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ABSTRACT

The emergence of a flatband in Dirac–Weyl materials offers new possibilities for electronic transitions, leading to stronger interaction with
light. As a result, the optical conductivity can be significantly enhanced in these flatband materials as compared with graphene, making them
potentially better candidates for optical sensing and modulation. Recently, a comprehensive theory for the optical conductivity of a spectrum
of flatband Dirac–Weyl materials has been developed, with explicit formulas for both the real and imaginary parts of the conductivity derived
through two independent approaches. This Perspective offers a review of the development. An understanding of the optical properties of the
flatband Dirac–Weyl materials paves the way for optical device applications in the terahertz-frequency domain.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0178936

I. INTRODUCTION

A frontier area of research in applied physics is two-dimensional
(2D) Dirac–Weyl materials whose energy band consists of a pair of
Dirac cones and a topologically flatband, electronic or optical.1–28 A
flatband can also arise in metal–organic and covalent–organic materi-
als.29,30 This Perspective focuses on the optical properties but with a
brief review of a number of phenomena related to the electronic and
magnetic properties of these materials.

To develop optical sensors and modulators based on Dirac–Weyl
materials, the problem of adequate optical absorption must be
addressed. Graphene, due to its linear dispersion relationship, has
potential applications in developing optical devices.31–33 For example,
graphene-based polarizers have the ability to select light polarization in
a broad frequency range.34 Graphene can also support high-frequency
plasmon modes with frequency ranging from several terahertz to infra-
red, making it appealing for high-frequency communications35,36 and
ultrafast transform optics.37,38 The ability to generate strong polariza-
tion of light implies that materials coated with graphene can be
exploited for applications at the two extremes: cloaking or superscat-
tering.39–41 A difficulty in such applications is that the light absorption
rate of a single-layer graphene is quite low—only a few percent. To sig-
nificantly enhance the optical absorption has attracted a great deal of
interest since the beginning of the field of 2D Dirac–Weyl materials.
For example, it was found that,42,43 when graphene is coupled with a
proper dielectric material, the surface plasmon mode can arise so that

the achievable optical absorption rate can be over 90%. Such surface
plasmon can also propagate in a graphene lattice with frequency above
the terahertz domain,44–46 implying potential applications in high fre-
quency communication devices. It was also found that, in slightly
twisted bilayer graphene, unusual plasmon modes and strong optical
absorption can arise.47–49

In the study of the optical properties of graphene, the conven-
tional way was to treat the material as a thin layer with electric conduc-
tivity depending on the angular frequency x of the incident field,
leading to the optical conductivity rðxÞ that is typically complex.50

When the energy of the incident photon is below the Fermi energy l:
�hx < l, only the intraband electron transition (from the conduction
band to itself) is allowed. Such a process usually occurs for large
devices in the frequency range of subterahertz and terahertz
(0.1–10THz).43,51 For incident wave with a higher frequency, e.g.,
�hx � 2l, intraband transitions become insignificant and interband
transitions from the valence to the conduction band dominate. For
smaller devices, the optical field can be in the infrared to visible
range.52,53 Graphene plasmons are tunable by changing the Fermi
energy, but the plasmon density is frequency-dependent due to the dif-
ferent carrier densities at different frequencies. A 1D topological elec-
tride with density-independent frequency was reported.54 The
simulation result was further verified by first-principle calculations on
Ba3CrN3 and Sr3CrN3. Density-independent plasmons were predicted
to arise in both 2D nodal line and 1D nodal point systems and
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confirmed by first-principle calculations.55 In general, to fully charac-
terize the electromagnetic properties of the material, both the real and
imaginary parts of the optical conductivity are required.

In a recent work,56 a comprehensive theory for the optical con-
ductivity of a spectrum of 2D Dirac–Weyl materials was developed. It
is the so-called a-T 3 lattice system with graphene sitting at one end
and pseudospin-1 material at the other end of the spectrum.2 An a-T 3

lattice is formed from the honeycomb graphene lattice by adding an
extra atom at the center of each hexagonal unit cell,2 with the normal-
ized coupling strength at between this atom and any nearest neighbor-
ing atom in the cell, where 0 � a � 1 and t is the nearest-neighbor
hopping energy in the original graphene lattice. The low energy excita-
tions of the a-T 3 lattice can be described by the generalized
Dirac–Weyl equation,2,57 where the spinor wave function has three
components. The lattice degenerates to graphene with pseudospin-1/2
quasiparticles for a¼ 0—only in this limiting case is a flatband absent.
For a > 0, a flatband through the conic interaction of the two Dirac
cones exists.10,58 Under a continuum approximation, an a-T 3 lattice is
effectively a thin conducting layer. Because of the flatband, three types
of band-to-band transitions can occur: intraband, cone-to-cone, and
flat-band-to-cone transitions. A general finding was that the extra
transitions brought upon by the flatband can enhance the optical
conductivity.56

Experimentally, photonic crystals can be used to generate a-T 3

lattices.27,59–61 Electronically, candidate materials include transition-
metal oxide SrTiO3=SrIrO3=SrTiO3 trilayer heterostructures,6

SrCu2ðBO3Þ2 (Ref. 12) or graphene-In2Te2.
13 Realization of other flat-

band lattice systems is also possible.62,63

This Perspective is organized, as follows. In Sec. II, several experi-
mental lattice systems of 2D Dirac–Weyl flatband materials are intro-
duced. The full optical-conductivity theory of these materials is
reviewed in Sec. III. Opinion on potential future research is offered in
Sec. IV.

II. EXPERIMENTALLY ACCESSIBLE LATTICE SYSTEMS
OF 2D DIRAC–WEYL FLATBAND MATERIALS

Figure 1 shows three commonly studied lattice structures of 2D
Dirac–Weyl flatband materials—dice, Lieb, and Kagome lattices,
together with their corresponding energy-band structures. The details
of these lattices are described below.

A. Dice lattice

Dice lattice was originally proposed to study the Green’s function
for diatomic lattice systems.64 The lattice is constructed by removing
some couplings from a triangular lattice. The emergence of a flatband
and a localization phenomenon in the dice lattice were first reported in
Ref. 1. The localization behavior was later found to persist in the dice
lattice system in the presence of a magnetic field.65 A similar phenome-
non was also reported in quantum networks,66 in systems with spin–
orbit coupling,67 and in a Bose–Hubbard model.59 About 14 years ago,
interest in the dice lattice was rejuvenated due to its unique structure
of a pair of Dirac cones and a flatband.2

Dice lattice has three nonequivalent atoms, as shown in Fig. 2(a).
The lattice has a threefold rotational symmetry and is also called the
T 3 lattice. The tight binding Hamiltonian describing the electronic
structure of the dice lattice, taking into account nearest-neighbor hop-
ping, is given by

FIG. 1. Schematic illustration of three different lattice structures of 2D Dirac–Weyl
materials with a flatband. (a) and (b) Dice lattice and its band structure, respectively.
The first Brillouin zone has a honeycomb structure and two distinct valleys. (c) and
(d) Lieb lattice and its band structure, respectively. The first Brillouin zone is a
square with only one valley. (e) and (f) Kagome lattice and its band structure,
respectively. The first Brillouin zone is a honeycomb with the same orientation as
the original lattice, but the flatband arises at the top of the conduction band.

FIG. 2. A more detailed view of dice lattice and its band structure. (a) Dice lattice
and the three nonequivalent atoms. The lattice unit vectors are di (i¼ 1, 2, 3). (b)
The first Brillouin zone. There are two nonequivalent Dirac points: K and K0. (c)
The band structure, where the conduction and valence bands as well as a flatband
touch each other at a Dirac point.
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HðkÞ ¼ �tðeik�da†kbk þ e�ik�db†kak þ eik�db†kck þ e�ik�dc†kbkÞ; (1)

where t is the nearest-neighbor hopping energy, a†; b†; c† and a, b, c
are creating and annihilation operators, respectively, and d is a vector
in the physical space with jdj ¼ a. Expanding d in the basis
ðak; bk; ckÞ leads to the Hamiltonian:

HDice ¼ �t

0 Dk 0

D�
k 0 Dk

0 D�
k 0

0
B@

1
CA; (2)

where Dk ¼ 2 exp ð�ikxa=2Þ cos
ffiffiffi
3

p
=2kya

� �
þ exp ðikxaÞ. The

energy eigenvalues are E6 ¼ 6t
ffiffiffiffiffiffiffiffiffiffiffi
DkD

�
k

p
and E0 ¼ 0. Figure 2(b)

shows the first Brillouin zone. At each of the six corners, the conduc-
tion and valence bands touch each other at the Dirac points K and K0

(corresponding to two distinct valleys), which are given by

K ¼ 2p
3a

;
2p

3
ffiffiffi
3

p
a

� �
; K0 ¼ 2p

3a
;� 2p

3
ffiffiffi
3

p
a

� �
; (3)

and there is a flatband through the Dirac point, as shown in Fig. 2(c).
For low energy excitations, the momentum relative to a Dirac point is
q ¼ k � K, so one can write Dk � Dq. Expanding Dq about K gives
Dq � qx � iqy so the energy becomes E6 � 6vF jqj. The effective
Hamiltonian for low energy excitations can then be written as

H ¼ vFS � q; (4)

where

Sx ¼
1ffiffiffi
2

p
0 1 0

1 0 1

0 1 0

0
B@

1
CA; Sy ¼

1ffiffiffi
2

p
0 �i 0

i 0 �i

0 i 0

0
B@

1
CA;

S follows general type of Levi–Civita symbols, and vF is the Fermi
velocity. A similar energy expansion can be carried for the other valley
K0, leading to HK0 ¼ vFðSxqx � SyqyÞ. For the dice lattice, there exist
two distinct valleys—each triply degenerated.

B. Lieb lattice

The Lieb lattice originated the Lieb theorems of ferromagnetism
for certain lattice structures.68 The first explicit lattice structure was
studied in Ref. 69. Subsequently, a photonic crystal realization of the
Lieb lattice was proposed.3,70 The unit cell of the Lieb lattice has three
nonequivalent atoms forming a square-like structure, as shown in
Fig. 1(c). The tight binding Hamiltonian is

HLieb ¼ �2t

0 cos ðkxa=2Þ cos ðkya=2Þ
cos ðkxa=2Þ 0 0

cos ðkya=2Þ 0 0

0
B@

1
CA: (5)

The eigenvalues are E ¼ 6t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðkxa=2Þ þ cos2ðkya=2Þ

p
and E¼ 0.

In the momentum space, the conduction and valence bands touch
each other at kx; ky ¼ 6p=a, corresponding to four Dirac points, as
shown in Fig. 1(d). The effective Hamiltonian for the Lieb lattice71 has
the same form as that for the dice lattice given by Eq. (4) through a
unitary transform.72 The difference is that, for a dice lattice, there are
two distinct valleys but there is only one valley for the Lieb lattice.

The Lieb lattice is experimentally accessible62 through fabrication
techniques, such as laser writing of optical waveguides.15–17,19 The elec-
tronic structure through the use of CO and Cu(1,1,1) molecules was
studied.27 A first-principle calculation revealed that the synthesized 2D
sp2 carbon-conjugated covalent-organic framework (sp2c-COF) can
have the band structure similar to that of the Lieb lattice.73

C. Kagome lattice

The Kagome lattice originated from the study of antiferromagnet
in decorated honeycomb lattice.74 The lattice structure has the same
woven Kagome pattern,75 as shown in Fig. 1(e). The Kagome lattice
represents a prototypical system for topological insulators.76–78 The
unit cell has three nonequivalent atoms. The tight-binding
Hamiltonian is

HKagome ¼ �2t

0 cos k1 cos k2
cos k1 0 cos k3
cos k2 cos k3 0

0
B@

1
CA; (6)

where ki ¼ k � d, d1 ¼ x̂a; d2 ¼ x̂ þ
ffiffiffi
3

p
ŷ

� �
a=2, and d3 ¼ d2 � d1.

The energy bands are given by EðkÞ ¼ t½�16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dk � 3

p
�; 2t with

Dk ¼ cos2k1 þ cos2k2 þ cos2k3, where the first two bands touch each
other at six Dirac points at E ¼ �t and the third band is at E ¼ 2t
and is flat. The flatband, thus, appears at the top of the conduction
band, as shown in Fig. 1(f). This feature is distinct from the dice and
Lieb lattices where the flatband is located at the Dirac points.

A possible realization of the Kagome lattice through Ni3C12S12
was proposed earlier,79 where a first-principle calculation was carried
out, demonstrating that nontrivial topological states exist in both Dirac
and flatbands. In a recent work,80 an experimental flatband system
through a self-assembled monolayer of 2D hydrogen-bond organic
frameworks of 1,3,5-tris(4-hydroxyphenyl) benzene (THPB) on Au
(111) surface was reported. The measured band structure fits well with
that of the breathing-Kagome lattice. In addition, flat-to-flat band transi-
tions in a diatomic Kagome lattice were reported,81 where the interband
optical absorption coefficient exhibits a sharp peak at the gap energy,
indicating a transition between the two flatbands. The results were fur-
ther confirmed by first principles calculations for the material
Li12–ðNi3C12S12Þ2. Other phenomena in the Kagome lattice include the
excited quantum anomalous Hall effect,82 an excitonic insulator,83 and
theoretically proposed excitonic Bose–Einstein condensation.84

D. a-T 3 lattice

In addition to the dice, Lieb, and Kagome lattices, another lattice
structure that can generate a flatband through the Dirac points is a-T 3

lattice, which is formed by adding an additional atom to the unit cell
of the graphene lattice with tunable coupling to the nearest atoms in
the original honeycomb lattice.10 The two limiting cases a ¼ 0; 1 cor-
respond to graphene and dice lattice, respectively. The tight-binding
Hamiltonian is

Ha�T 3 ¼ �t

0 cos/Dk 0

cos/D�
k 0 sin/Dk

0 sin/D�
k 0

0
B@

1
CA; (7)

where Dk ¼ 2 exp ð�ikxa=2Þ cos
ffiffiffi
3

p
=2kya

� �
þ exp ðikxaÞ and a

� tan ð/Þ for 0 � / � p=4. The effective Hamiltonian is
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H ¼
0 fk cos ð/Þ 0

f �k cos ð/Þ 0 fk sin ð/Þ
0 f �k sin ð/Þ 0

0
B@

1
CA; (8)

where fk ¼ skx þ iky and s is the valley index. For s¼ 1, there are three
bands: s ¼ 0;61, corresponding to a flatband, the conduction, and
valence bands, respectively. The eigenfunctions are

jws¼61i ¼
1ffiffiffi
2

p
ðcos/Þeihk

s

ðsin/Þe�ihk

0
B@

1
CA; jws¼0i ¼

ðsin/Þeihk
0

�ðcos/Þe�ihk

0
B@

1
CA;

(9)

where hk is the phase angle of fk : fk ¼ jfkjeihk . For the other valley, one
has fk;s¼�1 ¼ �f �k;s¼1, so the solution can be obtained from a simple
sign change: hk ! �hk .

For materials, such as Hg1�xCdxTe, theoretical computation85

revealed their equivalence to the a-T 3 lattice with a ¼ 1=
ffiffiffi
3

p
� 0:58.

Experimental realizations of a-T 3 lattices have been achieved.
86–88

E. Additional lattices with a flatband

Besides 2D lattices, a flatband can also arise in 1D lattices, which
was experimentally demonstrated using a waveguide array to simulate
the atomic interaction.69 Observation of localized flatband modes was
made in a quasi-1D photonic rhombic lattice.89 A flatband can also
arise in 3D lattices,90,91 e.g., in lattices with a diamond structure,92

where the transport behavior in the presence of impurities was stud-
ied.93 The Lieb lattice can be extended to three dimensions, leading to
the perovskite lattice94 with bandgap opening. A flatband can also
occur in 3D Dirac semimetals.95 A tight-binding model for a 3D pyro-
chlore lattice was studied, revealing unusual flatband and also a flat-
band enabled Weyl state.96 The theoretical predictions were verified by
first-principle calculations based on Sn2Nb2O7.

III. OPTICAL PROPERTIES OF 2D FLATBAND
DIRAC–WEYL MATERIALS

The main motivation to investigate the optical properties of
Dirac–Weyl materials with a flatband is that the flatband offers new
possibilities for electronic transition, so the optical conductivity could
be significantly enhanced as compared with graphene, making these
flatband materials better candidates for optical sensors and modula-
tors. For example, it was demonstrated that, when an external electrical
field is applied to a pseudospin-1 material, the induced current can be
two times larger than that in graphene under nonequilibrium condi-
tions,97 and the enhancement occurs in optical and magneto-optical
conductivity.58,98 Due to the complications brought upon by the flat-
band, some existing studies focused only on the real part of the optical
conductivity,58,98–100 leaving the crucial issue of optical absorption
largely unaddressed. A recent work56 filled this gap by deriving the full
optical conductivity with both real and imaginary parts for the a-T 3

lattice using the Kubo formula.50,58 Alternatively, the formulas were
derived56 using the Kramers–Kronig method.101

There are three possible types of electronic transitions. For inci-
dent wave of relatively low frequency �hx < l, the intraband process
dominates. For high frequency: �hx > l, two processes become impor-
tant: the transition from the flatband to the Dirac cone and the cone-
to-cone transition, where the former can be enhanced by increasing

the value of a, e.g., the transition rate for pseudospin-1 materials can be
twice as large as that in graphene.97 For the cone-to-cone transition, its
rate is reduced with increasing a and becomes zero for a¼ 1. The com-
plete formulas of the optical conductivity are general because it does not
depend on other material properties, such as the Fermi velocity.56

The starting point was to derive the optical matrix elements for
the a-T 3 lattice. From the effective Hamiltonian (8), the current along
the x direction is jx ¼ �evFSx , where

Sx ¼
0 cos/ 0

cos/ 0 sin/
0 sin/ 0

0
@

1
A:

Thematrix representation for the current operator is the optical matrix.
The form of the eigenfunctions in Eq. (9) indicate that, for k 6¼ k0, the
expectation value of the current is zero, where the momentum k is of
the initial state and the one k0 is of the state after transition between the
energy levels.102 For k ¼ k0, one gets58

jhk; s ¼ 6jjxjk; s ¼ 6ij2 ¼ e2v2F cos
2hk;

jhk; s ¼ 6jjxjk; s ¼ 7ij2 ¼ e2v2F sin
2hk cos 2ð2/Þ;

jhk; s ¼ 0jjxjk; s ¼ 6ij2 ¼ jhk; s ¼ 6jjxjk; s ¼ 0ij2

¼ e2v2F
2

sin 2hk sin
2ð2/Þ:

(10)

The general Kubo conductivity is

rijðx;/Þ ¼
�h

2ip2
X
n;m

f ðEmÞ � f ðEnÞ
En � Em

	 hnjjijmihmjjjjni
En � Em � �hx

þ hmjjjjnihnjjijmi
Em � En � �hx

� �
; (11)

where the subscripts i and j specify the directions of the current and of the
electric field, respectively. For a homogeneous material and in the absence
of any magnetic field, one has rxx ¼ ryy and rxy ¼ ryx ¼ 0. For simplic-
ity, consider the case of i¼ j¼ x. The summation is for all the state with
jni ¼ jk; si and jmi ¼ jk0; s0i. The quantity f(E) in Eq. (11) is the
Fermi–Dirac distribution function with a positive chemical potential l.

Due to momentum conservation, the transitions from jni and
jmi are those among the energy bands. Let rð1Þðx;/Þ, rð2Þðx;/Þ, and
rð3Þðx;/Þ denote the conductivity due to intraband, cone-to-cone,
and flat-to-cone transitions, respectively. For the intraband process,
the transition is from the conduction band to itself with En � Em ! 0
and En � Em � l, leading to

f ðEmÞ � f ðEnÞ
En � Em

¼ �@f
@�

				
�¼l

¼ dð�� lÞ;

so Eq. (11) becomes

rð1Þðx;/Þ ¼ �h
ip2

ð ð
dkxdky

@f
@�

j2nm
�hx

: (12)

Inserting the optical matrix element in Eq. (10) into Eq. (12) and mak-
ing use of the linear dispersion relationship E ¼ �hvF jkj, in the polar
coordinates, one getsð ð

dkxdkyj
2
nm ¼ e2

�h2

ð1
0
�d�

ð2p
0

cos2hkdh: (13)
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Equation (12) becomes

rð1Þðx;/Þ ¼ e2

ip�h2x

ð
� �dð�� lÞ½ �d� ¼ ie2l

p�h2x
: (14)

With the notation r0 � e2=ð4�hÞ, the intraband conductivity is

rð1Þðx;/Þ ¼ 4ilr0
p�hx

; (15)

which is identical to the formula in other 2D materials, such as gra-
phene. The denominator indicates that the intraband conductivity
dominates for small frequencies.

The cone-to-cone transitions can then be treated: those from
js ¼ �i to js ¼ þi or vice visa (so there is an additional factor of two
in the summation), leading to

rð2Þðx;/Þ ¼ �h
ip2

X
n;m

f ðEmÞ � f ðEnÞ
En � Em

j2nmð�2�hxÞ
ð�hxÞ � ðEn � EmÞ2

:

For k ¼ k0 and En and Em belonging to different bands, one can write
En ¼ � and Em ¼ ��. Using the integral from Eq. (13) and the optical
matrix elements Eq. (10), one has

rð2Þðx;/Þ ¼ cos2ð2/Þ e2

ip�h

ð
f ð��Þ � f ð�Þ½ � �hx

4�2 � ð�hxÞ d�:

The Fermi–Dirac distribution implies nontrivial values of rð2Þðx;/Þ
arise only for � > l or � < �l where, in the polar coordinates, only
the first case contributes. This leads to

rð2Þðx;/Þ ¼ cos2ð2/Þ e2

ip�h

ð1
l

�hx

4�2 � ð�hxÞ2
d�:

The integral has a singularity for 2�hx > l. Using the residue theorem,
one gets

rð2Þðx;/Þ ¼ cos2ð2/Þr0 Hð�hx� 2lÞ � i
p
ln

				 �hxþ 2l
�hx� 2l

				
" #

; (16)

where H is the Heaviside step function. It can be verified that, for
/ ¼ 0, the result coincides with that for graphene. At the opposite end
of the a-T 3 spectrum / ¼ p=4 (pseudospin-1), the integral is zero.

The same method can be used to obtain the contribution of the
flat-to-cone transitions to the optical conductivity. In this case, En¼ 0
and Em ¼ �, so

rð3Þðx;/Þ ¼ sin2ð2/Þ e2

ip�h

ð1
l

�hx

�2 � ð�hxÞ2
d�;

where the singularity occurs at �hx ¼ � and the weight becomes
sin2ð2/Þ. Evaluating this integral gives

rð3Þðx;/Þ ¼ 2 sin2ð2/Þr0 Hð�hx� lÞ � i
p
ln

				 �hxþ l
�hx� l

				
" #

: (17)

These conductivity formulas suggest that Dirac–Weyl flatband
materials can have significantly larger optical conductivity than that
for graphene, due to the much stronger interaction between light and
the lattice structure of the materials.56 As an example, Figs. 3(a), 3(c),
and 3(e) show the real part of the finite-temperature optical

conductivity for three different values of a, respectively, to which the
intraband process has no contribution. For a¼ 0 [graphene, Fig. 3(a)],
only the cone-to-cone transition exists. For a ¼ 1=

ffiffiffi
3

p
[Fig. 3(c)], there

are two transition points: cone-to-cone transition for �hx=l > 2 and
flat-band-to-cone transition for �hx=l > 1. For a¼ 1 [Fig. 3(e)], flat-
band-to-cone transition is the only possibility and its magnitude is
twice of that of the cone-to-cone transition for graphene. The respec-
tive imaginary parts of the conductivity are shown in Figs. 3(b), 3(d),
and 3(f). In all three cases, the intraband process gives a singularity at
x ! 0, and each interband transition leads to a dip for Im ðrÞ < 0.
Note that the imaginary part of the conductivity can be negative.
Previously, it was found for graphene that a negative imaginary part
can lead to a special TE mode for electromagnetic wave propagation.44

For the a-T 3 lattice, a negative imaginary part of the conductivity can
have a significant effect on the intrinsic plasmon modes with respect to
the loss, confinement and impurity scattering.56

FIG. 3. Real and imaginary parts of the optical conductivity of the a-T 3 lattice
derived from the Kubo formula in the absence of any impurity scattering. (a), (c),
and (e) Real part of the optical conductivity for a¼ 0 (graphene), a ¼ 1=

ffiffiffi
3

p
, and

a¼ 1 (pseudospin-1), respectively. At zero temperature, the conductivity is nonzero
for �hx=l > 2. An interband transition leads to a dip in the conductivity plot. The
step-function type of transition is smoothed out by finite temperatures. (b), (d), and
(f) Imaginary part of the optical conductivity for a¼ 0, 1=

ffiffiffi
3

p
, and 1, respectively.

Reprinted with permission from Han and Lai, Phys. Rev. B 105, 155405 (2022).
Copyright 2022 American Physical Society.56
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The formulas [Eqs. (15)–(17)] give a complete description of the
optical conductivity of the a-T 3 lattice, which were verified56 by an
independent theoretical approach: the Kramers–Kronig formula. As
examples of the application of the conductivity formulas, two phenom-
ena were studied.56 First, while intraband transition leads to TM polar-
ized waves at low frequencies (1–10THz), TE polarized waves can
emerge at high frequencies (100–300THz), due to the two interband
transitions. Second, the unique flat-band-to-cone transition generates
multifrequency TE propagating waves and a strong optical response.
These phenomena were numerically confirmed by the behaviors of
propagating surface wave and scattering.56

IV. DISCUSSION

In general, the optical responses of flatband Dirac–Weyl materials
are stronger than those of graphene, as conductivity due to the flat-
band-to-cone transition is twice of that induced by cone-to-cone tran-
sition. The physical reason behind is that the plane waves in these
materials have a smaller attenuation length due to the large imaginary
part of the optical conductivity as compared to that in graphene. This
means that, at the same frequency, a larger scattering cross section can
arise in flatband Dirac–Weyl materials.

A complete description of the optical conductivity of flatband
Dirac–Weyl materials opens the door to investigating problems perti-
nent to development of optical devices. For example, intrinsic plasmon
modes whose physical properties depend on the polarization were
studied56 with the finding that TM waves are the result of intraband
transitions, which usually occur in the frequency range of 1–10THz,
but TE waves are the result of interband transitions, which can arise in
a higher frequency range: 100–300THz. When two interband transi-
tions occurs (e.g., for 0 < a < 1 in the a-T 3 lattice), two TE surface
waves can arise, respectively, at �hx=l � 1; 2. It was also suggested
that TE polarized waves can be tuned by adjusting the chemical poten-
tial.56 Another example is scattering from a dielectric sphere coated
with multiple layers of flatband Dirac–Weyl material,56 where TM
wave scattering can be stronger than TE wave, due to the reduced
imaginary part of the optical conductivity at finite temperatures. This
phenomenon can be exploited for enhancing certain desired polariza-
tion. A full optical conductivity theory allows electromagnetic dynam-
ics in flatband Dirac–Weyl materials to be studied in detail. Issues,
such as the emergence of intrinsic plasmon modes at a single or multi-
ple frequencies, loss, attenuation length, and finite temperatures, can
be studied in detail. In fact, the occurrence of multi-frequency plasmon
modes implies the possibility of achieving superscattering or cloaking
at multiple frequencies. These broadband effects can find applications
in optical sensing, imaging, tagging, or spectroscopy.103–105 Moreover,
edge states in graphene can lead to a blue shift in the plasmon
modes.106 To exploit flatband Dirac–Weyl materials for applications in
quantum plasmonics could be an interesting area of research.

We briefly discuss the effects of impurities and many-body inter-
action on the optical response.

A. Effects of impurities

A number of previous works addressed this issue, but mainly for
graphene. The general methodology is to start from the linear disper-
sion relationship and model the effects of defects or impurities on opti-
cal scattering through the incorporation of a relaxation time, taking
into account electron–phonon scattering. For graphene, the relaxation

time is relatively small, so it affects the low-frequency response more
than the high-frequency response, rendering negligible the effect on
optical response.107 In another work that went beyond the Dirac-cone
approximation,108 the authors used the tight-binding model and the
Kubo formula to study the effects of different types of impurities in
graphene on the optical response, which included random potentials,
random vacancies, and random coupling, and found that the interband
transition strength decreases with the impurity density. For example,
for lattice vacancies, the interband transition is strong for 5% of the
vacancies but is barely observable for 10% of the vacancies. For general
types of impurities, their effects on the transition cannot be neglected.
Since the impurities can generate states at E¼ 0, in graphene with
defects, a transition at �hx ¼ l can occur. In a more recent work,109

hydrogen atoms as impurities were added to a graphene sheet at the
density of approximately 300 impurity atoms per lm2. For l ¼ 2eV,
these impurities have negligible effect on the optical conductivity.
However, for l ¼ 0:2eV, an observable dip in the conductivity occurs
at �hx ¼ 2l.

For 2D pseudospin-1 Dirac materials with a flatband, the effects
of impurities on optical response can be treated similarly by incorpo-
rating a finite relaxation time into the a-T3 lattice.

56 Under the same
impurity conditions, for a¼ 1, the interband transition is two times
stronger than that in graphene, so this transition is more robust
against defects or vacancies. It was found that, even when the relaxa-
tion time is several times smaller than that in graphene (correspond-
ing to a more significant amount of impurities), the effects on the
optical response in the high frequency regime are insignificant. In a
recent work on the a-T3 lattice,

110 the effects of lattice vacancies (up
to 0.4%) leading to different inelastic-scattering rates on the density
of states were studied and found to be negligible. However, the
inelastic scattering can lead to a broadening of the flatband. In
another recent work,111 the optical conductivity in a-T3 lattice with a
distorted flatband was studied and results similar to those in Ref. 56
were found, including the dependence of the conductivity on the
temperature.

B. Effects of many-body interactions on optical
response

In graphene, the electron self-energy was used to describe the
electron–electron interaction,112 and the scattering conductivity results
were compared with the experimental measurements, validating the
approach.113 The electron–electron interactions and impurity scatter-
ing can reduce the transition strength by 20%. An increase in the real
part of the conductivity at �hx ¼ 2l was observed for a wide interval
of l. It was also observed that the many-body effect and impurities in
graphene create a non-zero optical conductivity for energy less than
�hx ¼ 2l, with the transition strength about 80% of that of the clean
lattice. For 2D Dirac materials with a flatband, the combined lattice
impurities and many-body interactions, in general, will lead to a reduc-
tion in the optical transition strength as compared with graphene, but
the issue remains to be outstanding.
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