Optical properties of two-dimensional Dirac–Weyl materials with a flatband

Li-Li Ye; Chen-Di Han; Ying-Cheng Lai

Appl. Phys. Lett. 124, 060501 (2024)
https://doi.org/10.1063/5.0178936
Optical properties of two-dimensional Dirac-Weyl materials with a flatband

I. INTRODUCTION

A frontier area of research in applied physics is two-dimensional (2D) Dirac–Weyl materials whose energy band consists of a pair of Dirac cones and a topologically flatband, electronic or optical. A flatband can also arise in metal–organic and covalent–organic materials.28,30 This Perspective focuses on the optical properties but with a brief review of a number of phenomena related to the electronic and magnetic properties of these materials.

To develop optical sensors and modulators based on Dirac–Weyl materials, the problem of adequate optical absorption must be addressed. Graphene, due to its linear dispersion relationship, has poor absorption at visible light. As a result, the optical conductivity can be significantly enhanced in these flatband materials as compared with graphene, making them potentially better candidates for optical sensing and modulation. Recently, a comprehensive theory for the optical conductivity of a spectrum of flatband Dirac–Weyl materials has been developed, with explicit formulas for both the real and imaginary parts of the conductivity derived through two independent approaches. This Perspective offers a review of the development. An understanding of the optical properties of the flatband Dirac–Weyl materials paves the way for optical device applications in the terahertz–frequency domain.

The emergence of a flatband in Dirac–Weyl materials offers new possibilities for electronic transitions, leading to stronger interaction with light. As a result, the optical conductivity can be significantly enhanced in these flatband materials as compared with graphene, making them potentially better candidates for optical sensing and modulation. Recently, a comprehensive theory for the optical conductivity of a spectrum of flatband Dirac–Weyl materials has been developed, with explicit formulas for both the real and imaginary parts of the conductivity derived through two independent approaches. This Perspective offers a review of the development. An understanding of the optical properties of the flatband Dirac–Weyl materials paves the way for optical device applications in the terahertz–frequency domain.

ABSTRACT

The optical properties of graphene, the conventional way was to treat the material as a thin layer with electric conductivity depending on the angular frequency ω of the incident field, leading to the optical conductivity $\sigma(\omega)$ that is typically complex. A difficulty in such applications is that the light absorption rate of a single-layer graphene is quite low—only a few percent. To significantly enhance the optical absorption has attracted a great deal of interest since the beginning of the field of 2D Dirac–Weyl materials. For example, it was found that, when graphene is coupled with a proper dielectric material, the surface plasmon mode can arise so that the achievable optical absorption rate can be over 90%. Such surface plasmon can also propagate in a graphene lattice with frequency above the terahertz domain, implying potential applications in high-frequency communication devices. It was also found that, in slightly twisted bilayer graphene, unusual plasmon modes and strong optical absorption can arise.

In the study of the optical properties of graphene, the conventional way was to treat the material as a thin layer with electric conductivity depending on the angular frequency ω of the incident field, leading to the optical conductivity $\sigma(\omega)$ that is typically complex. A difficulty in such applications is that the light absorption rate of a single-layer graphene is quite low—only a few percent. To significantly enhance the optical absorption has attracted a great deal of interest since the beginning of the field of 2D Dirac–Weyl materials. For example, it was found that, when graphene is coupled with a proper dielectric material, the surface plasmon mode can arise so that the achievable optical absorption rate can be over 90%. Such surface plasmon can also propagate in a graphene lattice with frequency above the terahertz domain, implying potential applications in high-frequency communication devices. It was also found that, in slightly twisted bilayer graphene, unusual plasmon modes and strong optical absorption can arise.

In the study of the optical properties of graphene, the conventional way was to treat the material as a thin layer with electric conductivity depending on the angular frequency ω of the incident field, leading to the optical conductivity $\sigma(\omega)$ that is typically complex. A difficulty in such applications is that the light absorption rate of a single-layer graphene is quite low—only a few percent. To significantly enhance the optical absorption has attracted a great deal of interest since the beginning of the field of 2D Dirac–Weyl materials. For example, it was found that, when graphene is coupled with a proper dielectric material, the surface plasmon mode can arise so that the achievable optical absorption rate can be over 90%. Such surface plasmon can also propagate in a graphene lattice with frequency above the terahertz domain, implying potential applications in high-frequency communication devices. It was also found that, in slightly twisted bilayer graphene, unusual plasmon modes and strong optical absorption can arise.
The lattice has a threefold rotational symmetry and is also called the T_3 lattice. The tight binding Hamiltonian describing the electronic structure of the dice lattice, taking into account nearest-neighbor hopping, is given by

$$T = \sum_{\langle i,j \rangle} t_{ij} \left| \psi_i \right> \left< \psi_j \right| + \sum_{i} \left(\epsilon_i \left| \psi_i \right> \left< \psi_i \right| \right)$$

where ϵ_i is the on-site energy, and t_{ij} is the hopping energy between sites i and j. The first term describes the hopping between nearest-neighbor sites, and the second term represents the on-site energies.

The lattice degenerates to graphene with pseudospin-1/2 components. The lattice degenerates to graphene with pseudospin-1/2 components.

For diatomic lattice systems, the lattice is constructed by removing some couplings from a triangular lattice. The emergence of a flatband is confirmed by first-principle calculations. In general, to fully characterize the electromagnetic properties of the material, both the real and imaginary parts of the optical conductivity are required.

In a recent work, a comprehensive theory for the optical conductivity of a spectrum of 2D Dirac–Weyl materials was developed. It is the so-called x-T_3 lattice system with graphene sitting at one end and pseudospin-1 material at the other end of the spectrum. An x-T_3 lattice is formed from the honeycomb graphene lattice by adding an extra atom at the center of each hexagonal unit cell, with the normalized coupling strength x between this atom and any nearest-neighbor atom in the cell, where $0 \leq x \leq 1$ and t is the nearest-neighbor hopping energy in the original graphene lattice. The low energy excitations of the x-T_3 lattice can be described by the generalized Dirac–Weyl equation, where the spinor wave function has three components. The lattice degenerates to graphene with pseudospin-1/2 quasiparticles for $x = 0$—only in this limiting case is a flatband absent. For $x > 0$, a flatband through the conic interaction of the two Dirac cone points exists. Under a continuum approximation, an x-T_3 lattice is effectively a thin conducting layer. Because of the flatband, three types of band-to-band transitions can occur: intraband, cone-to-cone, and flat-band-to-cone transitions. A general finding was that the extra transitions brought upon by the flatband can enhance the optical conductivity.

Experimentally, photonic crystals can be used to generate x-T_3 lattices. Electronically, candidate materials include transition-metal oxide SrTiO$_3$/SrRbO$_3$/SrTiO$_3$ trilayer heterostructures, SrCu$_2$(BO$_3$)$_2$ (Ref. 12) or graphene-In$_2$Te$_2$. Realization of other flatband lattice systems is also possible.

This Perspective is organized, as follows. In Sec. II, several experimental lattice systems of 2D Dirac–Weyl flatband materials are introduced. The full optical-conductivity theory of these materials is reviewed in Sec. III. Opinion on potential future research is offered in Sec. IV.

II. EXPERIMENTALLY ACCESSIBLE LATTICE SYSTEMS OF 2D DIRAC–WEYL FLATBAND MATERIALS

Figure 1 shows three commonly studied lattice structures of 2D Dirac–Weyl flatband materials—dice, Lieb, and Kagome lattices, together with their corresponding energy-band structures. The details of these lattices are described below.

A. Dice lattice

Dice lattice was originally proposed to study the Green’s function for diatomic lattice systems. The lattice is constructed by removing some couplings from a triangular lattice. The emergence of a flatband and a localization phenomenon in the dice lattice were first reported in Ref. 1. The localization behavior was later found to persist in the dice lattice system in the presence of a magnetic field. A similar phenomenon was also reported in quantum networks, in systems with spin-orbit coupling, and in a Bose–Hubbard model.

About 14 years ago, interest in the dice lattice was rejuvenated due to its unique structure of a pair of Dirac cones and a flatband.

The dice lattice has three nonequivalent atoms, as shown in Fig. 2(a). The lattice has a threefold rotational symmetry and is also called the T_3 lattice. The tight binding Hamiltonian describing the electronic structure of the dice lattice, taking into account nearest-neighbor hopping, is given by

$${H}_{\text{dice}} = t \sum_{\langle i,j \rangle} \left| \psi_i \right> \left< \psi_j \right| + \sum_{i} \left(\epsilon_i \left| \psi_i \right> \left< \psi_i \right| \right)$$

where t is the nearest-neighbor hopping energy in the original graphene lattice. The low energy excitations of the x-T_3 lattice can be described by the generalized Dirac–Weyl equation, where the spinor wave function has three components. The lattice degenerates to graphene with pseudospin-1/2 quasiparticles for $x = 0$—only in this limiting case is a flatband absent. For $x > 0$, a flatband through the conic interaction of the two Dirac cone points exists. Under a continuum approximation, an x-T_3 lattice is effectively a thin conducting layer. Because of the flatband, three types of band-to-band transitions can occur: intraband, cone-to-cone, and flat-band-to-cone transitions. A general finding was that the extra transitions brought upon by the flatband can enhance the optical conductivity.

Experimentally, photonic crystals can be used to generate x-T_3 lattices. Electronically, candidate materials include transition-metal oxide SrTiO$_3$/SrRbO$_3$/SrTiO$_3$ trilayer heterostructures, SrCu$_2$(BO$_3$)$_2$ (Ref. 12) or graphene-In$_2$Te$_2$. Realization of other flatband lattice systems is also possible.

This Perspective is organized, as follows. In Sec. II, several experimental lattice systems of 2D Dirac–Weyl flatband materials are introduced. The full optical-conductivity theory of these materials is reviewed in Sec. III. Opinion on potential future research is offered in Sec. IV.

II. EXPERIMENTALLY ACCESSIBLE LATTICE SYSTEMS OF 2D DIRAC–WEYL FLATBAND MATERIALS

Figure 1 shows three commonly studied lattice structures of 2D Dirac–Weyl flatband materials—dice, Lieb, and Kagome lattices, together with their corresponding energy-band structures. The details of these lattices are described below.

A. Dice lattice

Dice lattice was originally proposed to study the Green’s function for diatomic lattice systems. The lattice is constructed by removing some couplings from a triangular lattice. The emergence of a flatband and a localization phenomenon in the dice lattice were first reported in Ref. 1. The localization behavior was later found to persist in the dice lattice system in the presence of a magnetic field. A similar phenomenon was also reported in quantum networks, in systems with spin-orbit coupling, and in a Bose–Hubbard model.

About 14 years ago, interest in the dice lattice was rejuvenated due to its unique structure of a pair of Dirac cones and a flatband.

The dice lattice has three nonequivalent atoms, as shown in Fig. 2(a). The lattice has a threefold rotational symmetry and is also called the T_3 lattice. The tight binding Hamiltonian describing the electronic structure of the dice lattice, taking into account nearest-neighbor hopping, is given by

$$T = \sum_{\langle i,j \rangle} t_{ij} \left| \psi_i \right> \left< \psi_j \right| + \sum_{i} \left(\epsilon_i \left| \psi_i \right> \left< \psi_i \right| \right)$$

where t_{ij} is the hopping energy between sites i and j. The first term describes the hopping between nearest-neighbor sites, and the second term represents the on-site energies.

The lattice degenerates to graphene with pseudospin-1/2 components. The lattice degenerates to graphene with pseudospin-1 components.

For diatomic lattice systems, the lattice is constructed by removing some couplings from a triangular lattice. The emergence of a flatband and a localization phenomenon in the dice lattice were first reported in Ref. 1. The localization behavior was later found to persist in the dice lattice system in the presence of a magnetic field. A similar phenomenon was also reported in quantum networks, in systems with spin-orbit coupling, and in a Bose–Hubbard model.

About 14 years ago, interest in the dice lattice was rejuvenated due to its unique structure of a pair of Dirac cones and a flatband.

The dice lattice has three nonequivalent atoms, as shown in Fig. 2(a). The lattice has a threefold rotational symmetry and is also called the T_3 lattice. The tight binding Hamiltonian describing the electronic structure of the dice lattice, taking into account nearest-neighbor hopping, is given by

$$T = \sum_{\langle i,j \rangle} t_{ij} \left| \psi_i \right> \left< \psi_j \right| + \sum_{i} \left(\epsilon_i \left| \psi_i \right> \left< \psi_i \right| \right)$$

where t_{ij} is the hopping energy between sites i and j. The first term describes the hopping between nearest-neighbor sites, and the second term represents the on-site energies.

The lattice degenerates to graphene with pseudospin-1/2 components. The lattice degenerates to graphene with pseudospin-1 components.
where t is the nearest-neighbor hopping energy, a^\dagger, b^\dagger, c^\dagger and a, b, c are creating and annihilation operators, respectively, and δ is a vector in the physical space with $|\delta| = a$. Expanding δ in the basis (a_k, b_k, c_k) leads to the Hamiltonian:

$$H_{\text{Dice}} = -t \begin{pmatrix} 0 & \Delta_k & 0 \\ \Delta^*_k & 0 & \Delta_k \\ 0 & \Delta^*_k & 0 \end{pmatrix},$$

(2)

where $\Delta_k = 2 \cos \left(-i k_c a / 2 \right) \cos \left(\sqrt{3} / 2 k_a a \right) + \exp (i k_c a)$. The energy eigenvalues are $E_\pm = \pm t \sqrt{\Delta_k \Delta^*_k}$ and $E_0 = 0$. Figure 2(b) shows the first Brillouin zone. At each of the six corners, the conduction and valence bands touch each other at the Dirac points K and K' (corresponding to two distinct valleys), which are given by

$$K = \left(\frac{2 \pi}{3a}, \frac{2 \pi}{3a} \right), \quad K' = \left(\frac{2 \pi}{3a}, -\frac{2 \pi}{3a} \right),$$

(3)

and there is a flatband through the Dirac point, as shown in Fig. 2(c). For low energy excitations, the momentum relative to a Dirac point is $q = k - K$, so one can write $\Delta_q \equiv \Delta_k$. Expanding Δ_k about K gives $\Delta_q \approx q_x - i q_y$, so the energy becomes $E_q \approx \pm |q|$. The effective Hamiltonian for low energy excitations can then be written as

$$H = v_F S \cdot q,$$

(4)

where

$$S_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad S_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}.$$

S follows general type of Levi-Civita symbols, and v_F is the Fermi velocity. A similar energy expansion can be carried for the other valley K', leading to $H_{K'} = v_F (S_0 q_x - S_y q_y)$. For the dice lattice, there exist two distinct valleys—each triply degenerated.

B. Lieb lattice

The Lieb lattice originated the Lieb theorems of ferromagnetism for certain lattice structures. The first explicit lattice structure was studied in Ref. 69. Subsequently, a photonic crystal realization of the Lieb lattice was proposed. The unit cell of the Lieb lattice has three nonequivalent atoms forming a square-like structure, as shown in Fig. 1(c). The tight binding Hamiltonian is

$$H_{\text{Lieb}} = -2t \begin{pmatrix} 0 & \cos (k_x a / 2) & \cos (k_y a / 2) \\ \cos (k_x a / 2) & 0 & 0 \\ \cos (k_y a / 2) & 0 \end{pmatrix}.$$

(5)

The eigenvalues are $E = \pm t \sqrt{\cos^2 (k_x a / 2) + \cos^2 (k_y a / 2)}$ and $E = 0$. In the momentum space, the conduction and valence bands touch each other at $k_x, k_y = \pm \pi / a$, corresponding to four Dirac points, as shown in Fig. 1(d). The effective Hamiltonian for the Lieb lattice has the same form as that for the dice lattice given by Eq. (4) through a unitary transform. The difference is that, for a dice lattice, there are two distinct valleys but there is only one valley for the Lieb lattice.

The Lieb lattice is experimentally accessible through fabrication techniques, such as laser writing of optical waveguides. The electronic structure through the use of CO and Cu(1,1,1) molecules was studied.

C. Kagome lattice

The Kagome lattice originated from the study of antiferromagnetism in decorated honeycomb lattice. The lattice structure has the same woven Kagome pattern as shown in Fig. 1(c). The Kagome lattice represents a prototypical system for topological insulators. The unit cell has three nonequivalent atoms. The tight-binding Hamiltonian is

$$H_{\text{Kagome}} = -2t \begin{pmatrix} 0 & \cos k_x & \cos k_y \\ \cos k_x & 0 & \cos k_z \\ \cos k_y & \cos k_z & 0 \end{pmatrix},$$

(6)

where $k_i = k - \delta_i$, $\delta_x = x a$, $\delta_y = (x + \sqrt{3} y) a / 2$, and $\delta_z = \delta_x - \delta_y$. The energy bands are given by $E(k) = \pm (1 \pm \sqrt{4 \Delta_k^2 - 3}) 2t$ with $\Delta_k = \cos k_x + \cos k_y + \cos k_z$. The first two bands touch each other at six Dirac points. H_{K_a} is a vector of $S_0 = S_x a + S_y b + S_z c$. The flat band, thus, appears at the top of the conduction band, as shown in Fig. 1(f). This feature is distinct from the dice and Lieb lattices where the flat band is located at the Dirac points.

A possible realization of the Kagome lattice through Ni$_3$Co$_2$Si$_2$ was proposed earlier, where a first-principle calculation was carried out, demonstrating that nontrivial topological states exist in both Dirac and flatbands. In a recent work, an experimental flatband system through a self-assembled monolayer of 2D hydrogen-bond organic frameworks of 1,3,5-tris(4-hydroxyphenyl) benzene (THPB) on Au (111) surface was reported. The measured band structure fits well with that of the breathing-Kagome lattice. In addition, flat-to-flat band transitions in a diatomic Kagome lattice were reported, where the interband optical absorption coefficient exhibits a sharp peak at the gap energy, indicating a transition between the two flatbands. The results were further confirmed by first principles calculations for the material Li$_{12}$(Ni$_3$Co$_2$Si$_2$)$_2$. Other phenomena in the Kagome lattice include the excited quantum anomalous Hall effect, an excitonic insulator, and theoretically proposed excitonic Bose–Einstein condensation.

D. α-T$_3$ lattice

In addition to the dice, Lieb, and Kagome lattices, another lattice structure that can generate a flatband through the Dirac points is α-T$_3$ lattice, which is formed by adding an additional atom to the unit cell of the graphene lattice with tunable coupling to the nearest atoms in the original honeycomb lattice. The two limiting cases $x = 0, 1$ correspond to graphene and dice lattice, respectively. The tight-binding Hamiltonian is

$$H_{\alpha=T_3} = -t \begin{pmatrix} 0 & \cos \phi \Delta^*_k & 0 \\ \cos \phi \Delta_k & 0 & \sin \phi \Delta_k \\ 0 & \sin \phi \Delta^*_k & 0 \end{pmatrix},$$

(7)

where $\Delta_k = 2 \cos \left(-i k_a / 2 \right) \cos \left(\sqrt{3} / 2 k_a a \right) + \exp (i k_c a)$ and $x \equiv \tan \phi$ for $0 \leq \phi < \pi / 4$. The effective Hamiltonian is

Appl. Phys. Lett. 124, 060501 (2024); doi: 10.1063/5.0178936
Published under an exclusive license by AIP Publishing
where \(f_{k} = s \kappa + i k_{\sigma} \) and \(s \) is the valley index. For \(s = 1 \), there are three bands: \(\tau = 0, \pm 1 \), corresponding to a flatband, the conduction, and valence bands, respectively. The eigenfunctions are

\[
|\psi_{s=1} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} (\cos \phi) e^{i\theta_{k}} \\ (\sin \phi) e^{-i\theta_{k}} \end{pmatrix}, \quad |\psi_{\tau=0} \rangle = \begin{pmatrix} (\sin \phi) e^{i\theta_{k}} \\ (0) \end{pmatrix}, \quad |\psi_{\tau=1} \rangle = \begin{pmatrix} (0) \\ (\cos \phi) e^{-i\theta_{k}} \end{pmatrix},
\]

where \(\theta_{k} \) is the phase angle of \(f_{k} : f_{k} = |f_{k}| e^{i\theta_{k}} \). For the other valley, one has \(f_{k+1} = -f_{k} \), so the solution can be obtained from a simple sign change: \(\theta_{k} \rightarrow -\theta_{k} \).

For materials, such as \(\text{Hg}_{1-x} \text{Cd}_{x} \text{Te} \), theoretical computations\(^{85} \) revealed their equivalence to the \(x-T_{3} \) lattice with \(x = 1/\sqrt{3} \approx 0.58 \). Experimental realizations of \(x-T_{3} \) lattices have been achieved.\(^{86-88} \)

E. Additional lattices with a flatband

Besides 2D lattices, a flatband can also arise in 1D lattices, which was experimentally demonstrated using a waveguide array to simulate the atomic interaction.\(^{89} \) Observation of localized flatband modes was made in a quasi-1D photonic rhombic lattice.\(^{90} \) A flatband can also arise in 3D lattices,\(^{91} \) e.g., in lattices with a diamond structure,\(^{92} \) where the transport behavior in the presence of impurities was studied.\(^{93} \) The Lieb lattice can be extended to three dimensions, leading to the perovskite lattice with bandgap opening. A flatband can also occur in 3D Dirac semimetals.\(^{94} \) A tight-binding model for a 3D pyrochlore lattice was studied, revealing unusual flatband and also a flatband enabled Weyl state.\(^{95} \) The theoretical predictions were verified by first-principle calculations based on \(\text{Sr}_{2} \text{NiBO}_{3} \).

III. OPTICAL PROPERTIES OF 2D FLATBAND DIRAC-WEYL MATERIALS

The main motivation to investigate the optical properties of Dirac–Weyl materials with a flatband is that the flatband offers new possibilities for electronic transition, so the optical conductivity could be significantly enhanced as compared with graphene, making these flatband materials better candidates for optical sensors and modulators. For example, it was demonstrated that, when an external electrical field is applied to a pseudospin-1 material, the induced current can be two times larger than that in graphene under equilibrium conditions,\(^{96} \) and the enhancement occurs in optical and magneto-optical conductivity.\(^{97,98} \) Due to the complications brought upon by the flatband, some existing studies focused only on the real part of the optical conductivity,\(^{99} \) leaving the crucial issue of optical absorption largely unaddressed. A recent work\(^{100} \) filled this gap by deriving the full optical conductivity with both real and imaginary parts for the \(x-T_{3} \) lattice using the Kubo formula.\(^{101} \) Alternatively, the formulas were derived\(^{102} \) using the Kramers–Kronig method.\(^{103} \)

There are three possible types of electronic transitions. For incident wave of relatively low frequency \(\hbar \omega < \mu \), the intraband process dominates. For high frequency: \(\hbar \omega > \mu \), two processes become important: the transition from the flatband to the Dirac cone and the cone-to-cone transition, where the former can be enhanced by increasing the value of \(\nu \), e.g., the transition rate for pseudospin-1 materials can be twice as large as that in graphene.\(^{79} \) For the cone-to-cone transition, its rate is reduced with increasing \(\nu \) and becomes zero for \(\nu = 1 \). The complete formulas of the optical conductivity are general because it does not depend on other material properties, such as the Fermi velocity.\(^{80} \)

The starting point was to derive the optical matrix elements for the \(x-T_{3} \) lattice. From the effective Hamiltonian (8), the current along the \(x \) direction is \(j_{x} = -e\tau_{x} \hat{S}_{x} \), where

\[
\hat{S}_{x} = \begin{pmatrix} 0 & \cos \phi & 0 \\ 0 & 0 & \sin \phi \\ 0 & \sin \phi & 0 \end{pmatrix}.
\]

The matrix representation for the current operator is the optical matrix. The form of the eigenfunctions in Eq. (9) indicate that, for \(\mathbf{k} \neq \mathbf{k}^{\prime} \), the expectation value of the current is zero, where the momentum \(\mathbf{k} \) is of the initial state and the one \(\mathbf{k}^{\prime} \) is of the state after transition between the energy levels.\(^{104} \) For \(\mathbf{k} = \mathbf{k}^{\prime} \), one gets

\[
|\langle \mathbf{k}, \tau = \pm | \mathbf{j}_{i} | \mathbf{k}, \tau = \mp \rangle |^{2} = e^{2i\nu_{1}} \cos^{2} \theta_{k},
\]

\[
|\langle \mathbf{k}, \tau = \pm | \mathbf{j}_{i} | \mathbf{k}, \tau = \mp \rangle |^{2} = e^{2i\nu_{1}} \sin^{2} \theta_{k} \cos^{2} (2]\phi),
\]

\[
|\langle \mathbf{k}, \tau = 0 | \mathbf{j}_{i} | \mathbf{k}, \tau = \pm \rangle |^{2} = |\langle \mathbf{k}, \tau = \pm | \mathbf{j}_{i} | \mathbf{k}, \tau = 0 \rangle |^{2} = e^{2i\nu_{1}} \frac{1}{2} \sin^{2} \theta_{k} \sin^{2} (2\phi).
\]

The general Kubo conductivity is

\[
\sigma_{ij}(\omega, \phi) = \frac{\hbar}{2i\pi^{2}} \sum_{n,m} \frac{f(E_{n}) - f(E_{m})}{E_{n} - E_{m}} \times \left(\langle n | j_{i} | n \rangle \langle m | j_{i} | n \rangle \langle n | j_{i} | m \rangle \langle m | j_{i} | n \rangle \right) \left(\frac{E_{n} - E_{m} - \hbar \omega}{E_{n} - E_{m} - \hbar \omega} + \frac{E_{m} - E_{n} - \hbar \omega}{E_{m} - E_{n} - \hbar \omega} \right),
\]

where the subscripts \(i \) and \(j \) specify the directions of the current and of the electric field, respectively. For a homogeneous material and in the absence of any magnetic field, one has \(\sigma_{xx} = \sigma_{yy} = \sigma_{xy} = 0 \). For simplicity, consider the case of \(i = j = x \). The summation is for all the state with \(|n\rangle = |\mathbf{k}, \tau\rangle \) and \(|m\rangle = |\mathbf{k}^{\prime}, \tau^{\prime}\rangle \). The quantity \(f(E) \) in Eq. (11) is the Fermi–Dirac distribution function with a positive chemical potential \(\mu \).

Due to momentum conservation, the transitions from \(|n\rangle \) and \(|m\rangle \) are among the energy bands. Let \(\sigma^{(1)}(\omega, \phi) \) and \(\sigma^{(3)}(\omega, \phi) \) denote the conductivity due to intraband, cone-to-cone, and flat-to-cone transitions, respectively. For the intraband process, the transition is from the band conduction to itself with \(E_{n} = E_{m} \rightarrow 0 \) and \(E_{n} \approx E_{m} \approx \mu \), leading to

\[
f(E_{m}) - f(E_{n}) \approx -\frac{\partial f}{\partial \epsilon} \bigg|_{-\mu} = \delta(\epsilon - \mu),
\]

so Eq. (11) becomes

\[
\sigma^{(1)}(\omega, \phi) = \frac{\hbar}{i\pi^{2}} \int dk_{x} dk_{y} \frac{\partial f^{2}}{\partial \omega} \delta(\epsilon - \mu),
\]

Inserting the optical matrix element in Eq. (10) into Eq. (12) and making use of the linear dispersion relationship \(\epsilon = \hbar \nu_{y} |\mathbf{k}| \) in the polar coordinates, one gets

\[
\int dk_{x} dk_{y} f_{\nu_{y}} \approx \frac{e^{2}}{\hbar} \int_{0}^{2\pi} c \epsilon d\epsilon \int_{0}^{2\pi} \cos^{2} \theta_{k} d\theta.
\]
Equation (12) becomes
\[
\sigma^{(1)}(\omega, \phi) = \frac{\hbar^2}{i\pi} \int \epsilon \left(-\delta(\epsilon - \mu) \right) e^{-i\epsilon \omega} d\epsilon = \frac{\epsilon^2 \mu}{\pi \hbar^2 \omega}. \tag{14}
\]
With the notation \(\sigma_0 \equiv \epsilon^2/(4\hbar) \), the intraband conductivity is
\[
\sigma^{(1)}(\omega, \phi) = \frac{4i\mu \sigma_0}{\pi \hbar^2},
\]
which is identical to the formula in other 2D materials, such as graphene. The denominator indicates that the intraband conductivity dominates for small frequencies.

The cone-to-cone transitions can then be treated: those from \(|\tau = -\rangle \) to \(|\tau = +\rangle \) or vice versa (so there is an additional factor of two in the summation), leading to
\[
\sigma^{(2)}(\omega, \phi) = \frac{\hbar^2}{i\pi} \sum_{n,m} f(E_n) f(E_m) f^2_{nm}(2\hbar\Omega) \int \left[f(-\epsilon) - f(\epsilon) \right] \frac{\hbar \omega}{4\epsilon^2 - (\hbar \omega)} d\epsilon.
\]
For \(k = k' \) and \(E_n \) and \(E_m \) belonging to different bands, one can write \(E_n = \epsilon \) and \(E_m = -\epsilon \). Using the integral from Eq. (13) and the optical matrix elements Eq. (10), one has
\[
\sigma^{(2)}(\omega, \phi) = \cos^2(2\phi) \frac{\hbar^2}{i\pi} \int \left[f(-\epsilon) - f(\epsilon) \right] \frac{\hbar \omega}{4\epsilon^2 - (\hbar \omega)} d\epsilon.
\]
The Fermi–Dirac distribution implies nontrivial values of \(\sigma^{(2)}(\omega, \phi) \) arise only for \(\epsilon > \mu \) or \(\epsilon < -\mu \) where, in the polar coordinates, only the first case contributes. This leads to
\[
\sigma^{(2)}(\omega, \phi) = \cos^2(2\phi) \frac{\hbar^2}{4\pi} \int \frac{\hbar \omega}{4\epsilon^2 - (\hbar \omega)} d\epsilon.
\]
The integral has a singularity for \(2\hbar \omega > \mu \). Using the residue theorem, one gets
\[
\sigma^{(2)}(\omega, \phi) = \cos^2(2\phi) \sigma_0 \left[\Theta(\hbar \omega - 2\mu) - \frac{i}{\pi} \ln \left\{ \frac{\hbar \omega + 2\mu}{\hbar \omega - 2\mu} \right\} \right], \tag{16}
\]
where \(\Theta \) is the Heaviside step function. It can be verified that, for \(\phi = 0 \), the result coincides with that for graphene. At the opposite end of the \(x-T_3 \) spectrum \(\phi = \pi/4 \) (pseudospin-1), the integral is zero.

The same method can be used to obtain the contribution of the flat-to-cone transitions to the optical conductivity. In this case, \(E_n = \epsilon \) and \(E_m = 0 \), so
\[
\sigma^{(3)}(\omega, \phi) = \sin^2(2\phi) \frac{\hbar^2}{i\pi} \int \frac{\hbar \omega}{4\epsilon^2 - (\hbar \omega)^2} d\epsilon,
\]
where the singularity occurs at \(\hbar \omega = \epsilon \) and the weight becomes \(\sin^2(2\phi) \). Evaluating this integral gives
\[
\sigma^{(3)}(\omega, \phi) = 2 \sin^2(2\phi) \sigma_0 \left[\Theta(\hbar \omega - \mu) - \frac{i}{\pi} \ln \left\{ \frac{\hbar \omega + \mu}{\hbar \omega - \mu} \right\} \right]. \tag{17}
\]
These conductivity formulas suggest that Dirac–Weyl flatband materials can have significantly larger optical conductivity than that for graphene, due to the much stronger interaction between light and the lattice structure of the materials.

As an example, Figs. 3(a), 3(c), and 3(e) show the real part of the finite-temperature optical conductivity for three different values of \(\alpha \), respectively, to which the intraband process has no contribution. For \(\alpha = 0 \) [graphene, Fig. 3(a)], only the cone-to-cone transition exists. For \(\alpha = 1/\sqrt{3} [\text{Fig. 3(c)}] \), there are two transition points: cone-to-cone transition for \(\hbar \omega/\mu > 2 \) and flat-band-to-cone transition for \(\hbar \omega/\mu > 1 \). An interband transition leads to a dip in the conductivity plot. The step-function type of transition is smoothed out by finite temperatures. (b), (d), and (f) Imaginary part of the optical conductivity for \(\alpha = 0, 1/\sqrt{3}, \) and \(1 \), respectively. Reprinted with permission from Han and Lai, Phys. Rev. B 105, 155405 (2022). Copyright 2022 American Physical Society.
The formulas [Eqs. (15)–(17)] give a complete description of the optical conductivity of the α-T_3 lattice, which were verified by an independent theoretical approach: the Kramers–Kronig formula. As examples of the application of the conductivity formulas, two phenomena were studied. First, while intraband transition leads to TM polarized waves at low frequencies (1–10 THz), TE polarized waves can emerge at high frequencies (100–300 THz), due to the two interband transitions. Second, the unique flat-band-to-cone transition generates multifrequency TE propagating waves and a strong optical response. These phenomena were numerically confirmed by the behaviors of propagating surface wave and scattering.

IV. DISCUSSION

In general, the optical responses of flatband Dirac–Weyl materials are stronger than those of graphene, as conductivity due to the flatband-to-cone transition is twice of that induced by cone-to-cone transition. The physical reason behind is that the plane waves in these materials have a smaller attenuation length due to the large imaginary part of the optical conductivity as compared to that in graphene. This means that, at the same frequency, a larger scattering cross section can arise in flatband Dirac–Weyl materials.

A complete description of the optical conductivity of flatband Dirac–Weyl materials opens the door to investigating problems pertinent to development of optical devices. For example, intrinsic plasmon modes whose physical properties depend on the polarization were studied with the finding that TM waves are the result of intraband transitions, which usually occur in the frequency range of 1–10 THz, but TE waves are the result of interband transitions, which can arise in a higher frequency range: 100–300 THz. When two interband transitions occur (e.g., for $0 < \alpha < 1$ in the α-T_3 lattice), two TE surface waves can arise, respectively, at $\hbar \omega/\mu \approx 1, 2$. It was also suggested that TE polarized waves can be tuned by adjusting the chemical potential. Another example is scattering from a dielectric sphere coated with multiple layers of flatband Dirac–Weyl material, where TM wave scattering can be stronger than TE wave, due to the reduced imaginary part of the optical conductivity at low temperatures. This phenomenon can be exploited for enhancing a certain desired polarization. A full optical conductivity theory allows electromagnetic dynamics in flatband Dirac–Weyl materials to be studied in detail. Issues, such as the emergence of intrinsic plasmon modes at a single or multiple frequencies, loss, attenuation length, and finite temperatures, can be studied in detail. In fact, the occurrence of multi-frequency plasmon modes implies the possibility of achieving superscattering or cloaking at multiple frequencies. These broadband effects can find applications in optical sensing, imaging, tagging, or spectroscopy. Moreover, edge states in graphene can lead to a blue shift in the plasmon modes. To exploit flatband Dirac–Weyl materials for applications in quantum plasmonics could be an interesting area of research.

We briefly discuss the effects of impurities and many-body interaction on the optical response.

A. Effects of impurities

A number of previous works addressed this issue, but mainly for graphene. The general methodology is to start from the linear dispersion relationship and model the effects of defects or impurities on optical scattering through the incorporation of a relaxation time, taking into account electron–phonon scattering. For graphene, the relaxation time is relatively small, so it affects the low-frequency response more than the high-frequency response, rendering negligible the effect on optical response. In another work that went beyond the Dirac-cone approximation, the authors used the tight-binding model and the Kubo formula to study the effects of different types of impurities in graphene on the optical response, which included random potentials, random vacancies, and random coupling, and found that the interband transition strength decreases with the impurity density. For example, for lattice vacancies, the interband transition is strong for 5% of the vacancies but is barely observable for 10% of the vacancies. For general types of impurities, their effects on the transition cannot be neglected.

We briefly discuss the effects of impurities and many-body interactions, in general, will lead to a reduction in the optical transition strength as compared with graphene, but the issue remains to be outstanding.

B. Effects of many-body interactions on optical response

In graphene, the electron self-energy was used to describe the electron–electron interaction, and the scattering conductivity results were compared with the experimental measurements, validating the approach. The electron–electron interactions and impurity scattering can reduce the transition strength by 20%. An increase in the real part of the conductivity at $\hbar \omega = 2\mu$ was observed for a wide interval of μ. It was also observed that the many-body effect and impurities in graphene create a non-zero optical conductivity for energy less than $\hbar \omega = 2\mu$, with the transition strength about 80% of that of the clean lattice. For 2D Dirac materials with a flatband, the combined lattice impurities and many-body interactions, in general, will lead to a reduction in the optical transition strength as compared with graphene.

ACKNOWLEDGMENTS

This work was supported by AFOSR under Grant No. FA9550-21-1-0186.
AUTHOR DECLARATIONS

Conflict of Interest
The authors have no conflicts to disclose.

Author Contributions
Li-Li Ye: Conceptualization (supporting); Formal analysis (equal).
Chen-Di Han: Conceptualization (equal); Investigation (lead); Writing – original draft (supporting). Ying-Cheng Lai: Conceptualization (lead); Formal analysis (equal); Project administration (lead); Writing – original draft (lead); Writing – review & editing (lead).

DATA AVAILABILITY
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

et al.

