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ABSTRACT
The Atlantic Meridional Overturning Circulation (AMOC) is a significant component of the global ocean system, which has so far ensured
a relatively warm climate for the North Atlantic and mild conditions in regions, such as Western Europe. The AMOC is also critical for the
global climate. The complexity of the dynamical system underlying the AMOC is so vast that a long-term assessment of the potential risk of
AMOC collapse is extremely challenging. However, short-term prediction can lead to accurate estimates of the dynamical state of the AMOC
and possibly to early warning signals for guiding policy making and control strategies toward preventing AMOC collapse in the long term.
We develop a model-free, machine-learning framework to predict the AMOC dynamical state in the short term by employing five datasets:
MOVE and RAPID (observational), AMOC fingerprint (proxy records), and AMOC simulated fingerprint and CESM AMOC (synthetic).
We demonstrate the power of our framework in predicting the variability of the AMOC within the maximum prediction horizon of 12 or 24
months. A number of issues affecting the prediction performance are investigated.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0207539

I. INTRODUCTION

The Atlantic Meridional Overturning Circulation (AMOC) is
a significant component of the global ocean system, transporting
warmer, upper waters in the Atlantic northward and colder, deeper
waters southward.1 More specifically, the AMOC is defined as the
zonally and vertically integrated northward volume transport in
terms of Sverdrups (Sv, 106 m3s−1), i.e., as a function of latitude
and depth.2 The AMOC is the main reason that the climate of the
North Atlantic is able to remain relatively warm, facilitating mild
and livable conditions in regions such as Western Europe.3 From
the perspective of the global climate system, the AMOC governs
the frequency of Atlantic hurricanes and storms, tropical monsoons,
and even the global carbon equilibrium.4,5 Alarmingly, studies of the
subpolar AMOC suggested strong evidence of the weakening of the
AMOC from the mid-1990s.6,7 In recent years, measurements and
model studies revealed considerable variabilities in the AMOC on
time scales ranging from daily to multi-decadal.1 There are mul-

tiple reasons for the variabilities: carbon emissions from human
activities8,9 as well as the internal interactions within the climate
systems and external forcing, such as volcanic eruptions and solar
radiation. A fairly recent modeling study suggested, shockingly, that
the AMOC may be currently on the verge of a potential collapse,10

which can cause a significant tipping phenomenon in the Earth’s
climate system.11

Due to the global climate change and its tendency to continue
to accelerate, the likelihood of AMOC collapse is increasing. How-
ever, due to the vast complexity of the nonlinear dynamical system
underlying the AMOC, long-term prediction of the AMOC, i.e., to
forecast when such a collapse might occur with certain level of con-
fidence, is a daunting challenge. Even if a method is developed to
predict that the collapse will occur in certain time period in the
future, it would not provide specific criteria for devising counter-
measures that should be implemented now to prevent the collapse in
the future, particularly because the physical system underlying the
AMOC is extremely complex and highly nonlinear and subject to
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various stochastic forcing. Our point of view is that nowcasting—a
term we use to coin short-term prediction of the dynamical behav-
iors of the AMOC—is also important and pertinent. In particular, we
focus on the prediction horizon of one to two years and ask whether
the detailed evolution of some key physical variables characteriz-
ing the AMOC can be accurately predicted based on the available
observational data, modeling, and fingerprints (proxy records) of the
AMOC. An advantage of nowcasting is that the presently available
observations can be used to update the forecasting in a continuous
manner, thereby guaranteeing the prediction accuracy. This is, in
fact, an urgent problem, as successful and reliable nowcasting of the
AMOC dynamics can provide a detailed and comprehensive picture
of the AMOC evolution, e.g., whether it has deviated from the nor-
mal course. The ability to accurately assess the AMOC dynamics in
the near future through reliable nowcasting can potentially lead to
the discovery of critical early warning signals, based on which effec-
tive policy change and control strategies can be devised to reverse
any harmful deviations of the dynamical evolution of the AMOC.
The purpose of this paper was to present a machine-learning frame-
work to demonstrate that accurate nowcasting of AMOC in a future
time window between 12 and 24 months are feasible.

Past research demonstrated considerable variabilities in the
AMOC, spanning spatially from the subtropics to the subpolar
regions, and temporally across time from daily, intra-annual to
interannual, and decadal scales. The AMOC showcases pronounced
fluctuations across different timescales, and the variabilities can be as
large as 100% of its mean value on intra-annual and seasonal scales,
whereas ranging between 10% and 30% on interannual to decadal
scales.12 In addition, the AMOC behavior also varies in different
regions, e.g., it is largely dictated by high-frequency wind forces
spanning from sub-annual to interannual periods in the subtropical
region. However, in the subpolar region, the variabilities primarily
occur at lower frequencies on scales from interannual to decadal,
where both wind and buoyancy forces come into play as significant
influences.13,14

The AMOC variabilities can be assessed through observations,
models and reanalyses, and proxy records. In particular, observa-
tions or measurements provide a real-time window into the AMOC
dynamics. For example, the RAPID (Rapid Climate Change) mon-
itoring program,15 established across the Atlantic at 26○ N in 2004,
uses an array of moorings to capture data related to the flow flux
and temperature of the currents continuously. Based on the data,
the AMOC is assessed by the combination of the strength of the
ocean current through the strait, the near-surface Ekman trans-
port from wind stress, and Gulf Stream transport from submarine
cables.16 Another program, the OSNAP (Overturning in the subpo-
lar North Atlantic Program) focuses on the subpolar North Atlantic,
aiming at capturing the intricate interactions among the currents,
the atmosphere, and the cryosphere by stretching a line of obser-
vational instruments from Labrador to Scotland.17 However, this
program began in 2014, and due to its monthly timescale, there are
currently not sufficient data points to evaluate the interannual or
decadal variability. In addition to the RAPID and OSNAP programs,
the MOVE (Meridional Overturning Variability Experiment) array,
anchored in the subtropical North Atlantic near 16○ N, provides
crucial information about the AMOC variabilities in the upper to
the deeper layers of the ocean. The positioning strategies in MOVE

allow the dynamics of both warm, northward surface waters and the
cold, southward deeper waters to be captured. While the observa-
tions from moorings are valuable datasets for analyzing the AMOC,
there are issues such as missing data, noise, resolution, and data
point limitations. Complementing the real data analysis, models, and
reanalyses can be used to gain insights into the AMOC dynamics
in terms of the structure of the ocean.18–20 Such models can sim-
ulate the dynamics of the ocean, atmosphere, and even the global
climate system under different scenarios, which are particularly vital
for analyzing and forecasting the AMOC changes in response to
global warming or other large-scale disruptions. The third method is
proxy records that serve as indirect indicators of the historical vari-
abilities of the AMOC. These proxies, rooted in the mechanistic and
statistical connections with AMOC, can leverage relationships dis-
cerned from models due to the scarcity of long-term observational
data. One of the widely used proxies is derived from sea surface
temperatures (SSTs) and subsurface temperatures.10,21–23

Different available datasets measure physical quantities perti-
nent to the AMOC system on different timescales, e.g., intra-annual
or interannual even decadal scales, in different regions of the North
Atlantic. As a result, nowcasting or short-term prediction does not
mean that the prediction horizon would or should be the same
for different physical quantities. While methods were proposed in
the past to predict AMOC changes,10,24,25 the complex interplay
of the physical variables and the vast datasets gathered demand a
comprehensive computational framework to address the nowcasting
problem. Our idea is to exploit machine learning that has proven to
be powerful for analyzing experimental and observational datasets,
uncovering hidden patterns, and making reliable predictions,26 e.g.,
in climate science.27 Our conviction is that a neural network can be
trained with historical data to learn the intricate dynamics of the
AMOC and can then be used to forecast its future behavior, at least
in short term. We exploit reservoir computing,28–31 a class of recur-
rent neural networks,32,33 which has been recently demonstrated
as being capable of accurate short-term prediction of the detailed
dynamical evolution of nonlinear or even chaotic systems whose
defining hallmark is sensitive dependence on initial conditions.34–52

Here, we use the aforementioned five datasets: MOVE and RAPID
(observational), AMOC fingerprint (proxy records), and AMOC
simulated fingerprint and CESM AMOC (synthetic) to demonstrate
accurate and reliable nowcasting of the AMOC dynamics in terms
of the variabilities of the key underlying physical quantities within
12–24 months. We also address a number of issues affecting the
prediction performance.

Our work has two unique features that go beyond the existing
studies. First, no prior studies have utilized a model-free approach
to short-term prediction of the AMOC. As described, traditional
methods are typically based on highly simplified, phenomenological
models that may not adequately describe the measurements or
observations. Our methodology leverages a model-free approach to
predicting nonlinear dynamics using reservoir computing. The
adaptability and versatility of this recurrent neural-network
machine-learning architecture make it well-suited for predicting the
AMOC dynamics with real or simulated datasets. Differing from
the traditional methods, our method requires no prior knowledge
about the dynamics, rendering it broadly applicable to complex
dynamical systems in situations where a model is unknown or too
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complicated to be constructed. Second, we conducted an extensive
study with a focus on short-term predictions of the AMOC using
both synthetic and real-world datasets, demonstrating the robust-
ness and effectiveness of the proposed method. The datasets studied
include real measurements of the AMOC (MOVE and RAPID), data
generated by phenomenological models (simulated AMOC finger-
print data and CESM data), and proxy records (AMOC fingerprint),
showcasing predictions of different aspects of the AMOC.

II. RESULTS
The AMOC characterizes the movement of the water in the

North Atlantic, where warm surface water is transported north-
ward into high northern latitudes and becomes cold and returns
southward through the deep ocean after releasing heat into the
atmosphere and sinking. The AMOC can have profound impacts
on regional and global climate patterns, including the temper-
ature and precipitation in Western Europe, sea level along the
east United States Coast, tropical monsoons, and Atlantic hur-
ricane activity. To understand the intricacies of the AMOC and
its impact on the climate, a variety of projects were set up to
record and/or deduce the temperatures, salinity, transports, and
fluxes. The generated datasets represent the available information
for studying the variability, trends, and the associated phenom-
ena of the AMOC. At present, a large number of AMOC datasets
are available. We choose the following datasets: the AMOC finger-
print, MOVE data, and RAPID array measurements, for the reason
that they are relatively complete and provide sufficiently long time
series for machine learning. Figure 1 shows the various geographic
positions from which the AMOC measurements were performed.
In addition to the three datasets, we use a stochastic differen-
tial equation to simulate the AMOC fingerprint for validating our
machine-learning model.

FIG. 1. Illustration of AMOC measurement positions. The color map displays the
sea surface temperature (SST) in January 2023. Three measurement arrays in
the Atlantic Ocean are shown in the map: AMOC fingerprint, RAPID, and MOVE,
from the top to bottom indicated by the orange contour, purple line, and green line
segments, respectively.

A. Data description and preprocessing
1. AMOC fingerprint

The AMOC has been continuously monitored since 2004 using
a combination of tools,53 which seems to indicate a tendency for its
strength to decline. However, to evaluate the trend and fluctuations,
longer data sequences are necessary. Climate model simulations
of the sea surface temperature (SST) suggested that in the North
Atlantic’s Subpolar gyre (SG) region, as illustrated by the orange
outline shown in Fig. 1, SST can characterize the strength of the
AMOC21–23 and, therefore, can act as an effective fingerprint of
the AMOC. Figure 2(a) shows this preprocessed AMOC finger-
print for the period 1870–2020,10 where the original data were from
the Hadley Center Sea Ice and Sea Surface Temperature dataset
(HADISST).54 Here, the term “AMOC fingerprint” is defined10 as
the SG anomaly minus twice the global mean anomaly so as to
compensate for polar amplified global warming. More specifically,
two factors need to be taken into account for compensating the SG
anomaly: the seasonal cycle in the SST, which is governed by the
surface radiation and is independent from the circulation, and the
increasing trend in SST related to global warming. This requires that
the global mean SST be taken away twice. The time interval between
two adjacent data points in the AMOC fingerprint is one month.
Altogether, the fingerprint dataset has 1812 points.

2. Simulated AMOC fingerprint data
While real datasets are critical for detecting and predicting

the AMOC dynamical trend, they often have limited time periods
of observations, rendering difficultly in obtaining statistically reli-
able results in some circumstances. In such a case, using simulated
models to generate sufficient data can be useful for evaluating the
capability of the proposed machine-learning prediction framework.

Assuming that the dynamics underlying the AMOC fingerprint
are in an equilibrium state (i.e., before a tipping point), the follow-
ing one-dimensional stochastic differential equation (SDE) has been
used in the literature10 as an empirical model:

FIG. 2. AMOC time series data. (a) AMOC fingerprint. (b) A representative seg-
ment of the simulated AMOC fingerprint time series from Eq. (1). (c) Transport
time series of the MOVE dataset in units of Sv (106 m3s−1

).
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dX
dt
= −A(X −m)2 + λ + ξ, (1)

where λ < 0 is a control or bifurcation parameter, which may cause
the AMOC fingerprint to undergo a critical transition through
a saddle-node bifurcation. The parameter m is defined as m ≡ μ
−
√
∣λ∣/A, where μ is the stable fixed point and A is a parameter

defining the time scale of the system. The noise term ξ is a Gaus-
sian stochastic process injected into the dynamics at each time step,
which has zero mean and variance σ2. In Ref. 10, the parameter
values of the empirical SDE model were obtained through fitting
with real data: m = −1.5, A = 0.93, σ = 0.01, and λ = −2.8. Figure 2(b)
shows a representative segment of the simulated time series.

3. MOVE
At present, the meridional overturning variability experiment

(so-called MOVE) comprises two “geostrophic endpoint moorings,”
alongside a traditional current meter mooring on the slope. The
primary objective of these installations was to gauge the transport
variations across the section between the Lesser Antilles (Guade-
loupe) and the Mid-Atlantic Ridge.55 The geostrophic transport can
then be estimated according to the dynamic height and the bot-
tom pressure variations between the moorings. Figure 2(c) shows a
representative North Atlantic Deep Water (NADW) volume trans-
port time series,56 derived from the pressure gradients observed at
the MOVE section endpoints and the continental slope transport
obtained from the current meters on the western MOVE moorings.
The NADW time series exhibits significant interannual fluctuations
that the southward (negative) transport undergoes. Furthermore,
the decadal-scale variability can be observed unequivocally in the
evolution of the time series. The processed time series started in
January 2000 and had been accessed until May 2018, with the time
interval of one day.

4. RAPID
The RAPID program aims to continuously obtain the strength

and variability of the AMOC, enabling the relationship with the
climate patterns and ocean carbon sink to be determined on the
interannual and decadal time scales.15 The RAPID array is located at
26○ N, where the instruments are set across the Atlantic from
Morocco to Florida, to measure the temperature, salinity, and
current velocities from the surface to the floor of the ocean. By
combining this array data with the observations from the Florida
current and satellite-derived surface wind measurements, the over-
turning circulation can be calculated. Specifically, the AMOC data
are obtained according to the combination of the velocity fields
from three components: Florida Strait, Ekman, and density-driven
transport,16,57,58 as shown in Fig. 3. Denoted as the Gulf Stream, the
Florida Straits transport is calculated and calibrated as the induced
voltage, which can be used as a continuous indicator of the strength
of the ocean current through the strait. Ekman transport is calcu-
lated from the wind stress acting on the ocean surface, which con-
tributes to the largest variability in the AMOC. The density-driven
transport denoted as Upper Mid-Ocean, calculates the current veloc-
ities by measuring the vertical profiles of the seawater density at
a number of different longitudes. The data start from April 2004
to February 2022, with a 12 h time interval between two adjacent
points.

FIG. 3. Representative RAPID AMOC transport time series. Different colors indi-
cate the AMOC (blue) and its components: the Florida Straits (green), the Ekman
transport (orange), and the density-driven transport (purple). Transports are given
in units of Sv (106 m3s−1

).

5. CESM
The Community Earth System Model (CESM) was developed

to simulate global climate system behaviors.59 It integrates various
components of the Earth’s climate, including the atmosphere, ocean,
land, and sea ice, to simulate complex interactions within the system.
During the simulation, greenhouse gas concentrations, solar radia-
tion, and aerosol levels are kept constant, while the primary forcing
mechanism is the freshwater flux anomaly in the North Atlantic,
between latitudes 20○ N and 50○ N, for generating the AMOC data.
Specifically, the anomaly is a slowly linearly increasing function of
time at the rate of 3 × 10−4 Sv per model year, as shown in Fig. 4(a),
which describes the effects of the freshwater input from melting ice
and increased precipitation. The generated data reveal variations in
the AMOC strength under increasing freshwater forcing. Natural
variability dominates the AMOC strength in the first 400 points,
while a negative trend appears after t = 800 due to the increasing
freshwater forcing. Figure 4(b) shows a representative segment of
the simulated AMOC data from the CESM.

6. Data preprocessing
The sampling rates of the different available datasets vary,

e.g., from 12 h to one year. Moreover, the AMOC fingerprint, its

FIG. 4. Representative CESM transport time series. (a) Linearly increasing
freshwater flux with time. (b) Simulated AMOC with CESM.
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simulated time series, the MOVE data, and the CESM data are one-
dimensional, but the RAPID data are four-dimensional. For all the
simulated and real datasets, we use min–max normalization to pre-
process the time series so that they are in the range [0,1]. For each
dataset, we divide it into three segments for training (50%), vali-
dation (25%), and testing or prediction (25%), respectively. In par-
ticular, for training, both the input and target output are provided
to determine the pertinent neural-network weights—all elements
of the output matrix (open-loop reservoir computing). During the
validation, input is still present but the true output is absent (still
open-loop operation but with a fixed output matrix). For testing
(prediction), the output of the reservoir network is connected to
the input to execute closed-loop operation. We perform multi-step
predictions: at each time step, we predict Tp steps ahead. The follow-
ing measure of root-mean-square errors is used to characterize the
validation and testing performances:

RMSE(y, ŷ) =

¿
ÁÁÁÀ 1

Tp

Tp+i

∑
t=i
[y(t) − ŷ(t)]2, (2)

where y(t) and ŷ(t) are the real and predicted signals, respec-
tively. RMSEs can be obtained by taking the average over the whole
validation or testing length (time interval).

B. Results of recursive prediction
The training of the reservoir neural network was done on two

computers with RTX 4000 NVIDIA GPU using Python. There are
two commonly used prediction methods: direct and recursive, both
generating multiple-step predictions. In particular, let Tp be the pre-
diction horizon, i.e., the number of time steps of forward prediction.
For direct prediction, at each time step, the trained reservoir com-
puter generates Tp consecutive data points at once. The input is then
updated using the real data to prepare for the prediction at the next
time step and so on. For recursive prediction, at each time step, the
output of the reservoir computer is fed back to the input, generat-
ing a closed-loop dynamical system capable of self-evolution. The
system evolves forward for Tp time steps, generating a Tp-step pre-
diction. We present the results from recursive prediction here, while
reporting these from direct prediction in the Appendix. With respect
to the four available datasets, the nowcasting results from the AMOC
fingerprint, MOVE, and the CESM data are presented here, while
those from simulated AMOC fingerprint and RAPID are given in
the Appendix.

1. Recursive prediction of AMOC fingerprint data
For nowcasting of the AMOC fingerprint, we use reservoir neu-

ral networks of size n = 500. The hyperparameter values obtained
through Bayesian optimization are presented in Table I. For the
available AMOC fingerprint time series that has 1812 monthly data
points, we use 900 points for training and the 300 points afterward
for validation to obtain the hyperparameter values through Bayesian
optimization. The testing or prediction phase corresponds to the
time period associated with validation segment and the remaining
612 data points (912 points in total), which are used to calculate the
RMSEs.

Figure 5 shows the nowcasting results with the prediction hori-
zon Tp = 24 months, where the ground truth as well as the trained

TABLE I. Optimal hyperparameter values for prediction with the four AMOC datasets.

Dataset α γ ρ p wb β

Fingerprint 0.17 1.32 0.45 0.19 3.04 −5.30
Simulated fingerprint 0.05 2.35 0.05 0.65 0.32 −2.30
MOVE 0.95 0.67 1.74 0.50 1.65 −1.66
RAPID 1.0 0.01 2.27 1.0 1.53 −3.84
CESM 0.14 0.28 3.73 0.62 3.62 −1.70

FIG. 5. Recursive prediction of AMOC fingerprint data. (a) The ground truth
(blue), trained (orange), and predicted (green) AMOC fingerprint with the predic-
tion horizon Tp = 24 months. (b) Training (orange) and prediction (green) errors.
(c) Distribution of the prediction error.

and predicted data are shown in Fig. 5(a), the corresponding RMSEs
are shown in Fig. 5(b), and the distribution of the RMSEs in the
testing phase is shown in Fig. 5(c). Note that for better visualiza-
tion, the displayed prediction result in Fig. 5(a) is presented as the
moving-window average of window size Tp = 24 time steps. It can be
seen that the prediction result is faithful in that its moving-window
average is fully embedded in the ground truth. In fact, the RMSE is
relatively small: about 0.14. For comparison, the results for three dif-
ferent values of the prediction horizon are shown in Figs. 6(a)–6(c)
for Tp = 12, 24, and 36 months, respectively, with the correspond-
ing RMSEs shown in Figs. 6(d)–6(f). The average RMSEs for the
three cases are 0.13, 0.14, and 0.16, respectively. In general, as the
prediction horizon increases, the prediction deteriorates, as shown
in Fig. 6(g)—the result of a systematic computation of the RMSE
vs the prediction horizon where, for each value of the prediction
horizon, the average RMSE value over 50 realizations is obtained by
randomizing the training length between 880 and 900.

To assess the reliability of the prediction, we incorporate uncer-
tainty quantification. This entails training multiple models, each
with independently optimized sets of hyperparameters, and aggre-
gating the predictions to estimate the confidence intervals. Specifi-
cally, we optimize the hyperparameters with Bayesian optimization
50 times, generate an ensemble of predictions, and calculate the
95% prediction interval by ∼1.96 standard deviations from the mean
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FIG. 6. Recursive prediction of the AMOC fingerprint with different prediction hori-
zons. Panels (a), (c), and (e): reservoir-computing predicted fingerprint and the
ground truth, for prediction horizons Tp = 12, 24, and 36 months, respectively.
Panels (b), (d), and (f): the corresponding prediction errors. (g) Ensemble-
averaged testing RMSE vs the prediction horizon Tp, where the error bars
represent the standard deviation calculated from 50 independent realizations.

value of these predictions at each time step. Figure 7 shows the recur-
sive prediction of the AMOC fingerprint data along with the 95%
confidence interval, denoted by the green shaded area. It can be
seen that the confidence interval effectively captures the trend of the
fingerprint data, demonstrating the reliability of the predictions.

2. Recursive prediction of AMOC MOVE data
For nowcasting of the MOVE data, the hyperparameter val-

ues obtained through Bayesian optimization during validation are
presented in Table I. The MOVE time series has 6710 points (i.e.,
6710 days). The segments of the date for training and validation
consist of 3000 and 1000 points, respectively. The validation seg-
ment together with the remaining (altogether 3710 points) is for
testing. Figure 8(a) shows the trained and predicted time series,
together with the ground truth, for the prediction horizon Tp = 40
days. The corresponding RMSEs and their distribution are shown in
Figs. 8(b) and 8(c), respectively, with the ensemble-averaged RMSE
of about 0.12. Figures 9(a)–9(c) show the predicted MOVE time
series for Tp = 20, 40, and 100 days, respectively, with the corre-
sponding RMSEs shown in Figs. 9(d)–9(f). Figure 9(g) shows the
ensemble-averaged RMSE (together with the error bars) vs Tp. As
Tp increases, the RMSE increases, rendering infeasible long-term

FIG. 7. Recursive prediction of AMOC fingerprint data with 95% confidence
interval. The ground truth (blue), trained (orange), and predicted (green) AMOC
fingerprint data with the prediction horizon Tp = 24 months. The green shaded
area denotes the 95% confidence interval calculated from 50 independent sets of
optimized hyperparameters.

FIG. 8. Recursive prediction of the MOVE dataset. (a) The ground truth (blue),
training (orange), and predicted (green) MOVE dataset with the prediction horizon
Tp = 40 days. (b) Training (orange) and prediction (green) errors. (c) Distribution
of the prediction error.

prediction. Figure 10 shows the recursive prediction of the MOVE
data along with the 95% confidence interval, as shaded by the green
area. The confidence interval effectively captures the trend of the
fingerprint data, demonstrating the reliability of the predictions.

3. Recursive prediction of CESM data
For nowcasting of the CESM data, the hyperparameter values

obtained through Bayesian optimization during validation are pre-
sented in Table I. The CESM time series contains 1700 points. The
segments of the data for training and validation consist of 1000 and
300 points, respectively. The validation segment together with the
remaining points (altogether 700 points) is for testing. Figure 11(a)
shows the trained and predicted time series, together with the
ground truth, for the prediction horizon Tp = 24 days. The corre-
sponding RMSEs and their distribution are shown in Figs. 11(b)
and 11(c), respectively, with the ensemble-averaged RMSE of about
0.06. Figures 12(a)–12(c) show the predicted CESM time series
for Tp = 12, 24, and 36 days, respectively, with the correspond-
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FIG. 9. Recursive prediction MOVE dataset with varying prediction horizons. Pan-
els (a), (c), and (e): reservoir-computing predicted transport together with the
ground truth for the prediction horizons Tp = 20, 40, and 100 days, respectively.
Panels (b), (d), and (f): the corresponding RMSEs. (g) Ensemble-averaged test-
ing RMSE vs Tp, with error bars being the standard deviation calculated from 50
independent simulations.

FIG. 10. Recursive prediction of MOVE data with 95% confidence interval. The
ground truth (blue), trained (orange), and predicted (green) AMOC fingerprint data
with the prediction horizon Tp = 40 months. The green shaded area denotes
the 95% confidence interval calculated from 50 independent sets of optimized
hyperparameters.

FIG. 11. Recursive prediction of CESM data. (a) The ground truth (blue), training
(orange), and predicted (green) CESM dataset with the prediction horizon Tp = 24
points. (b) Training (orange) and prediction (green) errors. (c) Distribution of the
prediction error.

FIG. 12. Recursive prediction CESM data with varying prediction horizons. Panels
(a), (c), and (e): reservoir-computing predicted transport together with the ground
truth for the prediction horizons Tp = 12, 24, and 36 points, respectively. Panels
(b), (d), and (f): the corresponding RMSEs. (g) Ensemble-averaged testing RMSE
vs Tp, with error bars being the standard deviation calculated from 50 independent
simulations.
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FIG. 13. Recursive prediction of CESM data with 95% confidence interval. The
ground truth (blue), trained (orange), and predicted (green) AMOC fingerprint
with the prediction horizon Tp = 24 months. The green shaded area denotes
the 95% confidence interval calculated from 50 independent sets of optimized
hyperparameters.

ing RMSEs shown in Figs. 12(d)–12(f). Figure 12(g) shows the
ensemble-averaged RMSE (together with the error bars) vs Tp. As
Tp increases, the RMSE increases, rendering infeasible long-term
prediction.

To characterize the uncertainties in the prediction results, we
optimize the hyperparameters with Bayesian optimization 50 times,
generate an ensemble of predictions, and calculate the 95% pre-
diction interval by ∼1.96 standard deviations from the mean value
at each time step. Figure 13 shows the recursive prediction of the
CESM data along with the 95% confidence interval, denoted by the
green shaded area. It can be seen that the confidence interval effec-
tively captures the trend of the fingerprint data, demonstrating the
reliability of the short-term prediction results.

III. DISCUSSION
In summary, we articulated a reservoir-computing based,

model-free framework to predict the real-time dynamical evolu-
tion of some key physical variables characterizing the AMOC and
demonstrated the feasibility of accurate short-term prediction, using
five different types of datasets: MOVE and RAPID (observational),
AMOC fingerprint (proxy records), AMOC simulated fingerprint,
and CESM data (synthetic model). The two observational datasets
and the proxy records are collected from different regions and
describe variability on different timescales, even with distinct phys-
ical properties. Quantitatively, we found a monotonic increase in
the prediction error with the horizon where the error tends to
increase relatively more rapidly as the horizon increases, e.g., from
12 to 36 months. Empirically, we conclude that short-term predic-
tion within 24 months can be achieved, while any longer horizon
would deem the prediction inaccurate and unreliable. Our machine-
learning framework thus will not be able to address the question of
any possible AMOC collapse in the future. Rather, the significance
of the demonstrated achievable nowcasting of some key physical
variables associated with the AMOC lies in the capability to detect
any unusual trend or early warning for about 24 months ahead of
time. This can provide a window for devising control/mitigation
strategies through policy making to reverse any adverse trend
of the AMOC.

Our general point of view is that long-term prediction of a pos-
sible collapse of the AMOC with the currently available data will
remain a formidable challenge. While mathematical models of the
AMOC with parameter values extracted from the data suggested dif-
ferent collapse scenarios, including a fairly recent one predicting a
potential collapse around the middle of the century based on one-
dimensional stochastic differential equations,10 the predictions are
only suggestive. In view of the grave consequence of AMOC weaken-
ing and a potential collapse, even the speculations cannot be afforded
to be ignored. The dynamical system underlying the AMOC is vastly
complex and highly nonlinear with sensitivity on initial conditions,
so predicting the state evolution of this dynamical system in the long
run is fundamentally ruled out. It may be argued, however, that an
AMOC collapse is a phenomenon of critical or tipping transition,
thereby requiring no detailed knowledge about the state evolution.

At present, there are two main approaches to predicting future
critical transitions in nonlinear dynamical systems. The first is based
on finding the system equations from data.60,61 A more recent
approach62–71 was based on sparse optimization. If the accurate
equations governing the underlying system can be found, when a
bifurcation parameter changes with time, a possible collapse of the
system can be assessed. However, the applicability of the sparse opti-
mization approach is limited to systems with a simple or “sparse”
equation structure.62,63 The second approach is based on machine
learning, and it has been demonstrated that reservoir computing
can be exploited to predict critical transitions.42,45,48 An advantage
of this approach is that, in principle, it can be applied to any system,
regardless of the underlying mathematical structure of the govern-
ing equations. The disadvantage is that the amount of data required
for training can be quite demanding.

The focus of this work is on the short-term prediction of the
AMOC using machine learning. Given the importance of the AMOC
to the global climate, predicting the AMOC’s behavior even in
short term is important and of considerable interest. However, the
complexity of the dynamical system underlying the AMOC makes
accurate predictions challenging. In response to the challenges,
we propose a model-free approach to short-term AMOC predic-
tion. The proposed method aims to estimate the AMOC dynamics
effectively into the near future, potentially providing early warning
signals that can inform policy-making and control strategies. With
respect to the inherent uncertainties of any long-term predictions,
short-term predictions can be more accurate and reliable to provide
actionable insights.

A significant challenge in AMOC research is data insufficiency
and inconsistency, particularly with observational records, such as
those from RAPID or OSNAP. Machine-learning methods gener-
ally require large amounts of high-quality data for effective training,
creating a substantial hurdle given the limited and often inconsis-
tent AMOC data. Proxy records such as those derived from ocean
sediments or sea ice may provide historical data to benefit pre-
diction. Short-term AMOC predictions may also be improved by
overcoming data insufficiency through the method of transfer learn-
ing. The main idea involves utilizing synthetic data generated from
mathematical models to initially train the neural networks and
then, fine-tune the well-trained model using a limited number of
real-world measurements. By so doing, the model may be capa-
ble of highly accurate prediction of the short-term dynamics of the
AMOC, even with limited measurement data.
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Long-term prediction of the AMOC is currently a significant
challenge, particularly concerning the probability of its collapse—a
critical or tipping transition event. In nonlinear and complex
dynamics, presently there are two possible approaches to predict-
ing future critical transitions: finding the governing equations and
machine learning. The first approach is effective if the underlying
system equations meet the sparsity requirement but it is impractical
for the AMOC. The machine-learning approach, while promising,
faces its own challenges. For example, for long-term prediction,
machine-learning models, such as reservoir computing, require
knowledge about some key system parameters that vary over time.
To determine such time-varying parameters for the AMOC from
data are currently an open problem. A plausible speculation is
that global climate change may be the main driving force behind
a potential AMOC collapse, but the available climate data perti-
nent to the AMOC are quite limited (within the past 100 years
or so) and are far from sufficient for extrapolating how some
key parameters may change into the future. Although machine-
learning models can be trained with limited measurement data,
their effectiveness is hampered by the lack of detailed knowledge
about how these parameters vary over time. Without this informa-
tion, these models cannot reliably predict a potential future collapse
of the AMOC.

IV. METHOD
A. Reservoir computing

The core of reservoir computing is a recurrent neural network
(RNN) with a non-Markovian type of dynamics in a single hidden
layer. Differing from the conventional RNNs where the network
link weights are trained by a gradient-based method, in reservoir
computing, the input matrix elements and the internal weights of
the RNN are randomly initialized and remain fixed during train-
ing: all required to be trained are the weights of the output matrix
that can be determined by a standard linear regression. This unique
character makes the training process computationally efficient, while
capturing the information or dynamical climate of the target dynam-
ical system and embedding it into the dynamics of the hidden-layer
neural network.28–31,72

Figure 14 shows the architecture of reservoir computing. The
low-dimensional input signal u(t) is mapped by the input matrix
Win into the high-dimensional internal state vector r(t) in the hid-
den layer, which is updated step by step according to the following
rule:

r(t + 1) = (1 − α) ⋅ r(t) + α ⋅ tanh [A ⋅ r(t) + Win ⋅ u(t) + Wbias],
(3)

where α is the leakage parameter that determines the memory loss
after each time step, the activation is achieved through a hyperbolic
tangent function (tanh), the adjacency matrix A gives the links and
connection structure of the reservoir network, and the components
of the bias vector Wbias are an equal constant wb, whose role is to
shift the values inside the activation function from zero. The input
signal of whole training length [I(1), I(2), . . . , I(t)] is concate-
nated into a matrix U , and the recorded reservoir dynamical states

FIG. 14. Architecture of reservoir computing. A reservoir computer has three lay-
ers: the input, hidden, and the output layers, characterized by the matrices Win,
A, and Wout, respectively. The input, hidden state, and the output vectors are
u(t), r(t), and o(t), respectively.

[r(2), r(3), . . . , r(t + 1)] can be concatenated into a matrix R. The
output matrix is determined by using Tikhonov regularization73 as

Wout = U ⋅ R′⊺ ⋅ (R′ ⋅ R′⊺ + βI)−1, (4)

where R′ = fs(R) is modified from R such that the elements in all its
even rows are squared to minimize overfitting,34 R′⊺ is the trans-
pose of R′, β is the regularization coefficient, and I is the identity
matrix. The output is

o(t) = Wout ⋅ r(t). (5)

The reservoir-computing architecture possesses a small number of
hyperparameters: the leakage parameter α, the scaling factor γ of
the input matrix, the spectral radius ρ and link probability p of the
reservoir network, the bias constant wb of the bias matrix, and the
regularization coefficient β. The values of these hyperparameters
can have a significant effect on the performance, so it is neces-
sary to find their optimal values, which is done commonly through
Bayesian optimization, e.g., by using74 the algorithm from Python
(bayesian − optimization).75
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APPENDIX A: SIMULATED AMOC FINGERPRINT

The simulated AMOC fingerprint dataset has 105 data points.
For nowcasting with this dataset, we set the size of the reservoir net-
work to be n = 500. The hyperparameter values obtained through
Bayesian optimization are presented in Table I in the main text. The
training length is set to be 5000, the length of the validation time
series (after the training data) is 3000, and the testing data length is
5600 (including the validation data).

Figure 15 shows the nowcasting results with the prediction
horizon Tp = 40, where Fig. 15(a) shows the ground truth as well
as the trained and predicted time series. The corresponding training
and testing RMSEs are shown in Fig. 15(b), and the distribution of
the testing RMSEs is presented in Fig. 15(c). The ensemble-averaged
RMSE is about 0.10. Three additional examples are shown in Fig. 16
for Tp = 20, 40, and 100, respectively, where the left column shows
the predicted AMOC fingerprint time series and the ground truth

FIG. 15. Nowcasting of simulated AMOC fingerprint data. (a) The ground truth
(blue), trained (orange), and predicted (green) time series with the prediction hori-
zon Tp = 40. (b) RMSEs with the trained (orange) and predicted (green) data. (c)
Distribution of the predicted error.

FIG. 16. Examples of nowcasting of simulated AMOC fingerprint with different
prediction horizons. Panels (a), (c), and (e): reservoir-computing predicted fin-
gerprint together with the ground truth, for prediction horizons Tp = 20, Tp = 40,
Tp = 100, respectively. Panels (b), (d), and (f): the corresponding prediction errors.
(g) Ensemble-averaged testing RMSE vs the prediction horizon Tp, with the
standard deviation calculated from 50 independent simulations.

with the corresponding RMSEs shown in the right row. The aver-
aged RMSE for the three cases are 0.08, 0.1, and 0.11, respectively.
Figure 16(g) shows the testing RMSE vs the prediction horizon,
where the mean and the standard deviation are obtained through
an ensemble of simulated AMOC fingerprint data. As the prediction
horizon increases, the RMSE increases.

APPENDIX B: RAPID

The total length of the RAPID time series is 12 183 (about 6000
days). The training, validation, and testing (including validation)
data segments have 6000, 3000, and 6183 points, respectively. For
nowcasting with the RAPIC dataset, we set the size of the reservoir
network to be n = 500. The hyperparameter values obtained through
Bayesian optimization are presented in Table I in the main text. The
RAPID dataset is four-dimensional, so the input and output of the
reservoir computer are four-dimensional.
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FIG. 17. Nowcasting with RAPID dataset. Panels (a), (c), (e), and (g): the ground
truth (blue), trained (orange), and predicted (green) MOC, Upper Mid-Ocean, Gulf
Stream, and Ekman, respectively, with the prediction horizon Tp = 40 (i.e., 20
days). Panels (b), (d), (f), and (h): the corresponding trained (orange) and predicted
(green) errors.

Figure 17 shows the nowcasting results for the RAPID dataset,
where the prediction horizon is Tp = 40 (20 days). In particular,
Figs. 17(a), 17(c), 17(e), and 17(g) show the trained and pre-
dicted time series as well as the ground truth for MOC, Upper
Mid-Ocean, Gulf Stream, and Ekman, respectively, with the corre-
sponding RMSEs shown in Figs. 17(b), 17(d), 17(f), and 17(h). The
ensemble-averaged RMSEs associated with the four dimensions are
about 0.09, 0.10, 0.12, and 0.09, respectively, suggesting accurate

short-term prediction. Several examples of predicted RAPID time
series with different prediction horizons are shown in Fig. 18, for Tp
= 20, 40, and 70 (10, 20, and 70 days), respectively. Each column
shown in Fig. 18 represents the prediction results and the corre-
sponding errors. The averaged RMSEs for MOC for Tp = 20, 40, 70
are 0.06, 0.09, and 0.10, respectively. The averaged RMSEs for the
Upper Mid-Ocean for Tp = 20, 40, 70 are 0.08, 0.10, and 0.13, respec-
tively. The averaged RMSEs for the Gulf Stream for Tp = 20, 40, 70
are 0.09, 0.12, and 0.14, respectively. The averaged RMSEs for the
Ekman for Tp = 20, 40, 70 are 0.07, 0.09, and 0.09, respectively.
Figure 19 shows the RMSE vs the prediction horizon, where a shorter
testing length of 5000 points is used due to the large values of Tp in
the range. In addition, to validate the robustness of the prediction
results, the training length was randomly set between 5900 and 6000.
The RMSE is small for short prediction horizon, but it increases with
the prediction horizon.

APPENDIX C: COMPARISON OF TWO
MACHINE-LEARNING PREDICTION METHODS

There are two common methods in time-series multi-step fore-
casting with machine learning: recursive and direct prediction, both
with their own unique advantages and constraints. The training pro-
cess of the two methods is the same, and the difference lies in the
prediction phase. In particular, as shown in Fig. 20(a), the recursive
method, also known as the closed-loop iteration method, predicts
one step ahead at each time step and then feeds the predicted value
back into the machine-learning model as the input for the next time
step. This procedure is iterated until the desired number of steps,
i.e., the prediction horizon Tp, is reached. During the prediction, the
hidden state of the reservoir network is recorded since the current
and previous real data are needed at the beginning of each predic-
tion step. For example, at time step t, the time series information
and the hidden state r at 0, 1, . . . , t are needed to predict the next
Tp time steps iteratively. The state vector r is updated until rt+Tp

time steps are reached. To make the prediction at time step t + 1,
the hidden state rt+1 is needed (not rt+Tp ). The recursive predic-
tion method has the advantage of train easiness and flexibility, but
error accumulation during the iteration is an issue. In comparison,
in direct prediction, the reservoir machine is trained to predict Tp
time steps ahead, without the iterative feedback loop employed in
recursive prediction. In the testing phase, the direct method predicts
Tp at once, as shown in Fig. 20(b). Direct prediction has the advan-
tage of reduced error propagation, but it is susceptible to overfitting,
especially with limited data.

For the four AMOC datasets, while we have presented the pre-
diction results from the recursive prediction method, the direct pre-
diction method performs better for two datasets. Figures 21(a) and
21(b) show the ensemble-averaged testing RMSE vs the prediction
horizon Tp of the AMOC fingerprint and MOVE dataset, respec-
tively. For these two datasets, the recursive method outperforms the
direct method. The corresponding results for the simulated AMOC
fingerprint and RAPID datasets are shown in Figs. 21(c) and 21(d),
respectively. For these two datasets, the direct method outperforms
the recursive method.
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FIG. 18. Nowcasting of the RAPID dataset with different prediction horizons. The three columns correspond to prediction horizon Tp = 20, Tp = 40, and Tp = 100 (10, 20, and
70 days), respectively. The first, third, fifth, and seventh rows give the four predicted quantities associated with the RAPID data and the ground truth, with the corresponding
RMSEs shown in the second, fourth, sixth, and eighth rows.
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FIG. 19. Quantifying short-term prediction of the RAPID dataset through the
RMSE. The ensemble-averaged testing RMSE vs the prediction horizon Tp, with
the standard deviations calculated from 50 independent realizations are shown.

FIG. 20. Illustration of two short-term prediction methods: recursive and direct
prediction.

APPENDIX D: EFFECTS OF LOW-PASS FILTERING

An issue with the datasets is noise, which can be removed to a
certain extent by low-pass filtering. Will partial noise removal affect
the machine-learning performance of short-term prediction of the
AMOC? To address this question, we employ a moving average
method by using a rolling window of size Lw to smooth the train-
ing data segment. The validation and testing data remain in their
raw, unfiltered state. Representative results are shown in Fig. 22. It
can be seen that, for the four datasets, low-pass filtering does not
lead to any apparent performance improvement. In fact, the RMSEs
tend to increase with the window width Lw. A plausible explanation
is that the noise-filtering procedure distorted the similarity between
the training data and the real noisy data, leading to information
loss and making it harder for the machine to learn the trend of the
AMOC.

FIG. 21. Errors with recursive prediction and direct prediction. (a)–(d) Ensemble-
averaged testing RMSE vs the prediction horizon Tp for AMOC fingerprint, MOVE,
simulated AMOC fingerprint, and RAPID dataset, respectively. The error bars are
obtained from 50 independent realizations.

FIG. 22. Effect of low-pass filtering on the performance of short-term prediction.
Panels (a)–(d): ensemble-averaged testing RMSE vs the moving-window size LW
for AMOC fingerprint, MOVE, simulated AMOC fingerprint, and RAPID dataset,
respectively. Data-smoothing or low-pass filtering does not lead to any apparent
performance improvement.
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