝑑2 +

√

𝑑22 − 4𝑑1𝑑4
2𝑑1

, (C.11)

where 𝑑4 = 𝑑3 − 𝑃+ and can be expressed as 𝑚4𝜅𝑝 + 𝑛4. Since the 
numerator of 𝑇  is a quadratic function of 𝜅𝑝 and the denominator is 
a linear function, the dependence of 𝑇  on 𝜅𝑝 is linear: 

𝑇 ∼ 𝑎𝜅𝑝 − 𝑏, (C.12)

where 𝑎 and 𝑏 are constants. Since 𝑇 = 𝑒−𝜏𝑅∕2, we obtain the logarith-
mic scaling law between 𝜏𝑅 and 𝜅𝑝: 

𝜏𝑅 ∼ −2 log(𝜅𝑝 − 𝑐), (C.13)

where 𝑐 is a constant.
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The data supporting the findings of this study are available in the 
article.
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