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ABSTRACT
Entanglement is fundamental to quantum information science and technology, yet controlling and manipulating entanglement—so-called
entanglement engineering—for arbitrary quantum systems remains a formidable challenge. There are two difficulties: the fragility of quantum
entanglement and its experimental characterization. We develop a model-free deep reinforcement-learning (RL) approach to entanglement
engineering, in which feedback control together with weak continuous measurement and partial state observation is exploited to generate
and maintain desired entanglement. We employ quantum optomechanical systems with linear or nonlinear photon–phonon interactions
to demonstrate the workings of our machine-learning-based entanglement engineering protocol. In particular, the RL agent sequentially
interacts with one or multiple parallel quantum optomechanical environments, collects trajectories, and updates the policy to maximize the
accumulated reward to create and stabilize quantum entanglement over an arbitrary amount of time. The machine-learning-based model-free
control principle is applicable to the entanglement engineering of experimental quantum systems in general.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0233470

I. INTRODUCTION

Entanglement1–5 is fundamental to all fields in quantum infor-
mation science, such as quantum sensing,6 quantum computation,7
and quantum networks.8–13 However, the inherent fragility of quan-
tum entanglement and coherence14 poses significant challenges for
experimental applications. For example, in quantum computing,
the application of quantum gates to quantum states needs to last
for a finite amount of time,15–20 making it critical to maintain the
entanglement after its creation. Moreover, the transition from noisy
intermediate-scale systems21 to large-scale, fault-tolerant systems16

requires sophisticated entanglement engineering strategies to estab-
lish and maintain entanglement through optimal control protocols
in the presence of noise and decoherence.

At present, a major limitation/challenge in entanglement engi-
neering is the experimental observation design. Existing machine-
learning based studies use the full fidelity, i.e., the overlap between
the current and target quantum states, as the observation metric.

Applications range from the generation of two22 and multi-qubit
entangled states23,24 to specific many-body states25–27 and single-
particle quantum state engineering via deep reinforcement learning
(RL).28,29 However, full fidelity observation is not universally appli-
cable in experiments. Moreover, obtaining the relationship between
the entanglement and experimental observables is difficult. So far,
there have been no systematical methods to extract quantitative
entanglement from experimental observation for arbitrary quantum
systems,30–32 despite some initial exploration for specific systems.
For example, an entanglement criterion for non-Gaussian states in
coupled harmonic oscillators was developed.30 Under the strong
laser approximation, a Bell inequality was tested with photon count-
ing,31 and stationary entanglement for Gaussian states was inferred
from the continuous measurement of light only.32 Recently, con-
ditional state tomography33 was proposed to reconstruct density
matrix from the weak measurement currents. It requires the use
of an explicit Hamiltonian and the time needed for the condi-
tional density matrix to converge to the actual matrix can be long.
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At the present time, model-free and data-driven quantum state
tomography for measurement-based feedback control remains a
challenge.

In this paper, using quantum optomechanical systems with
linear or nonlinear photon–phonon interactions as a paradigm,
we develop a deep RL approach to entanglement engineering. For
quantum control of optomechanical systems, most existing theo-
retical studies focused on Gaussian states or the linear interaction
regime,34–46 with the primary goal of generating entanglement as
quickly as possible (entanglement enhancement).39,44–46 Previous
control methods are mostly model-based: prior information about
the system model is needed, such as the pulse method,34–38 time-
continuous laser-driven approaches,39,40 periodic modulations,41–43

optimal pulse protocols,44 linear quadratic-Gaussian methods,39 and
coherent feedback methods using auxiliary optical components.45,46

We note that there were two previous studies47,48 on model-free RL
for controlling and stabilizing a quantum system with an inverted
harmonic potential and a double-well nonlinear potential, respec-
tively, to a target state using weak-current measurements (WCMs)
and partial state observation. However, these studies did not address
entanglement control, while our work is developing a model-free
deep-RL method to realize non-Gaussian entanglement engineer-
ing using only photon number counting from WCMs. (Backgrounds
about WCM, deep RL, and quantum control are presented in
Appendix A.) To our knowledge, prior to our work, model-free deep
RL feedback control to create and stabilize the entanglement with
WCM observations had not been available.

The particular aspects of our work that go beyond the exist-
ing studies are briefly described, as follows: in our work, in the
linear (nonlinear) interaction regime, the observation is the WCM
photocurrent (the expectation value of the photon number). We
note a previous study29 that employed a proximal policy optimiza-
tion (PPO)49 RL agent, to generate different Fock states and the
superposition of a single cavity mode based on observing the den-
sity matrix and a fidelity-based reward function. In contrast, the
observable in our work is the photocurrent that is more experi-
mentally accessible.50 For quantum measurement, we use WCM in
real-time feedback control, taking into consideration the resulting
quantum stochastic process,48,51,52 and identify a numerical rela-
tionship between the entanglement and photocurrent. In both the
linear and nonlinear regimes, we focus on non-Gaussian state con-
trol because, according to the nonlinear quantum master equation
resulting from WCM, the time evolving quantum states are intrinsi-
cally non-Gaussian. Our deep RL control scheme is model-free,53

where policies or value functions are directly learned from the
interactions with the quantum environment without any explicit
model of this environment. This should be contrasted to the
model-based deep RL methods,54 where a pre-built model of the
environment for policy decision-making is needed. We demon-
strate that, under the actions of the well-trained PPO or recurrent
PPO RL agent, entanglement between the quantum optical and
mechanical modes can be created and maintained about the target
entanglement.

Our main results are as follows: first, under the strong laser
approximation, the interaction resulting from the radiation pres-
sure between the cavity and the mechanical oscillator modes can be
linearized and described by the beam-splitter Hamiltonian. During
the training phase, the PPO agent interacts with parallel quantum

environments and collects the subsequent data by episodic learning,
with the observation being the WCM photocurrent. The deep-RL
method can extract useful information from the measurement pho-
tocurrent, which is encoded in the Wiener process, and achieve
the target entanglement engineering in a model-free manner for
the quantum system that is dissipative due to coupling to the vac-
uum bath and is driven by a laser. In the testing phase, with the
agent interacting and observing a single quantum environment, we
demonstrate that the entanglement-engineering performance of our
deep-RL method with WCM observation greatly exceeds that of
both state-based Bayesian methods48,55 and random control. Second,
when the driving laser field is not strong, the quantum optome-
chanical interaction is nonlinear.56,57 In this case, we articulate two
training phases for nonlinear entanglement engineering. The first
phase is utilized to infer the entanglement by the model-free deep
RL, dubbed as the target-generating phase, where the observation of
the PPO agent [with multilayer perceptions (MLPs)] is the logarith-
mic negativity and the reward function is constructed to limit the
high-level excitation and facilitate entanglement learning. (Direct
experimental measurement of the logarithmic negativity is currently
not available.) The time series of the expected photon number in
the regime from converged training episodes is selected as the target
for the next phase. The second phase is then the target-utilization
phase, where the recurrent PPO [with long short-term memory
(LSTM)58 added after MLPs] observes the expected photon number
and obtains the reward only based on the target expected photon
number obtained from the last phase. In this framework, the recur-
rent PPO controls the quantum state in the low-energy regime with
the desired entanglement created and stabilized.

II. RESULTS
A. Experimental proposal for entanglement
engineering

Our goal is achieving entanglement engineering between the
optical cavity and mechanical oscillator modes using deep RL. Based
on the current experimental progress, we articulate an experimen-
tal proposal to achieve this goal, as shown in Fig. 1. Consider a
Fabry–Perot cavity that consists of a single-mode cavity and a mov-
able end mirror. The optical cavity has the frequency ωc, and the
optical field exerts a radiation pressure on the mirror. The cavity
mode is driven externally by a coherent laser field with frequency
ωL. The mirror’s quantized center-of-mass motion is described by
a harmonic oscillator of frequency ωm. In the rotating frame of the
laser, the Hamiltonian describing the coupling between the optical
cavity and mechanical oscillator modes is given by56,57

H̃nl = −h̵Δâ †â + h̵ωmb̂ †b̂ + h̵g0(b̂ †
+ b̂)â †â + h̵αL(â †

+ â),

where â and b̂ are the annihilation operators of the cavity and
mechanical mode, respectively, and â † and b̂ † are the correspond-
ing creation operators. The frequency detuning of the cavity is
Δ ≡ ωL − ωc. The nonlinear coupling g0 arises from the radiation
pressure force between the light and the movable mirror (details
given in Appendix B), and αL is the real amplitude of the driven elec-
tromagnetic field. We set g0 > κ so that the single-photon optome-
chanical coupling rate g0 exceeds the coupling strength κ between
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FIG. 1. Experimental proposal of measurement-based feedback control of deep RL to create and stabilize entanglement in an open quantum optomechanical system
dissipatively coupled to the vacuum bath. Quantum optomechanics was experimentally realized in a microwave electromechanical system,59–61 where the multiplexing qubit
was used to weakly couple to the microwave resonator for extracting the photon number statistics through weak measurements.50 The RL agent acts in one or multiple parallel
quantum optomechanical environments according to the parameterized policy and collects data in one episode consisting of T time steps: observations Ot , reward Rt , and
actions, after which the quantum optomechanical environment is reset. After one or several episodes, the policy is updated using minibatch data to maximize the accumulated
reward. The aim is to achieve the desired entanglement EN ∼ log 2 ∼ 0.7 (in the natural logarithmic base) between the cavity-optical and mechanical modes. Entanglement
engineering of this type can be achieved in both the linear and nonlinear interaction regimes. In the linear case, the task is similar to that of achieving an entangled Bell state
of the beam-splitter Hamiltonian or “swap” Hamiltonian. In the nonlinear regime, the entangled states from entanglement engineering can be complicated. Illustrated are the
resulting photon and phonon number distributions of the entangled states.

the cavity and the vacuum bath. This condition guarantees observ-
able nonlinear quantum effects.62 Under the strong laser approxi-
mation, ∣ᾱc∣≫ 1, where ∣ᾱc∣ is the amplitude of the light field inside
the cavity induced by the strong laser; we have â ≈ ᾱc + δâ with
δâ denoting the excitation or the shifted oscillator on top of the
large coherent state with the amplitude ᾱc. After the displacement
transformation,

eᾱ c â †−ᾱ∗c ââe−ᾱ c â †+ᾱ∗c â
= â − ᾱc ≡ δâ,

the resulting linearized beam-splitter or “swap” Hamiltonian56,63 is

H̃bs ≈ h̵ωmδâ †δâ + h̵ωmb̂ †b̂ + h̵G(δâ †b̂ + b̂ †δâ),

which is obtained in the red-detuned regime Δ = −ωm, where the
coefficient G ≡ g0ᾱc can be tuned by the amplitude of the incom-
ing laser (a time-dependent modulation).64 The interaction term
describes the state transfer between photons and phonons in the
strong coupling regime for G > κ, with κ (γ) being the decay
rate of the cavity (mechanical) mode to the vacuum bath at zero
temperature.

Our control strategy was developed based on considering the
current experimental capability. Previous studies on the microwave

regime of the optomechanical systems59–61 suggested the feasi-
bility of the experimental implementation of our RL control
scheme. In particular, a one-to-one correspondence between the
Fabry–Perot cavity and the microwave electromechanical system
was demonstrated.59,60,65 As shown in Fig. 1, the microwave res-
onator of an LC circuit is equivalent to the Fabry–Perot optical
cavity mode with the movable capacity65 Cm(x) corresponding
to the flexible mirror in the optical cavity. The resistors Rc and
Rm can be related to the decay rate κ, γ to the vacuum bath.65

Based on the experimental results, we can compare the typical
parameter configurations between the optomechanical and elec-
tromechanical systems. The decay rate of the optical cavity mode
is κ = 0.01ωm in the linear regime and κ = 0.1ωm in the nonlinear
regime, with the better quality of the mechanical oscillator mode
γ = 0.01κ. Consequently, we have γ ≈ 10−4ωm–10−3ωm. The typi-
cal experimental decay rate of the microwave resonator is Refs. 59,
60, 62, and 66–68 κ ≈ 0.01ωm–0.1ωm with γ ≈ 10−9ωm–10−3ωm. In
our work, the nonlinear coupling is set to be g0 = 0.2ωm, whereas
the typical coupling in the strong coupling regime in a previous
study59 was about g0 = 0.1ωm. The strength of the laser in our
work is G ∈ [−5, 5] ωm for the linear system in the red-detuned
regime Δ = −ωm and Δ,αL ∈ [−5, 5] ωm for the nonlinear system.

APL Mach. Learn. 3, 016107 (2025); doi: 10.1063/5.0233470 3, 016107-3

© Author(s) 2025

 19 January 2025 17:53:02

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

In the microwave version, this range can be adjusted by the pump’s
strength.59,60,62,66–68

In the microwave regime, it was demonstrated that the photon-
number statistics of a microwave cavity mode can be detected
using multiplexed photon number measurements.50,69,70 By using
this method, the multiplexing qubit encodes multiple bits about the
photon number distribution of a microwave resonator through dis-
persive interaction. A frequency comb drive, distributed at fMP − kχ,
reads out all the information about the photon number distribution
at once,50 where k denotes the number of photons and χ repre-
sents the dispersive qubit-resonator coupling, as shown in Fig. 1. The
reduction in the reflection amplitude, 1 − rk with k = 0, 1, . . ., of the
frequency comb, is proportional to the photon-number distribution
of the microwave cavity mode over the Fock bases, as detected by
the weak measurement.29,50 In our circuit design of the experimen-
tal proposal, we add a capacitor Cq to realize the weak coupling to
the original electromechanical system. The coupling capacitance is
small enough to be neglected in the total Hamiltonian, but it still
allows the multiplexing qubit, denoted by the green cross shown in
Fig. 1, to encode the photon number distribution of the microwave
resonator through dispersive interaction.

Under weak measurement,29,50 the sequence of the reduced
reflection amplitude 1 − rk is collected by the PPO agent, which is
proportional to the occupied photon number probability. Conse-
quently, the expected photon number is calculated as

⟨n̂p⟩ =∑
n

n⟨
√
ηP̂n⟩/

√
η =∑

n
n⟨P̂n⟩,

and the WCM photocurrent is

√
η I(t) =∑

n
n[⟨
√
ηP̂n⟩ +

dWn(t)
√

4ηdt
], (1)

with the measurement rate η, where P̂n = ∣n⟩⟨n∣ is the measure-
ment projector on the Fock state ∣n⟩, and dW(t) is the Wiener
increment with zero mean and variance dt = 0.01 ω−1

m (the time
step size in our calculations). In the linear quantum optomechan-
ical regime, the Fock space for each mode is limited to n = 0, 1.
The action is the amplitude modulation of the laser, which is in the
range G ∈ [−5, 5] ωm. In the nonlinear regime, the Fock dimension
is n = 0, 1, . . . , 9. The time-dependent control signal consists of the
detuning Δ and the amplitude αL of the driven laser within the fixed
range Δ,αL ∈ [−5, 5] ωm.

The open dissipative quantum optomechanics under the WCM
obey the stochastic master equation (SME) (see Sec. IV and
Appendix C). The number ntraj of trajectories simulated from SME
can be selected according to the following considerations. If the
observable is some expected physical quantity, using one trajectory
is sufficient to extract the information about the quantum state: ntraj
= 1. Experimentally, WCMs are performed, encoding the Wiener
process in the observation and resulting in a large variance from
the expectation value. To reduce the variance, more quantum tra-
jectories should be used. To make computations feasible, we use five
trajectories: ntraj = 5.

In the online training phase, for each episode with time steps,
e.g., T = 500, the PPO agent—the combination of the actor and critic
network, collects the sequence of the observations O(t) = ⟨n̂p⟩(t) or

I(t), the reward value R(t) = −∣O(t) − ⟨n̂target
p ⟩(t)∣, and the result-

ing actions generated by its policy. After one or several episodes, the
policy of the PPO agent is updated using minibatch data to maximize
the accumulated reward. The RL agent is designed to interact with
single or multiple parallel quantum environments to make the time
evolving observation O(t) align with the target one ⟨n̂target

p ⟩(t). In
the online testing phase, the policy of the well-trained agent will not
update and only interact with a single quantum environment to give
the optimal control protocol to the corresponding observation. To
realize entanglement engineering, i.e., achieving the desired entan-
glement between the cavity-optical and mechanical modes, finding
the relation between the experimental observables and entanglement
quantities is an unavoidable challenge. In our work, the model-free
PPO agent finds the numerical relationship between them and real-
izes the entanglement engineering in both the linear and nonlinear
regimes of quantum optomechanics, as shown in Fig. 1.

A general quantity to measure the entanglement between arbi-
trary quantum bipartite systems for any mixed states is the logarith-
mic negativity,71–73 without the influence of the vacuum bath.74 In
contrast, the conventional pure-state entanglement measures, such
as the von Neumann and Rényi entropy, capture both quantum
and classical correlations. Since the goal of our study is harness-
ing the entanglement between the cavity and oscillator modes, we
focus on the logarithmic negativity: EN(ρ) ≡ log2∥ρ

Ti∥1, where ∥X∥1

= Tr
√

X†X is the trace norm of the partial transpose ρTi with respect
to the two subsystems i = 0 (quantum-optical cavity mode) and 1
(mechanical oscillator mode). The logarithmic negativity measures
the degree to which ρTi fails to be positive, i.e., the extent of insepa-
rability or entanglement, and it is the upper bound of the distillable
entanglement.71,72 The logarithmic negativity is the full entangle-
ment monotone,72 which satisfies the following criteria:73,75 (1) EN
is a non-negative functional, (2) EN vanishes if the state ρ is sep-
arable, and (3) EN does not increase on average under Gaussian
local operations and classical communication76,77 or positive partial
transpose preserving operations.78 Since EN quantifies the quantum
correlation between the bipartite systems despite the coupling to the
vacuum bath, the value of EN calculated from the cavity mode is
equal to that of the oscillator mode: E0

N = E1
N = EN , which can be

verified numerically.
To characterize the quantum-entanglement control perfor-

mance, we use the following three quantities: ⟨EN⟩, ẼN , and R̃ in
open quantum optomechanical systems with either linear or nonlin-
ear interaction between the quantum cavity and oscillator modes. In
particular, ⟨EN⟩ is the logarithmic negativity averaged over ten suc-
cessive episodes with a single environment, ẼN is the corresponding
average over one episode with T time steps in a single quantum envi-
ronment, and R̃ denotes the ensemble-averaged value of the reward
R over a small number of multiple parallel quantum environments
for each episode. In our computations, all the control actions G,
αL, or detuning Δ, the nonlinear coupling g0, and the dissipation
coefficients (κ, γ) are in units of ωm. The time unit is ω−1

m .

B. RL in linear quantum optomechanics
A quantum optomechanical system with linear photon–

phonon interactions is governed by the beam-splitter Hamiltonian.
In an optical experimental platform, a 50:50 beam splitter with the
transformation angle π/4 can create an entangled Bell state between
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the two input optical modes.79–81 Similarly, in a quantum optome-
chanical system, Bell states between photon and phonon modes
can be realized by controlling the beam-splitter Hamiltonian. As a
result, the maximally attainable value of the logarithmic negativity is
EN ∼ log 2 ≃ 0.7 (in the natural logarithmic base), corresponding
to the maximally entangled Bell state, as shown in Fig. 1. This
“best” entangled state can be realized by the model-free PPO agent,
regardless of whether the observation is the expectation or WCM
photocurrent. To see this, we note that, in the beam-splitter model,
the initial quantum state is set as a pure state:82,83

∣ψ⟩ = ∣10⟩, where
the photon is in the first excited mode and the phonon is in the
vacuum mode. The partial observable of the quantum state for
the PPO agent is set as the expectation of the photon number
⟨n̂p⟩(t) = ⟨P̂1⟩(t) or the WCM photocurrent,

√
η I(t) = ⟨√ηP̂1⟩(t) +

dW(t)
√

4η dt
.

Experimentally, directly measuring the entanglement, e.g.,
in terms of logarithmic negativity, for arbitrary entangled states
is generally not viable. Identifying an experimentally feasible
quantity to characterize the entanglement in arbitrary quan-
tum systems remains challenging. We focus on the relationship
between logarithmic negativity and the expected photon num-
ber, based on recent experiments on multiplexed photon number
measurement.29,50,69,70,84–86 To proceed, we note that the beam-
splitter Hamiltonian is limited to a four-level basis due to the follow-
ing reasons: (1) only one energy level in the cavity mode of the initial
state has been excited from the vacuum state, i.e., ∣ψ⟩ = ∣10⟩, (2) the
linear interaction serves only to transfer the quantum states between
the cavity and mechanical mode (i.e., no quantum excitation), and
(3) the system couples to the vacuum bath only at absolute zero tem-
perature (i.e., without any thermal excitation), thereby blocking any
interactions between higher-level quantum states. In this case, the
maximum logarithmic negativity EN ∼ log 2 ≃ 0.7 implies that the
attained quantum state is the following Bell state:

∣Φφ
⟩ =

1
√

2
[∣10⟩ + eiφ

∣01⟩],

with the associated expected photon number ⟨n̂target
p ⟩ = ⟨P̂1⟩ = 0.5.

Consequently, the reward function can be set as Rt ≡ −∣Ot − 0.5∣,
regardless of whether the observation Ot is ⟨n̂p⟩(t) or I(t). Because
of the relatively small target value of the expected photon num-
ber, ⟨P̂1⟩ = 0.5, the variance I(t) in the WCM photocurrent can
be reduced by a Gaussian filter87 with the weak measurement rate
η ≤ 1. The Gaussian kernel parameters of the filter, such as the fil-
ter interval and the variance, can be numerically chosen to reduce
the standard deviation of the measurement photocurrent into a cer-
tain range, e.g., about ten times larger than the mean value (details
in Sec. IV B). The PPO agent applies an updated stochastic pol-
icy to the quantum optomechanical environment to maximize the
accumulated reward, where the action G(t) is proportional to the
amplitude of the cavity mode: G(t) = g0ᾱc(t). The action can be con-
trolled by an incident laser64 and is continuous in a certain range,
e.g., G ∈ [−5, 5]ωm. The decay rate of cavity and mechanical modes
are κ = 0.01ωm and γ = 0.01κ, respectively, because the quality of the
mechanical oscillator mode is generally better than that of the optical
cavity or microwave resonator mode.59,60,62,66–68

Our deep RL, a model-free learning method, is implemented in
the measurement-based feedback control framework for entangle-
ment engineering in open quantum optomechanics. Details about
the PPO algorithm applied in the linear quantum optomechanics
are presented in Appendix D. To appreciate its performance, we
employ two benchmark methods for comparison: Bayesian48,55 and
random control. Bayesian control48,55 is a state-based feedback con-
trol of the stochastic process as governed by the SME. In our case,
the control law is given by G(t) = −λ∣⟨n̂p⟩(t) − 0.5∣ωm with ⟨n̂p⟩(t)
being the observation, where the hyperparameter λ can be numeri-
cally optimized based on the performance. If the observation is I(t),
the control flow will be in the form G(t) = −λ∣I(t) − 0.5∣ωm, in
which the Wiener process blocks the performance to some degree. In
Bayesian control, the smaller the variance in the measured photocur-
rent, the better the performance. For the random control method,
the flow is generated by a uniform distribution in the action range
G ∈ [−5, 5] ωm. It should be noted that the actions G of random con-
trol and deep RL are in the same range while the one of Bayesian
control is determined by the hyperparameter λ and the state-based
observation value or the WCM photocurrent. To make a fair com-
parison, λopt is optimized within the action range G ∈ [−5, 5]ωm. In
particular, the optimized hyperparameter λopt corresponds to the
best performance of Bayesian control in the set λ ∈ {1, 2, . . . , λmax},
where λmax is the maximum integer of λ to guarantee the action
range G ∈ [−5, 5] ωm.

Table I presents the values of the averaged logarithmic nega-
tivity ⟨EN⟩/log2 from the deep RL, Bayesian, and random control
methods. From the SME simulations, when the observation is the
expectation of the photon number, the Bayesian control with the
optimized hyperparameter outperforms the deep RL method. How-
ever, when the observation is the WCM photocurrent, the deep RL
control outperforms the Bayesian method. This is promising as the
WCM photocurrent is directly experimentally accessible while the
expected photon number is not. Regardless of the observation, ran-
dom control is generally ineffective. The results by deep RL control
from the observation of WCM photocurrent tend to reduce the per-
formance by about 20% compared to that based on the expected

TABLE I. Results of entanglement engineering from deep RL-based, Bayesian and
random control. The observations are the expectation of the photon number ⟨n̂p⟩ and
the WCM photocurrent I(t) at the measurement rate η = 1. The Bayesian hyper-
parameter is λopt = 10 for the ⟨n̂p⟩ task and λopt = 2 for the I(t) task. The results
of the average logarithmic negativity ⟨EN⟩/log 2 with the standard deviation are dis-
played. For training and testing phases, ⟨EN⟩/log 2 is averaged over ten end-training
or testing episodes, each having T = 500 time steps. Each observation is obtained by
averaging over ntraj = 1 for ⟨n̂p⟩ and ntraj = 5 for I(t) through simulating the SME,
and ntraj denotes the number of independent trajectories from SME simulations. The
boldface values indicate the best performance for the same column in the table, i.e.,
the same observation configuration, among the three different control methods.

Controller Condition ⟨n̂p⟩ ntraj = 1 I(t) ntraj = 5

Deep RL (%) Training 83.81 ± 1.85 64.81 ± 1.47
Testing 84.95 ± 1.99 65.01 ± 1.76

Bayesian (%) λ = 1 56.89 ± 6.40 35.48 ± 5.34
λopt 93.21 ± 0.89 49.24 ± 0.44

Random (%) 38.15 ± 9.46 33.46 ± 4.27
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FIG. 2. Performance in terms of ⟨EN⟩/log 2 over a long time interval, compared
for deep RL-based, Bayesian, and random control methods with respect to two
observable options: the expected value ⟨n̂p⟩ and the WCM photocurrent I(t).
The deep RL controller is trained with T = 500 time steps. For all three control
methods, the results from the testing phase for the following set of time steps are
shown: T = [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000] at the measurement
rate η = 1. The conventions, which apply to this and all subsequent figures, are
as follows: if the vertical axis is labeled as ⟨EN⟩/E0, it represents the normalized
logarithmic negativity, with E0 = log 2 ≃ 0.7 (in the natural logarithmic base) as the
target entanglement value. Otherwise, when the vertical axis is labeled as ⟨EN⟩,
ẼN , or EN(t), it represents the original value of the logarithmic negativity.

photon number. For Bayesian control, the reduction is about 40%.
Moreover, Fig. 2 compares the long-time entanglement engineering
for three control methods. Especially, for deep RL control, the PPO
agent is trained with T = 500 time steps but tested with a longer time
horizon, e.g., T = 4000 steps, including the unexplored regime by the
PPO agent. It is worth noting from Fig. 2 that the performance of
deep RL with the observation of WCM photocurrent exhibits a more
stable and smaller variance compared to the case where the obser-
vation is the expected photon number, especially after T = 2000.
Overall, with the experimentally feasible observation of WCM, the

deep RL controller stands out as the choice of entanglement control
for quantum optomechanical systems.

We characterize the performance of our deep-RL-based con-
trol method in terms of the dissipation rate, measurement rate,
and the randomness effect for the initial state. For the measure-
ment rate η = 1, the PPO agent is sequence-wise trained with the
WCM photocurrent. Figures 3(a) and 3(c) show the average loga-
rithmic negativity ẼN and the mean reward R̃, respectively, vs the
episode during the training phase, in which ẼN and R̃ are averaged
over one and five parallel quantum environments, respectively. Both
quantities ultimately converge due to the properly designed reward
function R(t) = −∣I(t) − 0.5∣. It should be noted that the variance
of ẼN is suppressed with the episodes, implying the mixture-robust
nature of entanglement in the quantum optomechanical system. The
testing phase is longer (T = 4000 time steps) than the training phase
(T = 500 time steps), and the corresponding performance measures
are shown in Figs. 3(b) and 3(d). In addition to the variance in the
learning of the deep RL agent with the stochastic policy, the Gaus-
sian Wiener process in the WCM photocurrent and the stochastic
collapse process stipulated by the SME also contribute to the vari-
ances of the performance measures. However, the deep RL control
still manages to maintain the solid traces of the testing I(t) around
the target value ⟨n̂target

p ⟩ = 0.5 shown in Fig. 3(d) and the resulting
entanglement quantity EN(t) is shown in Fig. 3(b).

Since the quantum optomechanical system is coupled to the
vacuum bath, the coupling strength or disturbance between the clas-
sical and quantum environments will affect the control performance,
as exemplified in Fig. 4(a). Previous experiments59,60,62,65 demon-
strated that the quality of the mechanical oscillator is generally better
than that of the optical cavity or microwave resonator, i.e., γ < κ, so
we set the decay rate of the oscillator at two orders of magnitude
smaller than that of the cavity:57 γ = 0.01κ. Figure 4(a) shows, for
both the expectation and the measurement flow observations, the
performances of the training and testing processes, which are con-
sistent with each other in the sense that their mean values decrease

FIG. 3. Performance of deep-RL agent
in the online training and testing phase.
The characterizing quantities are the log-
arithmic negativity EN and the reward
function R with the measurement rate
η = 1. (a) and (c) Performance mea-
sures in the online training phase, where
the mean ẼN is over one episode with
T = 500 time steps on the fifth quan-
tum environment (only one environment)
and the mean reward R̃ is obtained from
N = 5 parallel quantum environments.
(b) and (d) Performance measures dur-
ing the testing phase, where the log-
arithmic negativity EN(t) and WCM
photocurrent I(t) are obtained with
T = 4000 time steps. The solid traces
represent the moving-window average
over 100 episodes for panels (a) and (c)
and 100 time steps for panels (b) and (d).
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FIG. 4. Effects of decay and measurement rates on the control perfor-
mance. The values of the average logarithmic negativity for (a) decay rates
κ = [0, 0.01, 0.03, 0.05] ωm with η = 0.5 and γ = 0.01κ and (b) measurement
rates η = [0.05, 0.1, 0.3, 0.5, 0.7, 1] with κ = 0.01ωm and γ = 0.01κ are shown.
The error bars represent the standard deviation of the data points. The average
operation is over ten end-training or testing episodes. The training and testing time
steps are the same: T = 500.

and the variances increase with the decay rate. The origin of the per-
formance fluctuations is the classical dissipation to the vacuum bath,
rendering the system less controllable by laser.

The uncertainty in the classical information extracted from
the quantum system depends on the discrete-time step size dt and
the measurement rate η, which directly determines the degree of
the quantum-state stochastic collapse and quantum decoherence
from the WCM term in the SME. If the expectation of the pho-
ton number is the observation, the stronger the measurement rate
(proportional to the measurement strength), the poorer the per-
formance of deep-RL control as characterized by a decrease in the
mean values and an increase in the uncertainties of EN , as shown in
Fig. 4(b), which originate from the intrinsic random process in the
SME induced by the measurement process. However, if the obser-
vation is the WCM photocurrent, the weaker measurement rate will
introduce larger variances in the observation signal and reduce the
stochasticity of the process due to the incomplete/partial extracted
information as described by the SME. In our case, the target mean
value, ⟨n̂target

p ⟩ = 0.5, is on the order of 10−1, rendering necessary
introducing a Gaussian filter to reduce the uncertainty. The result-
ing performance of deep-RL control is approximately the same for
η ∈ [0.05, 1], as shown in Fig. 4(b).

Experimentally, mixed quantum states are more realizable than
pure states due to the quantum decoherence with the classical envi-
ronment, e.g., the vacuum bath. To address this issue, and referring
to the previous work,88 we assume that the initial state is a mixed
state in the form of ρ = (1 − p)∣10⟩⟨10∣ + p∣01⟩⟨01∣, where the para-
meter p is fixed or a random variable p ∈ [0, 1] because of the
coupling to the classical environment. The beam-splitter Hamilto-
nian stipulates that the photon and phonon modes are symmetric
to each other, allowing p to be rescaled to the interval p ∈ [0, 0.5].

FIG. 5. Robustness of the deep-RL method trained with pure or mixed states.
(a) In the training and testing phase, performance of ⟨EN⟩/E0 for differ-
ent initial mixed states (solid traces): ρ = (1 − p)∣10⟩⟨10∣ + p∣01⟩⟨01∣ with
p = [0, 0.1, 0.2, 0.3, 0.4, 0.5]. The dashed traces indicate the performances
trained with random initial mixed states with the random variable p ∈ [0, 0.5]. (b)
Testing performance of two kinds of trained agents with p ∈ [0, 1]: one trained
with the pure initial state ∣ψ⟩ = ∣10⟩ and another with random initial mixed states,
which are distinguished by the color depth of the curve and the error bars. The blue
and red curves denote the performances with the observation ⟨n̂p⟩ and I(t),
respectively, with error bars. The measurement rate is η = 0.5, and the training
and testing time steps are T = 500.

Figure 5(a) shows the performance with respect to the initial mixed
quantum state with the same parameter p for each training and
testing episode (solid traces), where the complete mixed case with
p = 0.5 leads to the worst performance but still possesses entangle-
ment to a significant extent. The reason lies in the inherent property
of the beam-splitter Hamiltonian, which can create the maximum
entangled states, [∣10⟩ + eiφ

∣01⟩]/
√

2, with respect to the part of the
initial quantum state, such as ∣10⟩ or ∣01⟩ through the linear interac-
tions, regardless of whether it acts on a pure or a mixed state. In
Fig. 5(a), the dashed traces represent the performance during the
training phase with a random initial mixed quantum state, which is
generated by the random variable p with the uniform distribution in
the range of p ∈ [0, 0.5]. The error bar characterizes the uncertainty
over ten end-training episodes.

Figure 5(b) shows the testing performance of two kinds of
trained models, one trained by the initial state ∣ψ⟩ = ∣10⟩ and another
by the random initial mixed-state ρ = (1 − p)∣10⟩⟨10∣ + p∣01⟩⟨01∣
(distinguished by the dark and light colors, respectively). It should be
noted that the beam-splitter Hamiltonian transforms the initial state
∣10⟩ or ∣01⟩ to a Bell state with the corresponding expected photon
number: ⟨n̂target

p ⟩ = 0.5, where the dissipative degree to the vacuum
bath is much weaker than the beam-splitter interaction. However,
if the initial state is the mixed state, the ∣10⟩⟨10∣ and ∣01⟩⟨01∣ com-
ponents will become independently entangled, resulting in the total
quantum state being a mixture of two entangled Bell states. As a
result, a nontrivial entanglement value is expected for the initial
mixed state governed by the beam-splitter Hamiltonian. With the
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mixed probability p = 0.5, it results in an equal mixture of the Bell
states, as shown in Fig. 5. In the testing phase, the two trained models
use the same initial state for a fixed value of p. The two models have
a comparable performance, suggesting that the deep RL method is
robust to the initial randomness in a mixed state. More specifically,
during the testing phase, the observation is the expected photon
number or WCM photocurrent. The worse performance occurs for
p = 0.5 and for other values of p, the performance is symmetric about
p = 0.5 due to symmetric role of the photon and photon modes in
the beam-splitter Hamiltonian. It should be noted that the model
trained with the observation being the measurement photocurrent
displays a small difference in the performance measure [⟨EN⟩/E0
over the whole probability interval p ∈ [0, 1]] between the best and
worst cases, with less uncertainties than the case where the obser-
vation is the expected photon number. Taken together, our deep-RL
model trained by the weak measurement photocurrent holds a lower
mean performance but possesses robustness against mixed quantum
states compared to the scenario based on observing the expected
value of the photon number due to the strong capability of RL
in learning randomness and executing accurate high-dimensional
data-fitting.

C. RL in nonlinear quantum optomechanics
In an open quantum optomechanical system under the strong

laser-driven approximation, the radiation pressure on the mov-
able mechanical mirror generates a linear interaction between the
optical and mechanical modes. When this approximation does not
hold, the interaction between the two modes becomes nonlinear.
Entanglement can still be created despite the nonlinear interaction,
but control becomes more challenging. In particular, in the stan-
dard quantum optomechanical system, the nonlinear coupling term
h̵g0â †â(b̂ †

+ b̂) can be used to create entanglement, but high-level
quantum states can also be excited during the process, making it
difficult to stabilize the entanglement within a finite Fock basis. Real-
istically, the quantum dynamics are governed by the SME due to the
WCM, which induces the nonlinear stochastic evolution. The prob-
lem then becomes that of creating and stabilizing the entanglement
of non-Gaussian states decaying to the vacuum bath. Despite the
difficulties, model-free deep-RL can still provide a general approach
through some optimal combination of the neural network structure,
observable, reward function, and action.

We consider the nonlinear optomechanical system and exploit
deep RL to set the control goal of achieving the entanglement
near EN ∼ log 2. This nonlinear entangled state shares a similar
entanglement value with the maximum entangled Bell state in the
corresponding linear system. For entanglement engineering of a
nonlinear optomechanical system, a key issue is selecting an effective
and experimentally feasible observation quantity. Utilizing a general
actor and critic neural network, the deep RL agent can learn the rela-
tionship between entanglement and the experimental observables of
the optomechanical system in a model-free manner. To achieve con-
trol, we articulate a training process consisting of two phases: the
target-generating phase and the target-utilization phase, facilitated
by deep RL.

The first training step is the target-generating phase, in which
numerical SME simulations are used to generate the observation and

reward data and the PPO agent interacts with the quantum envi-
ronment, observes the logarithmic negativity EN(t), and constructs
the reward function combining the expectation number of the pho-
tons and phonons: R(t) = −∣EN(t) − log 2∣ − ∣⟨n̂p⟩(t) + ⟨n̂m⟩(t) −
a∣/b with numerically optimized hyperparameters a = 1 and b = 30.
(It should be noted that direct experimental measurement of the
logarithmic negativity is currently not available.) Figure 6 shows
the control results, where the excitation of quantum states is lim-
ited by the total number ⟨n̂p⟩ + ⟨n̂m⟩. The target time series of the
expected photon number is obtained as ⟨n̂target

p ⟩(t). The second step
is the target-utilization phase, during which the reward function is
R(t) = −∣⟨n̂p⟩(t) − ⟨n̂target

p ⟩(t)∣.
Since it is time-dependent, the recurrent neural network (RNN)

added after the MLPs in the PPO agent displays a strong and stable
learning ability, which outperforms the case with only MLPs. The
expected photon number ⟨n̂p⟩(t) is observed by the recurrent PPO
agent as ⟨n̂p⟩ = ∑n n⟨P̂n⟩, which is experimentally more feasible than
the quantity EN . While the recurrent neural network has some con-
siderable advantages, such as long-term memory,58 it still encounters
the challenge of engineering optimization89 in order to achieve a cor-
rect and efficient implementation. In our case, the main challenge
is the time cost to optimize the parameters to search for a global
minimum or maximum due to the ten stochastic collapse operators,
P̂n = ∣n⟩⟨n∣ with the respective Fock numbers n = 0, 1, . . . , 9, in the
SME with the measurement rate η = 0.1, requiring a long simulation
time. Our solution is to consider only the N = 1 quantum optome-
chanical environment, in which the agent collects data and updates
the policy every Z = 15 and Z = 5 episodes in two phases (target-
generating and target-utilization), respectively, with the time hori-
zon T = 500. It should be noted that using ten stochastic projectors,
P̂n can result in a large variance in the WCM photocurrent,

√
η I(t) =∑

n
n[⟨
√
ηP̂n⟩ +

dWn(t)
√

4ηdt
],

where ten independent Wiener processes dWn(t) are used. In this
case, observation of the measured random photocurrent is infea-
sible. Even if the deep RL agent is trained in two phases with the
expected photon number, it can fail during the training process
due to the numerical cutoff in the Hilbert space dimension and the
strong randomness introduced by the SME. In the nonlinear quan-
tum optomechanical system, the interaction strength is g0 = 0.2ωm.
The PPO agent creates entanglement characterized by EN ∼ log 2
vs time, calculated through the SME with dissipation to the vac-
uum bath for κ = 0.1ωm, and γ = 0.01κ. The system is initialized in
the vacuum state ∣ψ⟩ = ∣00⟩, i.e., the pure state, with 10 × 10 Fock
bases. The time-dependent control signal is the detuning Δ and
the amplitude αL of the driven laser within the fixed range Δ,αL
∈ [−5, 5] ωm.

The representative results are as follows: in the target-
generating phase, despite the disturbance of the stochastic process
from WCM, the training curves for both the reward R̃ and the loga-
rithmic negativity ẼN converge with the episode number, as shown
in Figs. 6(a) and 6(b), indicating that entanglement has been created
and stabilized by the well-trained PPO agent, as shown by Fig. 6(c)
with the laser control signal shown in Fig. 6(d). At the end of the time
period, the photon and phonon statistics with respect to the Fock
basis are shown in Figs. 6(e) and 6(f), where the reduced photon
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FIG. 6. Generating a target for deep-RL based creation and stabilization of entanglement in a nonlinear open quantum optomechanical system. (a) and (b) Trained quantities
R̃ and ẼN converge to a certain value as the episode number increases, as represented by the light-color curves, where the dark blue and orange traces represent the data
averaged over 100 previously consecutive episodes. (c) and (d) Time-dependent series of EN(t) and the driven laser signals Δ,αL at a certain episode selected from the
training converged regime in panels (a) and (b). (e) and (f) The corresponding photon and phonon statistics on the Fock basis at the end of the time point of the selected
training episode in panels (c) and (d). (g) The time evolution of the corresponding expected quantities, including the expected numbers ⟨n̂p⟩ and ⟨n̂m⟩ in the Fock basis,
where the time series of ⟨n̂p⟩(t) serves as the target to construct the reward function in the next phase, i.e., the experimental version shown in Fig. 7.

state exhibits an oscillating tail that resembles the displaced squeezed
state and the reduced phonon state displays the thermal-like state.
Figure 6(g) shows the corresponding target pattern ⟨n̂target

p ⟩(t). In
the target-utilization phase, the recurrent PPO agent is able to
steadily learn to create and stabilize the entanglement, as shown in
Fig. 7, where only partial information is extracted from the quantum
optomechanical environment. Especially, various entangled states
have been created, such as a reduced photon state with the head
oscillating on the Fock basis in photon statistics entangled with the
thermal-like reduced phonon state, as exemplified in Figs. 7(e) and
7(f). Due to the nonlinear and stochastic process in the SME, the
entangled states created and controlled are not steady states, ren-
dering infeasible Bayesian control. We thus employ random control
as a benchmark, where a uniformly random distribution of actions
is taken in a certain range Δ,αL ∈ [−5, 5]ωm and the tested values
of the measurement rate are η = [0.05, 0.1, 0.3, 0.5, 0.7, 1]. Figure 8
shows that, as the measurement rate increases, the random control
is unable to harness the entanglement while our well-trained recur-
rent PPO agent can maintain the entanglement percentage at 50% or
higher.

D. Physical understanding of entanglement
engineering through model-free deep RL

In an experiment, it is usually difficult to directly obtain infor-
mation about the entanglement. For entanglement engineering of a
quantum optomechanical system, one scenario is that the RL agent

observes the photon number to steer the laser to create and stabi-
lize entanglement, as shown in Fig. 9. Here, we provide a physical
interpretation of RL control for entanglement engineering in both
the linear and the nonlinear interaction regimes. The key physical
relationships involved are that between the entanglement and pho-
ton number and that between the photon number and laser driving.
We also describe the capability of the RL agent to train the laser
driving to modulate the two-mode interaction to reduce quantum
decoherence resulting from WCM and the quantum dissipation to
the vacuum bath.

1. Linear interaction regime
For the linear quantum optomechanical system, the maximum

entanglement corresponds to a Bell state, of which the expected
photon number is ⟨n̂p⟩ = 0.5. Intrinsically, the beam-splitter Hamil-
tonian is capable of generating Bell states;79–81 a reasonable assump-
tion is that, when the expected photon number reaches the value of
0.5, the maximum entanglement is achieved in a linearly interact-
ing quantum optomechanical system. This assumption provides the
base for constructing the reward function R(t) = −∣⟨n̂p⟩(t) − 0.5∣,
where the deviation in the expected photon number from 0.5 results
in a decreasing reward and, therefore, implies reduced entangle-
ment. As shown in Fig. 9, the RL agent is designed to maximize
the accumulated reward value, which is equivalent to stabilizing the
expected photon number about the value of 0.5 for as long as possi-
ble. The testing results shown in Fig. 3 indicate that the maximum
entanglement can indeed be created and stabilized by the RL control.
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FIG. 7. Entanglement engineering by the recurrent PPO agent. The target generated as shown in Fig. 6 is exploited to create entanglement by EN ∼ log 2 from the only
partial observation of the expected photon number ⟨n̂p⟩(t). The reward function is R(t) = −∣⟨n̂p⟩(t) − ⟨n̂

target
p ⟩(t)∣, where the target time series ⟨n̂target

p ⟩(t) is from the
target-generating process shown in Fig. 6(g). In this training configuration, while only partial information is extracted from the system, the performance measures in panels
(a)–(g) display a similar behavior compared to those shown in Fig. 6. Other aspects of the setting and parameters are the same as shown in Fig. 6.

A central step in RL control is to modulate the laser input based
on the measured photon number, which requires the relationship
between the laser driving and the photon number. When the fre-
quency of the laser is in the red-detuned regime, Δ = ωL − ωc = −ωm,
the quantum state switches between the two modes—the cavity
optical and the mechanical oscillator modes—leading to a “swap”
Hamiltonian. The coefficient G is proportional to the amplitude of
the cavity parameter ᾱc that is determined by the laser. In the lin-
ear interaction regime, RL control is achieved via two adjustments
of the laser based on the measured photon number: (1) the laser

FIG. 8. Target-utilization phase of entanglement engineering of nonlinear optome-
chanical systems. The results of online training and testing of the entanglement
measure ⟨EN⟩/E0 for measurement rates η = [0.05, 0.1, 0.3, 0.5, 0.7, 1] are
shown, in comparison with the benchmark performance of random control. The
error bars are the corresponding standard deviation. The results from random con-
trol flow are also included for comparison. Other parameters are the same as those
shown in Fig. 6.

frequency is changed into the red-detuned regime and (2) the laser
amplitude is perturbed to modulate the driving strength G to con-
trol the two modes of switching, which affects the expected photon
number. It should be noted that, during this process, there is no
energy gain: there is energy loss due to the dissipation of the cav-
ity and oscillator modes into the vacuum bath with the dissipation
rate given by γ = 0.01κ. This relation means that the energy loss
due to the oscillator mode occurs more slowly than that with the
cavity mode. In essence, the working of the laser is to transfer the
energy from the oscillator mode to the cavity mode to stabilize the
photon number to a desired value. The underlying dissipation pro-
cess is not beneficial to the entanglement, as it cannot be modulated
by the “swap” term in the Hamiltonian, eliminating any possibil-
ity of entanglement enhancement in an optomechanical system in
the linear interaction regime. It is worth noting that, in the nonlin-
ear interaction regime, entanglement enhancement and dissipation
reduction are possible, as will be described in the following.

FIG. 9. RL-based entanglement engineering of a quantum optomechanical system.
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2. Nonlinear interaction regime

When the interactions between the optical and mechanical
modes are nonlinear, the relationship between entanglement and
photon number can be sophisticated and is currently unknown.
However, model-free deep RL can be used to find the relation
numerically. To achieve this, we first assume that there is a solu-
tion of the one-to-one correspondence between EN and ⟨n̂p⟩ in the
time domain. The reward function is constructed according to the
target entanglement EN = log 2 to train the RL agent to maximize
the accumulated reward. In the testing phase, the time-dependent
series of the expected photon number controlled by the well-trained
PPO shown in Fig. 6(g) is regarded as the target time series of the
expected photon number for the next target-utilization phase. It
should be noted that the “best” photon number is no longer sim-
ply 0.5: it is now time-dependent. In the next training phase, the
reset RL agent will learn to control the system with the observation
⟨n̂p⟩(t) based on the target’s expected photon number ⟨n̂target

p ⟩(t).
The performance of the new RL agent in the testing phase, as shown
in Fig. 7, validates our initial assumption about the existence of the
one-to-one correspondence between EN and ⟨n̂p⟩, even though it is
time-dependent.

In the nonlinear interaction regime, the physical picture of
how the laser leverages the radiation–pressure interaction to cre-
ate and stabilize the photon number and even the entanglement is
not straightforward. However, physical insights can be gained by
examining the strong laser limit. When the amplitude of the laser
is strong, ∣ᾱc∣≫ 1, in the blue-detuned regime with Δ = +ωm, the
laser can modulate its frequency to create exponential growth of
the energies of both the cavity and oscillator modes, accompanied
by the generation of strong quantum correlation between the two
modes. In the red-detuned regime with Δ = −ωm, a switching pro-
cess between the two modes occurs, which is the same as that in the
linear interaction regime.

The blue- and red-detuned regimes have a competitive rela-
tionship with each other in terms of both the photon number and
entanglement. In particular, in the blue-detuned regime, photons are
excited and the rate of excitation can be larger than that associated
with quantum dissipation to the vacuum bath. Furthermore, quan-
tum entanglement is enhanced, overcoming quantum decoherence
from the classical environment and even from the SME. However,
in the red-detuned regime, no photons are excited, and there is
only a two-mode energy-transferring process that does not com-
pletely suppress the process of quantum dissipation to the vacuum
bath, resulting in photon loss and eventually reducing entanglement.
Stabilizing the photon number and entanglement requires a bal-
ance between the operations in the blue- and red-detuned regimes.
In general, the blue-detuned regime is prone to too high photon
levels with strong entanglement, which should be balanced by the
red-detuned regime operation to reduce the photon number to real-
ize our target entanglement engineering, as shown schematically in
Fig. 10. Overall, in the nonlinear interaction regime, laser driving of
finite amplitude and frequency modulation can control the photon
number and entanglement to a certain extent. An example is shown
in Fig. 7(d), where the RL agent finds the optimal action flow with
finite laser amplitude. It should be noted that the detuning Δ is mod-
ulated mainly in the range Δ ∈ [−2ωm, 2ωm], signifying a balance
between the blue- and red-detuned operations.

FIG. 10. Physical insights into the nonlinear regime of cavity-mechanical inter-
action under the strong laser limit: ∣ᾱc∣≫ 1. When the strong laser is in the
red-detuned regime with Δ = −ωm, the laser controls the two-mode transfer-
ring process but, in the blue-detuned regime with Δ = +ωm, the laser controls
the exponential growth of the two modes in energies and creates the quantum
correlation between two modes.62

3. Weak continuous measurement
In an open quantum system, under WCM and quantum dis-

sipation into the vacuum bath as well, a Wiener process occurs in
the observable. More specifically, the Wiener process arises from
the Gaussian-weighted projection over the eigenstates, which weakly
extracts the partial information from the quantum system and
induces stochastic disturbances in both the dynamical equation and
observation. Such disturbances can avoid a complete quantum state
collapse and provide the capability to extract the quantum infor-
mation continuously in the time domain. However, the nonlinear
stochastic process occurs in both quantum dynamical trajecto-
ries and the measurement photocurrent, making it challenging to
control the quantum system through WCM continuously.

For stochastic noise in the WCM photocurrent, the present
cutting-edge technology enables the RL agent to extract quantum
information through a process resembling noise filtering. In par-
ticular, the observation in the reward function is the WCM pho-
tocurrent. We can employ ntraj quantum ensembles to reduce the
variance and use a Gaussian filter for data pre-processing. The RL
agent is trained to maximize the accumulated reward, which serves
to average the stochastic term in the measurement photocurrent
over time. These noise-filtering processes help extract information
about the expected photon number and thus the target quantum
entanglement. For the nonlinear quantum stochastic process with
quantum dissipation, the RL agent successfully trains the laser to
leverage interactions between the optical and mechanical modes, lin-
ear or nonlinear, to mitigate quantum decoherence and dissipation
to some extent, as exemplified in Figs. 3 and 7.

III. DISCUSSION
Exploiting machine learning for controlling quantum infor-

mation systems is becoming a promising research realm and is
attracting increasing attention. We have developed a model-free
deep-RL method for entanglement engineering. We demonstrated
its superiority over benchmark quantum control methods in quan-
tum optomechanical systems under WCM. The model-free deep-RL
agent sequentially interacts with one or multiple parallel quantum
optomechanical environments, collects trajectories, and updates its
policy to maximize the accumulated reward to create and stabilize

APL Mach. Learn. 3, 016107 (2025); doi: 10.1063/5.0233470 3, 016107-11

© Author(s) 2025

 19 January 2025 17:53:02

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

the entanglement. Both linear and nonlinear interacting regimes
between the photons in the optical cavity and the phonons asso-
ciated with the mechanical oscillator in the cavity have been stud-
ied. In particular, for linear interactions, the PPO agent directly
observes the WCM photocurrent and delivers better performance
compared to the benchmark Bayesian and random control meth-
ods in the framework of measurement-based feedback control. The
performance of deep RL control is tolerant to randomness when
initially the system is in some mixed state. For nonlinear inter-
actions, both the model-free PPO and recurrent PPO agents have
been tested, where the first was utilized to generate the time series
of the target of the expected photon number and the second one
was employed to control entanglement according to an objective.
Because of the high degree of randomness in the SME originat-
ing from ten stochastic collapse operators, only the observation of
the expected photon number is feasible in the nonlinear interaction
regime.

More specifically, linear interactions can naturally limit the
excitation in the energy levels, providing a mechanism to directly
create the entangled Bell states under the premise of strong laser
approximation in the red-detuned regime. A disadvantage is that
its performance is sensitive to the coupling of the vacuum or ther-
mal bath, even when the decay rate is small (e.g., κ = 0.01ωm with
G ∈ [−5, 5] ωm). This phenomenon is, in fact, quite common in
quantum systems. For instance, in systems with magnon–photon
coupling,88 steady Bell states can ideally be generated in the PT-
broken phase without dissipation while the entanglement is reduced
when the decay rate is not negligible. Another issue with lin-
ear interactions is that the time scale associated with generat-
ing entangled Bell states90 tends to be much shorter than the
inverse of the coupling strength about the higher-order exceptional
points in a system of coupled non-Hermitian qubits with energy
loss while the maximum entanglement can only last for a short
instant.

In contrast, nonlinear interactions can create and stabilize
entanglement and are more robust to the disturbance from the vac-
uum bath even with a relatively large decay rate, e.g., κ = 0.1ωm
with the strong coupling g0 = 0.2ωm, so g0/κ = 2 > 1 to stipulate
the nonlinear effect.62 Potentially, systems with nonlinear coupling
can thus outperform those with linear interactions. A caveat is
that, in nonlinear optomechanical systems, there is limited exper-
imentally accessible observation. In fact, the relationship between
experimental observables and entanglement in nonlinear quantum
optomechanical systems has not been well-understood, rendering
challenging to choose a feasible observable to control entanglement.
We have partially relied on the numerical method to create and
stabilize entanglement, based on the numerical relation between
entanglement and the expected photon number discovered by the
deep RL. Another difficulty is that the nonlinear interaction can
readily excite the system to high quantum states, which we have
overcome by designing a proper reward function.

A previous work91 studied the acceleration of entanglement
generation through feedback weak measurement for two qubits
in a four-dimensional Hilbert space, where coupling to a vacuum
or thermal bath was not taken into account, nor the interactions
between the two qubits, and the control protocol required prior
knowledge about the system such as the decoherence-free subspace.
In addition, complete observation was needed to design the local

Hamiltonian feedback to speed up entanglement. This is, in fact,
a model-based approach. In another study,92 steady-state entangle-
ment between two qubits was achieved using a continuous feedback
control method, where the feedback protocol design was informed
by a detailed model of the system’s dynamics. In contrast, our work
creates and stabilizes a two-mode entangled state about a predeter-
mined level of entanglement for both linear and nonlinear inter-
actions via model-free reinforcement learning, with the respective
dimensions of the Hilbert space being four and one hundred.

Gate-based control uses quantum logic gates to manipulate
qubit states and generate entanglement, typically relying on von
Neumann projective measurements that require 103–106 repetitions
to estimate an observable. In contrast, weak continuous measure-
ment employs Gaussian projections, eliminating repeated system
preparations and requiring only a single preparation for the entire
time horizon. While adiabatic passage can achieve high-fidelity
states through slow evolution under a time-dependent Hamiltonian,
its long duration represents a limitation. Advances in counterdia-
batic driving93 aim to relax this limitation but remain model-based,
relying on predefined mathematical models. Similarly, dissipation
engineering94 that leverages tailored dissipation to stabilize desired
states is also inherently model-based. In contrast, RL offers a model-
free approach, requiring no prior mathematical models and needing
only a single initial preparation for each episode. Weak continuous
measurement further reduces repetitions to one per time step, signif-
icantly lowering the quantum resource use and running time, mak-
ing the model-free framework efficient and adaptable in quantum
systems.

Our work suggests the possibility of exploiting multi-agent
RL through parallel computation to stabilize entanglement. The
agents leverage the decentralized structure of the task and share
information via communication. Saliently, if several agents fail in a
multi-agent system, the remaining agents can take over some of their
tasks. In principle, our control framework can be extended to multi-
agent RL for multi-mode entanglement engineering of a quantum
black box.

The methods in this work operate within the framework of
Markovian feedback, i.e., RL based on Markov decision processes,
in which the action at the next time step is determined by the state
at the current time step only. In general, time delay and dynamic
memory arising from the inevitable lag between measurement,
processing, and feedback application95–97 represent a fundamental
challenge in any feedback control systems including quantum sys-
tems. In particular, in a quantum system, this delay can be the
result of the time required to extract information from the system
through photo detectors or other measurement apparatus. Incorpo-
rating delay-compensation techniques into the feedback controller
design is essential for mitigating the effects of time delays.

IV. METHODS
A. Stochastic master equation

An experimental optomechanical system is effectively an open
quantum system interacting with the vacuum bath under WCM
with the operators29,50 Ĉn ≡

√ηP̂n, where P̂n = ∣n⟩⟨n∣ with n = 0, 1
(linear) or n = 0, 1, . . . , 9 (nonlinear) is the measurement operator
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on the Fock state and η denotes the measurement rate. The quan-
tum dynamics of this system are described by the stochastic master
equation (SME),29,52,98–100

dρ =
1
ih̵
[H̃, ρ]dt + Lenv ρdt +∑

n
D(Ĉn)ρdt +∑

n
H(Ĉn)ρdWn,

(2)

where the Hamiltonian is H̃ = H̃bs or H̃nl and ρ is a density operator
in the Hilbert space. Under the Born–Markov approximation,101,102

which requires the system–bath coupling to be weak and the cor-
relation time of the bath to be much shorter than a characteristic
timescale of system–bath interactions, the Markovian master equa-
tion, i.e., the first two terms in the right-hand side of Eq. (2), has
the Lindblad form.101 At absolute zero temperature, the following
environmental operator Lenv ρ can be introduced to describe the
coupling between the system and vacuum bath: Lenv ρ = κD(â)ρ
+ γD(b̂)ρ, where the cavity and oscillator modes are coupled to
the vacuum bath with the strength κ and γ, respectively.57 The
deep RL results in the Lindblad master equation with the nonlinear
interaction are presented in Appendix E.

The WCM process described by the last two terms in the right-
hand side of Eq. (2) is nonlinear and Markovian in the conditional
master equation52 in ρ. Under WCM, a Wiener process dW with a
Gaussian distribution52 arises from the Gaussian-weighted projec-
tion over the eigenstates that allows the quantum information to be
extracted continuously in the time domain, subject to stochastic dis-
turbances in the last term of Eq. (2) and quantum decoherence in the
penultimate term of Eq. (2) (Appendix C provides a detailed deriva-
tion of the SME). The Lindblad operator D and the measurement
superoperator H in Eq. (2) are given by

D(Â)ρ ≡ ÂρÂ †
−

1
2
(Â †Âρ + ρÂ †Â),

H(Â)ρ ≡ Âρ + ρÂ †
− ⟨Â + Â †

⟩ρ,

with ⟨Â⟩ ≡ Tr[Âρ]. The two operators serve to weakly drive the
quantum state into the corresponding eigenstates to some degree.

The measurement operators in the quantum stochastic mas-
ter equation correspond to experimentally accessible observables,
such as quadratic operators X̂1, X̂2, and others. For our system, pho-
ton number detection is viable. In general, a challenge in applying
RL to quantum control lies in selecting experimentally accessible
measurement operators while ensuring acceptable RL performance.

B. Implementation details of deep RL
For simulating the linear or nonlinear quantum optomechani-

cal system described by Eq. (2), we use the “taylor1.5” solver from the
SME solver in the QuTip’s package103 with the tolerance tol = 10−6

and time step size dt = 0.01 ω−1
m . The measurement current is sim-

ulated with the “homodyne” method, and the custom environment
is constructed by the open-source platform OpenAI-Gym.104 For RL
simulations, we construct the PPO agent49 by “stable-baselines3”105

in the A2C106 settings, where stochastic policy (actor) and the value
function (critic) are modeled by two independent neural network
function approximators, i.e., a set of fully connected feed-forward
networks of dimensions 256 × 128 × 64 and the hyperbolic tangent

nonlinear activation function for each hidden layer. For the nonlin-
ear quantum optomechanical configuration, in the target-utilization
phase, the recurrent PPO agent outperforms the PPO agent, where
both independent critic and actor networks are MLPs, followed by
one independent layer of LSTM with 256 × 128 × 64 fully connected
networks and 256 hidden states. More details, especially in the table
of Gaussian kernel, are described in Appendix F.
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APPENDIX A: BACKGROUND RELATED TO OUR WORK
1. Quantum control

Quantum control100 is essential to quantum engineering
and technology,109–111 where open-loop control112 has been
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successfully demonstrated with methods such as gradient-ascent
pulse engineering (GRAPE)113 in spin systems,114 coupled qubits,115

Jaynes–Cummings systems,116 and qubit–cavity lattices.117 Recently,
the open-loop GRAPE algorithm has been extended to feedback
GRAPE118 based on the gradient ascent of quantum dynamics for
state engineering under strongly stochastic measurement. Open-
loop control, however, requires a differentiable model of the quan-
tum dynamics that may not always be available. In realistic situations
where such a model is not available, closed-loop feedback con-
trol strategies conditioned on experimental measurement outcomes
can be applied. Combined with data-driven machine learning, feed-
back control has been implemented in experiments in a model-free
fashion.119–121

2. Deep reinforcement learning
In general, RL is a machine-learning paradigm based on a

trial-and-error learning process, incorporating traditional optimal
control to maximize the accumulated reward. The use of deep neural
networks in the learning process leads to deep RL, which explores
and exploits the available measurement data to search for a glob-
ally optimal policy. In deep RL, many algorithms are available such
as deep-Q network (DQN),119 deep deterministic policy gradient
(DDPG),122 and trust region proximal optimization (TRPO).123 A
state-of-the-art deep RL algorithm for continuous control is prox-
imal policy optimization (PPO),49 whose performance can exceed
that of TRPO. Incorporating recurrent neural networks58 into the
PPO algorithm leads to improved performance.89 In recent years,
measurement-based feedback control with deep RL has been applied
to quantum systems for tasks such as quantum error correction
for discrete gates,124 state preparation and stabilization for a sin-
gle particle28,29,47,48 with an unstable potential47 or a double-well
potential,48 discrimination between entangled states125 for quan-
tum meteorology, and long-distance entanglement distribution on
quantum networks.126 Experimentally, time scales of the RL action
sequences shorter than the coherence time of the underlying quan-
tum system have been realized, rendering feasible real-time deep-RL
feedback control.127

3. Quantum measurement
In quantum systems, projective measurement can be used

to extract the full information about the quantum state but, as
a back action, the quantum state will collapse after the mea-
surement.128 To avoid a complete collapse, one can exploit weak
measurements,51,129 in which the probe is weakly coupled to the
system to yield partial information about the quantum state. Exam-
ples of weak measurements include continuous monitoring130 of
driven dissipative quantum-optical systems—a basic component of
quantum meteorology.131,132 A form of weak measurement, the so-
called weak continuous measurement (WCM), is fundamental to a
broad range of applications. For example, WCM has been used to
detect the quadrature operators,85 Wigner85 and Husimi Q func-
tions133 with a homodyne apparatus,86 rendering observing both
pure134 and mixed129 quantum states experimentally feasible. WCM
has been experimentally implemented by a weak-field homodyne
detector84–86 to measure the photon-number statistical distribution
over the Fock basis. In another example, WCM has been realized in
an atomic spin ensemble51 via Faraday rotation of an off-resonance

probe beam to create and probe nonclassical spin state and dynam-
ics. The concept of WCM has also been used to develop fundamental
theories, such as Heisenberg’s measurement–disturbance relation-
ship135 and error–disturbance uncertainty relation.136 Because of
the typical time scales of the quantum dynamics, WCM cannot be
regarded as occurring instantaneously.52 Theoretically, the impact
of WCM on the underlying quantum system can be described by the
stochastic master equation.52

APPENDIX B: QUANTUM OPTOMECHANICAL SYSTEM

The standard Hamiltonian of a quantum optomechanical
system in the rotating frame of the laser is given by56,57

H̃ = −h̵Δâ †â + h̵ωmb̂ †b̂ + h̵g0(b̂ †
+ b̂)â †â + h̵(αLâ †

+ α∗L â), (B1)

where â, b̂ (â †, b̂ †
) are the annihilation and creation operators of

the optical cavity and mechanical mode, respectively. The frequency
detuning is Δ ≡ ωL − ωc, where ωL is the frequency of the driven
laser and ωc is the intrinsic frequency of the cavity. The nonlinear
coupling g0 between the single cavity and mechanical mode arises
from the frequency dispersion relationship with respect to the dis-
placement q̂ of the mechanical mode. The complex amplitude of the
driven electromagnetic field is denoted as αL. A detailed description
of how the Hamiltonian is derived is as follows.

Consider a single optical cavity and a mechanical mode (with
a movable mirror). The resonant frequency of the cavity mode is
controlled by the displacement of the movable end-mirror ωc(q̂) or
the length of the cavity, which can be expanded to the first order
about the intrinsic frequency ωc(q̂ = 0) of the cavity, leading to the
following nonlinear coupling term:

Ĥ0 = h̵ωc(q̂)â †â + h̵ωmb̂ †b̂

= h̵(ωc + (∂ωc(q)/∂q)q̂)â †â + h̵ωmb̂ †b̂

= h̵ωcâ †â + h̵ωmb̂ †b̂ + h̵g0â †â(b̂ †
+ b̂), (B2)

where g0 ≡ (∂ωc(q)/∂q)qzpf is the single-photon optomechanical
coupling strength and the position operator of the mechanical mode
is q̂ ≡ (b̂ + b̂ †

)qzpf, with qzpf =
√

h̵/(2mωm) being the mechanical
zero-point fluctuations. The radiation pressure force is acted on the
mechanical resonator by the photon number operator multiplying
the displacement operator q̂.

The Hamiltonian Ĥ = Ĥ0 + Ĥdriven in the rotating frame is
defined as99

H̃ = Û †ĤÛ − Â, (B3)

with Û ≡ exp (−iωLâ †â t) and Â ≡ h̵ωLâ †â. Using the following
identities:

exp (iωLâ †â t)â exp (−iωLâ †â t) = â exp (−iωLt),

exp (iωLâ †â t)â † exp (−iωLâ †â t) = â † exp (iωLt),
(B4)

we have

Û †â †âÛ = â †â.

In the rotating frame, with the detuning Δ ≡ ωL − ωc, we then have

H̃0 = −h̵Δâ †â + h̵ωmb̂ †b̂ + h̵g0â †â(b̂ †
+ b̂). (B5)
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The quantized electromagnetic field can be written as

Ĥdriven = h̵[αL exp (−iωLt)â †
+ α∗L exp (iωLt)â]. (B6)

Through the unitary transformation, we obtain

Û †ĤdrivenÛ = h̵αLâ †
+ h̵α∗L â. (B7)

Finally, the total Hamiltonian driven by the electromagnetic field in
the rotating frame is given by

H̃ = Û †
(Ĥ0 + Ĥdriven)Û − Â = H̃0 + Û †ĤdrivenÛ

= −h̵Δâ †â + h̵ωmb̂ †b̂ + h̵g0â †â(b̂ †
+ b̂) + h̵(αLâ †

+ α∗L â). (B8)

APPENDIX C: QUANTUM STOCHASTIC MASTER
EQUATION

The starting point is the von Neumann equation, which gov-
erns the unitary evolution of the density matrix and is given
by

ρ̇ =
1
ih̵
[Ĥ, ρ] ≡ Lρ, (C1)

where L is the Liouvillian superoperator. Equation (C1) can be
derived from the Schrödinger equation and its conjugate,

ih̵
∂

∂t
∣ψ⟩ = Ĥ∣ψ⟩,

−ih̵
∂

∂t
⟨ψ∣ = ⟨ψ∣Ĥ,

(C2)

with Hermitian Hamiltonian Ĥ †
= Ĥ. Since the density matrix

is defined as a mixture of quantum states, ρ = ∑i Pi∣ψi⟩⟨ψi∣ with
∑i Pi = 1, we have

ih̵ρ̇ =∑
i

Pi(ih̵∣ψ̇i⟩)⟨ψi∣ −∑
i

Pi∣ψi⟩(−ih̵⟨ψ̇i∣)

=∑
i

PiĤ∣ψi⟩⟨ψi∣ −∑
i

Pi∣ψi⟩⟨ψi∣Ĥ = Ĥρ − ρĤ = [Ĥ, ρ], (C3)

where ∂ρ/∂t ≡ ρ̇ and ∂∣ψ⟩/∂t ≡ ˙∣ψ⟩.
The dynamics of a quantum system interacting with the vac-

uum bath under the continuous measurement of the observable ĉ are
described by the general stochastic master equation (SME),52,99,100

dρ =
1
ih̵
[Ĥ, ρ]dt + Lenv ρdt + D(ĉ)ρdt + H(ĉ)ρdW, (C4)

where Lenv ρ is the interaction between the system and vacuum
bath, which is given by

Lenv ρ = κD(â)ρ + γD(b̂)ρ, (C5)

and dW corresponds to a Wiener process with a Gaussian distri-
bution. Concretely, both the cavity and the oscillator modes are
coupled to the vacuum bath with the coupling strengths κ and
γ, respectively, where the bath is at the absolute zero tempera-
ture. In Eq. (C5), the symbols D and H denote the Lindblad and
measurement superoperators, respectively, which are given by

D(ĉ)ρ ≡ ĉρĉ †
−

1
2
(ĉ †ĉρ + ρĉ †ĉ), (C6)

H(ĉ)ρ ≡ ĉρ + ρĉ †
− ⟨ĉ + ĉ †

⟩ρ. (C7)

The actions described by the two superoperators can drive the quan-
tum state into an eigenstate of the observable ĉ to some degree.
Pertinent to this process is WCM.52 To understand WCM, we begin
with the von Neumann measurement.

The set of eigenstates of an observable forms an orthonormal
basis in the Hilbert space: {∣n⟩ : n = 1, . . . , nmax}. Any pure quan-
tum state can be completely expanded as ∣ψ⟩ = ∑n cn∣n⟩ with the
probability distribution ∣cn∣

2 over the basis {∣n⟩}. The von Neumann
measurement, after which the quantum state will be completely pro-
jected onto one of the eigenstates of the observable, gives complete
information about the collapsed quantum state. More specifically,
the measurement can be described by a set of projection operators
{Pn = ∣n⟩⟨n∣} based on the orthonormal basis of the observable. If
the initial state is ρ = ∣ψ⟩⟨ψ∣, the probability of obtaining the nth
eigenvalue will be Tr[PnρPn], with the final state given by

ρ f =
PnρPn

Tr[PnρPn]
= ∣n⟩⟨n∣. (C8)

While von Neumann measurement provides complete information
for the collapsed quantum state after being measured since the state
has collapsed to an eigenstate of the observable after the projec-
tive measurement, it is not the only kind of measurement. Other
methods can reduce the uncertainty of the observable but often
fail to remove all of it. Such measurements can extract only partial
information about the quantum system.

In principle, we can choose a set of mmax operators Ωm with the
restriction,

mmax

∑
m=1

Ω†
mΩm = I,

where the number mmax of elements can be larger than the dimen-
sion of the Hilbert space, which they act in. A measurement with N
possible outcomes can be designed for

ρ f =
ΩmρΩ†

m

Tr[ΩmρΩ†
m]

, (C9)

with the probability Tr[ΩmρΩ†
m]. For example, the probability of the

observation in the range [a, b] is given by

P(m ∈ [a, b]) =
b

∑
m=a

Tr[ΩmρΩ†
m] = Tr[

b

∑
m=a

ΩmρΩ†
m]. (C10)

The measurement, associated with a positive operator M =
∑

b
m=a Ω

†
mΩm with every subset in the range m ∈ [1, mmax], is called

a positive operator-valued measure (POVM).
POVMs can describe weak measurements, where only partial

information is extracted from the measurement by the Gaussian
weighted sum over all eigenstates of the observable,

Ωm =
1
N∑n

e−k(n−m)2/4
∣n⟩⟨n∣, (C11)

with the normalization constant N that satisfies the constraint
∑
∞
m=−∞Ω†

mΩm = I. Suppose no information is obtained before the
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measurement and the initial state is completely mixed as ρ∝ I, then
the observation is a random variable with Gaussian distribution.
After the measurement, the state becomes

ρ f =
ΩmρΩ†

m

Tr[ΩmρΩ†
m]
=

1
N∑n

e−k(n−m)2/2
∣n⟩⟨n∣. (C12)

This indicates that, when the initial state ρ is an equal probability
distribution over all eigenstates, the state after the weak measure-
ment has a Gaussian distribution over all the eigenstates, where the
mean value of the Gaussian weights corresponds to an eigenstate and
the distribution spreads with a finite uncertainty. Consequently, only
partial information can be extracted from this kind of measurement
because it only partially projects onto an eigenstate of the observ-
able with uncertainty. The standard deviation of the final state is
1/
√

k. The larger the measurement strength k, the more complete
information can be extracted with reduced uncertainty about the
quantum state, leading to strong measurement. On the contrary,
small measurement strength generates weak measurement.

We can now describe WCM. In general, continuous measure-
ment means that information is continually extracted from a system
over time. To realize WCM, time is divided into a series of intervals
of size Δt, and a weak measurement is carried out in each interval.
The Hermitian observable is denoted as Ô, and the measurement
operator with the index α is given by

Â(α) = (
4kΔt
π
)

1/4
∫

∞

−∞
e−2kΔt(O−α)2

∣O⟩⟨O∣dO, (C13)

where the measurement strength is determined by k and Δt. If we set
Δt = dt, then it is a WCM. The mean of the continuous index α is

⟨α⟩ = ∫
∞

−∞
αTr [Â †

(α)Â(α)∣ψ⟩⟨ψ∣]dα = ⟨Ô⟩. (C14)

The probability distribution of α is

P(α) = Tr [Â †
(α)Â(α)∣ψ⟩⟨ψ∣]

=

√
4kΔt
π ∫

∞

−∞
∣ψ(O)∣2e−4kΔt(O−α)2

dO. (C15)

The value of Δt is infinitesimal due to the inherent property of
the WCM. As a result, the exponential term in Eq. (C15) is a slow
oscillation compared to the wave function under the variable O.
Based on this, the wave function can be approximated as ∣ψ(O)∣2 ≈
δ(O − ⟨O⟩) and we have

P(α) ≈

√
4kΔt
π

e−4kΔt(α−⟨O⟩)2

. (C16)

Effectively, α is a stochastic quantity,

αs = ⟨Ô⟩ +
ΔW
√

8kΔt
, (C17)

where ΔW is a zero-mean, Gaussian random variable with variance
Δt. The time evolution of the quantum state under WCM is given by

∣ψ(t + Δt)⟩∝ Â(α)∣ψ(t)⟩∝ e−2kΔt(α−Ô )2

∣ψ(t)⟩. (C18)

Substituting Eq. (C17) into this equation, applying Taylor’s
expansion into the exponential term to first order in Δt and defin-
ing ∣ψ(t + dt)⟩ ≡ ∣ψ(t)⟩ + d∣ψ⟩, we obtain the following stochastic
differential equation:

d∣ψ⟩ = {−k(Ô − ⟨Ô⟩)2dt +
√

2k(Ô − ⟨Ô⟩)dW}∣ψ(t)⟩. (C19)

Defining ρ(t + dt) ≡ ρ(t) + dρ, we have

dρ = (d∣ψ⟩)⟨ψ∣ + ∣ψ⟩(d⟨ψ∣) + (d∣ψ⟩)(d⟨ψ∣)

= −k[Ô, [Ô, ρ]]dt +
√

2k(Ôρ + ρÔ − 2⟨Ô⟩ρ)dW. (C20)

If we redefine the observable as

ĉ ≡
√
ηÔ ≡

√
2kÔ,

the first term can be rewritten as

[ĉρĉ −
1
2
(ĉ 2ρ + ρĉ 2

)]dt, (C21)

and the second term is

(ĉρ + ρĉ − 2⟨ĉ⟩ρ)dW, (C22)

which are consistent with the Lindblad operator D and the mea-
surement superoperator H in the SME from Sec. IV in the main
text, respectively. Here, the measurement rate η is proportional to
the measurement strength k.

The measurement rate is proportional to the measurement
strength that quantifies the extent to which a measurement process
interacts with the quantum system and perturbs its state. Measure-
ment efficiency characterizes the fraction of information extracted
from the system during the measurement that is successfully cap-
tured and used to update the quantum state, which in general is
less than 100% due to factors such as detector inefficiencies and
signal losses. In our work, we incorporate the measurement effi-
ciency into defining an effective measurement rate η, which accounts
for both the intrinsic measurement strength and the efficiency of
the process.100 In addition, the gain in the measurement current
can be adjusted to mitigate the effects of measurement ineffi-
ciency, effectively restoring the information lost due to imperfect
efficiency.47,48

APPENDIX D: REINFORCEMENT LEARNING (RL) IN
LINEAR QUANTUM OPTOMECHANICS

Based on the demonstration in the main text about RL in lin-
ear quantum optomechanics, we provide the corresponding details
about reinforcement learning for the linear system. During online
training, given a fixed training episode length, e.g., Episode = 3000,
the RL agent bootstraps itself by executing the procedure described
in Appendix F 1. In the initial preparation process, N identical
and independent quantum optomechanical environments (N par-
allel environments) are prepared, where N = 5. In addition, the
agent, which has two independent neural networks, i.e., actor and
critic, is also initialized. The initial quantum state is ∣ψ⟩ = ∣10⟩
or ρ = (1 − p)∣10⟩⟨10∣ + p∣01⟩⟨01∣ with p ∈ [0, 1] and the quantum
environments are governed by the SME.
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In episodic learning, the quantum environments are reset after
each episode. For each set of Z episodes (e.g., Z = 5), the agent
obtains the observation Ot about the photon number and the reward
value Rt = −∣Ot − 0.5∣ from N quantum environments and indepen-
dently acts on them by the current stochastic policy π(Gt ∣Ot ; θ).
Essentially, the policy is the conditional probability distribution
on the action space Gt ∈ [−5, 5]ωm given the observation Ot and
is parameterized through θ. The N × Z independent trajectories,
denoted as τ j with the trajectory index j = 1, 2, . . . ,N × Z, are col-
lected with length T = 500 (the number of time steps for each
episode) and the step size dt = 0.01ω−1

m . Each trajectory τ j is a
sequence of states (observations), actions, rewards, and next states
(next observations),

τj
= (O j

0, G j
0, R j

0, O j
1, . . . , O j

T−1, G j
T−1, R j

T−1), (D1)

which can be organized as a sub-trajectory tuple,

τ j
t = (O

j
t , G j

t , R j
t , O j

t+1), (D2)

with the time stage index t = 0, 1, . . . , T − 2. At the terminal stage
t = T − 1, we have

τ j
T−1 = (O

j
T−1, G j

T−1, R j
T−1). (D3)

For each sub-trajectory tuple τ j
t , the generalized advantage estima-

tion (GAE)137 Â j
t uses a value function estimator,

Â j
t = δ

j
t + (γλ)δ

j
t+1 + ⋅ ⋅ ⋅ + (γλ)

T−t−1δ j
T−1, (D4)

with

δ j
t = R j

t + γV(O j
t+1;ϕ) − V(O j

t ;ϕ), (D5)

where the value function V(O j
t ;ϕ) is utilized to score the quality

of O j
t based on the accumulated reward and parameterized by ϕ

and δ j
t is the relative advantage of the current action selected by the

stochastic policy π(G j
t ∣O

j
t ; θ) with the discounted factor γ ∈ (0, 1)

and hyperparameter λ with typical value λ = 0.95. Intuitively, Â j
t is

utilized to numerically quantify the relative cumulative advantage of
a certain action selected by the current stochastic policy from time t
to the terminal stage T − 1, in which the future impact is included
but regarded as less important than the corresponding previous
one by the discount factor γ ∈ (0, 1). The finite-horizon discounted
return Ĝ j

t is defined as

Ĝ j
t =

T−1

∑
k=t

γk−tR j
k, (D6)

which can be also obtained from the generalized advantage by

Ĝ j
t = Â j

t + V(O j
t ;ϕ), (D7)

where Ĝ j
t denotes the accumulated reward from time t to the

terminal stage in the discounted version.
The neural networks constituting the actor and critic are

updated from minibatches with size M from N × Z × T data points,
consisting of the sub-trajectory τ j

t , the generalized advantage Â j
t , and

the return Ĝ j
t over k = 10 epochs with the Adam algorithm. The typ-

ical batch size is M = int(N × Z × T/10). For each epoch, the critic
parameters ϕ in the loss Lcritic(ϕ) and the actor parameters θ in the
loss Lactor(θ) need to be updated to minimize the loss function over
random minibatch data. The mean square loss Lcritic(ϕ) about the
target Ĝi for the value function V(Oi; ϕ) is

Lcritic(ϕ) = Êi[(V(Oi;ϕ) − Ĝ i)
2
], (D8)

and the clipped loss Lactor(θ) is given by

Lactor(θ) = Êi[−min(ri(θ)Âi, clip(ri(θ), [1 − ϵ, 1 + ϵ])Âi)], (D9)

where Êi[ ] = ∑
M
i=1 [ ]i/M is the empirical average over a mini-

batch of the data and [ ]i denotes the ith element of the minibatch
with i = 0, 1, . . . ,M − 1, and the clip function clip(x, [min, max])
returns x clipped to set limits: min ≤ x ≤ max. The probability ratio
ri(θ) > 0 between the current and old policies is

ri(θ) =
πθ(Gi∣Oi)

πθold(Gi∣Oi)
. (D10)

If the current policy is the same as the old policy, we have ri(θold) =

1. In general, the ratio ri(θ) needs to be away from the value one for
the policy to be optimized. However, ri(θ) deviating too much from
the value one will result in many fast policy updates, possibly leading
to instabilities and even a collapse of the learning process. To avoid
this, the clip function in the actor loss Lactor(θ) can be utilized to
remove the incentive for ri(θ) outside the interval [1 − ϵ, 1 + ϵ] with
typical clip range ϵ = 0.2, which decreases the updating speed of the
policy and improves the learning stability.

Intuitively, the goal of RL is to maximize the cumulative reward.
In the linear optomechanical system, the objective is to achieve the
entangled Bell state as fast as possible or, as stipulated by the reward
function, to achieve the optimal photon number Ot → 0.5 and to
maintain this for as long as possible. When the RL agent converges
to the optimal policy, the Bellman equation is satisfied,121 so the
optimal value function satisfies

V∗(O j
t ;ϕ) = R j

t + γV∗(O j
t+1;ϕ), (D11)

i.e., the optimal value function about O j
t is equal to the current

reward plus the future discounted cumulative reward, in which
O j

t+1 is determined by the action selected by the optimal policy
π∗(G j

t ∣O
j
t ; θ). It guarantees that the agent makes the best possible

decisions to maximize the rewards.121 Moreover, under the optimal
policy, it means zero generalized advantage Â j

t , so the zero actor loss
L∗actor is obtained. It is worth noting that the optimal value function
is equal to the discounted accumulated reward from Eq. (D6),

V∗(Oi;ϕ) = Ĝi, (D12)

which also gives zero critic loss Lcritic(ϕ). In the online training pro-
cess, the RL agent trained as described is called the PPO agent, whose
policy is randomly initialized and will gradually converge to the
optimal one under the described training scenarios to achieve the
maximum accumulated reward. Physically, this enables the entan-
gled Bell state to be created and stabilized. For online testing,
the optimized policy is no longer updated and only one quantum
environment is involved.
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APPENDIX E: RL IN NONLINEAR INTERACTIONS BY
THE LINDBLAD MASTER EQUATION

Figures 11 and 12 show the case where the stochastic process
in SME is removed so that the quantum dynamics are reduced to
those governed by the Lindblad master equation, in which the deco-
herence part includes only the dissipation to the vacuum bath. In
this setting, the nonlinear coupling represented by h̵g0â †â(b̂ †

+ b̂)
can still be exploited to create the entanglement. A caveat is that
the process can simultaneously generate undesired high-level quan-
tum states. A solution is to apply deep RL to create and stabilize
the entanglement EN ∼ log 2, where the problem is how to control
the excitation within a limited Fock basis. For this problem, a key is
choosing the effective and experimentally feasible observation data.

Here, we describe in detail our two-step training process lead-
ing to a solution through the Lindblad master equation. The first
step is the target-generating phase, in which numerical simula-
tion is used to generate the observation and reward data, where
the PPO agent observes the logarithmic negativity EN(t) directly
and constructs the reward function combining the expected num-
bers of photons and phonons R(t) = −∣EN(t) − log 2∣ − ∣⟨np⟩(t)
+ ⟨nm⟩(t) − a∣/b. Figure 11 shows the target-generating phase,

where the range of excited quantum states in the Fock basis is limited
by the total number ⟨np⟩ + ⟨nm⟩ with the optimized hyperparam-
eters a = 1 and b = 40. The target time series of the expected pho-
ton number is ⟨ntarget

p ⟩(t). The second step is the target-utilization
phase, where the reward function is given by R(t) = −∣⟨np⟩(t)
− ⟨ntarget

p ⟩(t)∣. The recurrent PPO will only observe the expected
photon number ⟨np⟩(t), which is experimentally feasible. During
the two-step training, the agent collects data from five parallel quan-
tum optomechanical environments and updates the policy every five
episodes.

More specifically, Figs. 11(a) and 11(b) show that both the
reward R̃ and the logarithmic negativity ẼN converge in time dur-
ing the target-generating phase. The trained agent can create and
stabilize the entanglement, as shown in Fig. 11(c), controlled by the
laser control signal shown in Fig. 11(d). At the end of the time series,
entanglement is produced from the coherent-(photon) and thermal-
shape (phonon) Fock states, as shown in Figs. 11(e) and 11(f). The
corresponding target pattern ⟨ntarget

p ⟩(t) is shown in Fig. 11(g). In
the target-utilization phase, the target pattern ⟨ntarget

p ⟩(t) is time-
dependent, which is difficult to learn if only MLPs are used. Here,
a single long short-term memory (LSTM) network is added after the

FIG. 11. Detailed account of the target-generating phase in RL control of open optomechanical systems with nonlinear photon–phonon interaction in the framework of the
Lindblad master equation. Nonlinear interaction of strength g0 = 0.2ωm creates the target entanglement EN ∼ log 2 optimized by the PPO agent from vacuum states with
∣ψ⟩ = ∣00⟩ with 10 × 10 Fock bases. The dissipation rates to the vacuum bath are κ = 0.1ωm and γ = 0.01κ. The time-dependent control signal is the detuning Δ and
the amplitude of the driven laser αL within the range Δ,αL ∈ [−5, 5]ωm. In the training phase, observation is set as EN(t). (a) and (b) Trained R̃ and ẼN converge to
some constant values. (c) and (d) Time-dependent series EN(t), where the driven laser signals are shown at the end of the training phase. (e) and (f) The corresponding
coherent- and thermal-shape states expanded in the Fock basis at the end of the time of the selected training episode in panels (c) and (d). (g) The time evolution of the
corresponding expected measurement current, including the expected number ⟨np⟩ of photons as well as the expected phonon number ⟨nm⟩ in the Fock basis, where the
time series ⟨np⟩(t) serves as the target to construct reward function in the target-utilization phase shown in Fig. 12.
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FIG. 12. Detailed account of the target-utilization phase in RL control of open optomechanical systems with nonlinear photon–phonon interaction in the framework the
Lindblad master equation. The goal is to create the entanglement about EN ∼ log 2, for which the reward function is R(t) = −∣⟨np⟩(t) − ⟨n

target
p ⟩(t)∣, determined by the

target time series ⟨ntarget
p ⟩(t) from Fig. 11(g). In this training configuration, the observation of the recurrent PPO agent is the expected photon number ⟨np⟩(t). Despite

the observation being partial and incomplete, all results in panels (a)–(g) display similar behavior compared to the ones shown in Fig. 11, where the entanglement quantity
EN(t) is directly observed. However, such observation is currently not experimentally feasible. The setting and other parameters are the same as those shown in Fig. 11.

MLPs in both the actor and critic networks, so the whole neural-
network architecture is able to handle the time-dependent data.
Figure 12 shows that, with only partial information extracted from
the quantum optomechanical environment, the agent can steadily
learn to create and stabilize entanglement.

APPENDIX F: DEEP RL

There are three main RL approaches120 based, respectively, on
(1) value functions, (2) policy search, and (3) a hybrid actor-critic
method that employs both the value functions and policy search.
In particular, the actor–critic method uses the value function as a
baseline for policy gradients, based on a trade-off between variance
reduction of policy gradients and bias associated with value func-
tions. Incorporating deep neural networks as a powerful function
approximator into RL to obtain the optimal value functions, and the
optimal policy leads to deep RL with the advantage of mitigating the
issues associated with high dimensionality (overcoming the curse of
dimensionality). A difficulty with deep RL is the local minima in the
neural-network dynamics with a large number of parameters when
directly searching for the optimal policy.120 A common solution is
to use a trust region that prevents an updated policy from deviating
too far from the previous policies, thereby guaranteeing monotonic
enhancement in policy search. To implement this, the trust region
proximal optimization (TRPO) method123 can be exploited, which

makes the advantage estimate in the surrogate objective function
constrained by Kullback–Leibler (KL) divergence. The combination
of TRPO and generalized advantage estimation (GAE) is one of the
state-of-the-art RL techniques for continuous control.

1. PPO agent
Proximal policy optimization (PPO)49 agent attains the data

efficiency and reliable performance of TRPO with only first-order
optimization through a novel objective with clipped probability
ratios, which can be readily implemented with reduced complex-
ity. A typical online training process of a PPO agent consists of the
following steps.

Step 1—Initialization: initialize the actor π(a∣s; θ) and the
critic V(s; ϕ) with random parameters θ and ϕ, respectively.
Both the actor and critic are components of the PPO agent.
The stochastic policy π(a∣s; θ) is the conditional probability
distribution on action space a given state s. The value function
V(s; ϕ) is utilized to score the quality of state s based on the
accumulated reward.

Step 2—Trajectory collection: the quantum state or quan-
tum environment is initialized for the first episode or reset for
the following episodes. The agent interacts independently with
N parallel quantum optomechanical environments (identical
and independent) using the current stochastic policy πθ(at ∣st)
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at time t. After Z episodes, N × Z independent trajectories of
length T (the total time steps T for each episode) are collected
as sequences of states s j

t , actions a j
t , rewards R j

t , and next states
s j

t+1, in which the sub-trajectory tuple τ j
t is defined as

τ j
t = (s

j
t , a j

t , R j
t , s j

t+1), (F1)

with the trajectory index j = 1, 2, . . . ,N × Z and the time
index t = 0, 1, . . . , T − 2. At the terminal stage t = T − 1, the
following holds:

τ j
T−1 = (s

j
T−1, a j

T−1, R j
T−1). (F2)

The sub-trajectory tuple τ j
t can be utilized to calculate and eval-

uate the performance of the agent at each time stage t. The
trajectory τ j of length T is the union of the sub-trajectory tuple
τ j

t in the form of

τj
= τ j

0 ∪ τ
j

1 ∪ . . . . . . ∪ τ
j

T−1, (F3)

so the trajectory τ j is given by

τj
= (s j

0, a j
0, R j

0, s j
1, . . . , s j

T−1, a j
T−1, R j

T−1). (F4)

Step 3—Generalized advantage estimator and return: esti-
mate the advantages for each sub-trajectory tuple τ j

t in the
collected trajectories. In particular, the generalized advantage
estimation (GAE)137 uses a value function estimator,

Â j
t = δ

j
t + (γλ)δ

j
t+1 + ⋅ ⋅ ⋅ + (γλ)

T−t−1δ j
T−1, (F5)

with

δ j
t = R j

t + γV(s j
t+1;ϕ) − V(s j

t ;ϕ), (F6)

where δt is the relative advantage of the current action selected
by the policy π(a j

t ∣s
j
t ; θ) with the discounted factor γ ∈ (0, 1)

and hyperparameter λ (typical value λ = 0.95). The generalized
advantage Â j

t at time t is the discounted cumulative advantage
from time t to the terminal stage T − 1.

In episodic learning (policy update after each Z number of
episodes), the return Ĝ(τ j

) is defined as the cumulative reward
over the trajectory τ j, i.e., Ĝ(τ j

) = ∑
T−1
t=0 R j

t with the time hori-
zon T. For mathematical convenience, we use the discounted
version, i.e., finite-horizon discounted return,

Ĝ(τj
) =

T−1

∑
t=0

γtR j
t .

It implies that future performance is also included but is less
important than the previous one. The return Ĝ j

t at each time
step is the sum of the discounted reward from the current time
t,

Ĝ j
t =

T−1

∑
k=t

γk−tR j
k,

which can also be obtained from the generalized advantage,

Ĝ j
t = Â j

t + V(s j
t ;ϕ). (F7)

Step 4—Update of the actor and critic from minibatches
of training data over k epochs with Adam or stochastic gradient
descent. For each epoch, we first sample a random minibatch
dataset with size M from N × Z × T data points, including
the sub-trajectory tuple τ j

t , the corresponding advantage Â j
t ,

and return value Ĝ j
t . We then update the critic parameters ϕ

by minimizing the loss Lcritic(ϕ) across all sampled minibatch
data, which are given by

Lcritic(ϕ) = Êi[(V(si;ϕ) − Ĝ i)
2
], (F8)

where Êi[ ] = ∑
M
i=1 [ ]i/M is the empirical average over a

minibatch of data and [ ]i denotes the ith element of the mini-
batch with i = 0, 1, . . . ,M − 1. After this, we update the actor
parameters θ by minimizing the loss Lactor(θ) given by

Lactor(θ) = Êi[−min(ri(θ)Âi, clip(ri(θ), [1 − ϵ, 1 + ϵ])Âi)], (F9)

where the clip function clip(x, [min, max]) returns x clipped
to set limits, i.e., min ≤ x ≤ max. The probability ratio ri(θ)
between the current and old policies is defined as

ri(θ) =
πθ(ai∣si)

πθold(ai∣si)
. (F10)

If the current policy is the same as the old policy, we have
ri(θold) = 1. Otherwise, the ratio ri(θ) will be away from the
value one to get the new optimized policy. The clip function in
actor loss Lactor(θ) is utilized to remove the incentive for ri(θ)
outside the interval [1 − ϵ, 1 + ϵ], which decreases the update
speed of policy and improves the learning stability.

Step 5—Repeating steps (2–4) for a specified number of
iterations or until convergence is achieved.

2. Recurrent PPO agent
In general, the dynamical process of RL is Markovian: the

future depends only on the present state. While this suitably
describes many processes, there are applications where a non-
Markovian-type of RL is required, e.g., partially observable Markov
decision processes (POMDPs) or when the physical system to be
controlled is in a non-Markovian environment. Leveraging recur-
rent neural networks (RNNs) for memory-based agent learning
provides a solution. In particular, an RNN can store past infor-
mation as memory by introducing loops in the neural network, in
contrast to, e.g., feed-forward neural networks, where signals flow
only from input to output in a one-way manner. However, conven-
tional RNNs may not be able to efficiently connect the long past
information to the present task, a problem known as gap sensitivity
or vanishing gradient.

Long short-term memory (LSTM)58 is capable of learning
long-term dependencies, thereby overcoming the vanishing gradi-
ent problem. The key component of LSTM is the cell state, which
mimics a conveyor belt.138 Information can be added or removed
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by the forget input and output gates. Since the actor and critic net-
works underlying PPO are multilayer perceptrons (MLPs), e.g., a
special class of the feed-forward neural networks with fully con-
nected layers, applying LSTM after MLPs leads to a recurrent PPO
agent, where MLPs are responsible for feature learning and LSTM
contributes long-term history memorization. For a recurrent PPO,
the state st is replaced by observation ot and the hidden states ht with
POMDPs.89

3. Details of deep RL
Some details about the hyperparameter in the PPO agent are

as follows: the discounted factor is γ = 0.99; the parameter for the
generalized advantage estimation (GAE) is λ = 0.95; the clip range
is set ϵ = 0.2; the maximum gradient is set to be 0.5; and the learn-
ing rate is 0.5 × 10−3. Especially, GAE is normalized by subtracting
its mean value and dividing by its standard deviation; the stochastic
policy is based on the action noise exploration instead of the state-
dependent exploration; and the value function is no clipping. Since
the observation is the measurement current with large variance, it is
necessary to apply a one-dimensional Gaussian filter from the SciPy
package, of which the filter interval and standard deviation of the
Gaussian kernel are presented in Table II. In the process of variance
reduction for WCM photocurrent, the measurement photocurrent
is averaged over five trajectories (an independent ensemble) at each
time step and then averaged over the previously successive five time
steps. Finally, the obtained data are filtered by the Gaussian kernel.
In the updating phase, the network parameters from the actor and
critic are updated by Adam with the minibatch size, one-tenth of
training data, and epochs k = 10.

The theoretical foundation of RL is rooted in the Markov
decision processes (MDPs). In principle, any problem that can be
described as an MDP can be solved by RL. This implies that the
next action taken depends only on the current state. However, to
ensure robust performance, some RL algorithms utilize experience
replay, where the policy is updated after accumulating a certain
batch of experiences, but this does not mean RL controllers are
non-Markovian or possess memory.

When combined with deep neural networks, RL becomes deep
RL that typically employs deep feedforward neural networks to solve
problems, adhering to the Markovian assumption. In our study, we
use this deep network structure to handle the linear interactions.
For nonlinear interactions, we observe that a recurrent PPO agent
(MLPs + LSTM) outperforms a standard PPO agent (MLPs only). In

TABLE II. Gaussian filter with filter interval and standard deviation of the Gaussian
kernel.

Measurement rate Filter interval size Standard deviation

1.0 10 3.0
0.7 10 4.5
0.5 10 6.0
0.3 20 6.0
0.1 100 24.0
0.05 150 48.0

the recurrent PPO setup, both the critic and actor networks are inde-
pendent, consisting of MLPs followed by a single LSTM layer. Each
network comprises fully connected layers of sizes 256 × 128 × 64,
followed by an LSTM with 256 hidden states. While there is no pre-
cise definition of how many time steps the LSTM can effectively
“memorize” for a given task, we note that the 256 hidden states serve
as a mechanism for capturing the temporal dependencies. In the
regime of nonlinear interactions, the numerical density matrix has
the dimensions 10 × 10. The number of elements is slightly smaller
than the number of hidden states in the LSTM, suggesting that the
hidden states are sufficient for modeling the dynamics of the system
in the nonlinear regime.
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