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Double-Edged Role of Resource Competition in Gene
Expression Noise and Control
Hanah Goetz, Austin Stone, Rong Zhang, Ying-Cheng Lai, and Xiao-Jun Tian*

Despite extensive investigation demonstrating that resource competition can
significantly alter the deterministic behaviors of synthetic gene circuits, it
remains unclear how resource competition contributes to the gene expression
noise and how this noise can be controlled. Utilizing a two-gene circuit as a
prototypical system, a surprising double-edged role of resource competition in
gene expression noise is uncovered: competition decreases noise through
introducing a resource constraint but generates its own type of noise which
we name as “resource competitive noise.” Utilization of orthogonal resources
enables retainment of the noise reduction conferred by resource constraint
while removing the added resource competitive noise. The noise reduction
effects are studied using three negative feedback types: negatively competitive
regulation (NCR), local, and global controllers, each having four placement
architectures in the protein biosynthesis pathway (mRNA or protein inhibition
on transcription or translation). The results show that both local and NCR
controllers with mRNA-mediated inhibition are efficacious at reducing noise,
with NCR controllers demonstrating a superior noise-reduction capability.
Combining feedback controllers with orthogonal resources can improve the
local controllers. This work provides deep insights into the origin of
stochasticity in gene circuits with resource competition and guidance for
developing effective noise control strategies.
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1. Introduction

The last three decades have witnessed
increasing exploitation of synthetic gene
circuits in clinical applications for di-
agnostics and therapeutics. In a gene
circuit, the competition over transcrip-
tional and translational resources be-
tween multiple modules is a univer-
sal phenomenon and has been demon-
strated to play a significant role in regu-
lating the deterministic behaviors of the
synthetic circuits.[1–3] For example,mech-
anisms through which resource com-
petition can alter the means of circuit
species and even completely change the
steady states of the dynamical systems
has been studied.[4–6] While gene circuits
can exhibit certain deterministic behav-
iors to some extent, they are intrinsically
stochastic, and this can significantly af-
fect the circuit function. In fact, noise is
one of the fundamental factors that limit
the performance of synthetic gene cir-
cuits. Such impairment of function has
been noted as far back as the repressila-
tor circuit,[7] where fewer than half of the

cells showed highly variable oscillations with large variability
in period and amplitude. Gene expression noise is one of the
sources of uncertainty that can lead to circuit failure.[8] That is,
noise, as one of the notorious issues, reduces the forward en-
gineerability of synthetic gene circuits and impairs circuit per-
formance. In view of the importance of resource competition in
circuit dynamics, it is of fundamental interest to investigate how
the competition affects or contributes to the stochastic nature of
the circuits. Understanding the origin of stochasticity in gene cir-
cuits is important not only for better understanding intracellular
dynamics but also for advancing gene circuit engineering.
Given that noise in gene circuits can have deleterious effects

on their predictability and forward-engineerability, methods
of controlling and mitigating circuit noise are of paramount
interest. In general, the effects of resource competition can be
attenuated in orthogonal resource systems and via incorporation
of negative feedback control. For example, orthogonal ribo-
somes and RNA polymerases (RNAPs) have been engineered
for creating separate resource pools for genes,[9–13] and various
circuit controller topologies have been exploited to mitigate
the burden that the components have on each other without
affecting the overall function of the circuit.[14–20] The existing
controllers utilize some sort of negative feedback topology to
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repress circuit outputs when the synthetic circuit begins taking
up more than its fair share of the host’s resources. Three cate-
gories of such controllers have been studied: global,[21] local,[17]

and negatively competitive regulatory (NCR) controllers.[20]

While these control strategies have been demonstrated to reduce
resource competitive effects, it is unclear whether they can
reduce gene expression noise and, if so, which architecture
represents the optimal design for noise control.
Given the universal existence of resource competition in

gene circuits and considering that traditional protein expression
models do not take into consideration resource constraints,
it is of fundamental importance to uncover and understand
the competition-induced noise and characterize the stochastic
behavior for synthetic biological constructs. As feedback control
serves to reduce noise, it is also imperative to evaluate the
efficacy of different control strategies to identify the optimal
one. This paper addresses these issues. First, we analytically
compared the noise in the idealized scenario in which resources
are unlimited with the realistic case subject to the constraint
of resource competition. This analysis leads to a new type of
noise derived from resource competition and a reduction in
noise caused by the resource limitation constraints, revealing a
striking double-edged effect of resource competition on noise
behavior. We then analyzed how the addition of orthogonal
resources can remove the competition-induced noise. Finally, we
compared the noise reduction performance of three general types
of negative feedback controllers: NCR, local, and global, as well
as each of their four placement subtypes. We found that global
controllers are not effective at reducing noise and often can even
increase noise, but combining negative feedback controllers
with orthogonal resources can improve the local controllers and
make the transcriptional inhibition strategies more effective.
Our results provide unprecedented insights into the origin of
stochasticity in synthetic gene circuits as well as into develop-
ing effective noise control strategies for resource competitive
systems.

2. Results

2.1. Double-Edged Effects of Resource Competition on Gene
Expression Noise

We considered a circuit with two identical yet independently
regulated genes in the same cell (represented by GFP and RFP),
as shown in Figure 1a, which is a prototypical circuit for mod-
eling and characterizing gene expression noise[22] and resource
competition.[4,19] While the competition is not significant with
only one copy of the two genes,[22] it can become significant for
systems utilizing high-copy plasmids which is sometimes re-
quired for proper circuit function. As in previousmodels for gene
expression noise,[23–30] we considered transcription for the pro-
duction of gfp and rfp mRNAs, translation for the production of
proteins GFP and RFP, and the degradation of both mRNAs and
proteins. A feature of the existingmodels is that the transcription
rate per gene and the translation rate per mRNA are constants,
which are idealized. Going beyond the existing studies, we
incorporated the competition for shared transcriptional and
translational resources between the two genes into our model,
which makes the transcription and translation fluctuate dynam-

ically as in real gene circuits. Resource competition between
multiple genetic nodes in the same cell can have significant
effects on the deterministic behaviors of the circuit. For example,
the sharing of resources can create indirect inhibition links
between the genes (indicated by the dashed lines in Figure 1b)
because, when one genetic module pulls from the resource pool,
there are fewer resources available to the other module.
We began by constructing two mathematical models for the

two-gene circuit, one with unlimited resources (without compe-
tition) and another with competition, with details given in Sec-
tion A, Supporting Information. Here, for simplicity, we con-
sidered the identical genes with same transcription/translation
rates and mRNA/protein degradation rates, and did not consider
the folding/maturation difference between the proteins and sim-
ply used them for the communication of the work. In the model
with unlimited resources (URmodel), the translation rate in each
module depends linearly on the concentration of its own mRNA,
as in previous models.[23,25,26,28–30] In the model with resource
competition (RC model), the transcription and translation rates
depend on the concentrations of all gene copies and mRNAs in
the system, respectively.[6,20] For simplicity, we did not include
extrinsic noise from fluctuations in other cellular components
of the system. That is, we did not consider the fluctuation of the
copy numbers of the transcriptional resource (RNAPs) and trans-
lation resource (ribosomes). To fairly compare the stochastic be-
haviors of the RC and UR models, we rescaled the transcription
and translation rate constants in both models to ensure that they
have the samemean values of the mRNAs and proteins. We used
the standard Gillespie method[31] (Section B, Supporting Infor-
mation) to generate stochastic trajectories, as shown in Figure 1c,
where the peaks in the GFP level more often correspond with
valleys in the RFP level in the RC case. Likewise, peaks in RFP
correspond with valleys in GFP. That is, the two proteins fluctu-
ate in an anticorrelated fashion. This anticorrelation stems from
the coupling of resource competitive and stochastic dynamics. As
one protein by chance experiences a stochastic increase in expres-
sion levels, fewer resources aremomentarily left for the opposing
gene to self-express. This phenomenon is confirmed with the 2D
GFP/RFP probability distribution obtained as a solution to the
system’s master equation (Section B, Supporting Information),
as shown in Figure 1d, where the deep blue color represents re-
gions of low probability, while yellow represents the regions of
the highest probability. It can be seen that a highGFP levelmostly
corresponds to low RFP levels and vice versa. This is consistent
with recent findings of the anticorrelation between two indepen-
dently regulated gene/modules.[4,6,14,19]

In the UR model, stochastic trajectories and their probability
distribution indicate that expressed GFP is not related to the ex-
pression of RFP, as shown in Figure S1a,b, Supporting Informa-
tion. That is, the two genes remain completely unconnected given
that the inhibitions from resource competition are not present.
We compared the expression distribution of GFP under condi-
tions with unlimited and limited resources and found that the
resource competition narrows the GFP distribution, as shown in
Figure S1c, Supporting Information. This result implies that re-
source limitation provides the benefit of noise reduction despite
the fact that it also leads to anticorrelation between the expres-
sion of the two genes when compared to the unlimited resources
case.
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Figure 1. Double-edged effects of resource competition on gene expression noise. a) Schematic diagram of GFP and RFP expression through shared
transcriptional resources (RNAPs) to create mRNAs and translational resources (ribosomes) to create proteins. b) Diagram illustrating how resource
competition creates inhibition between the circuit modules. c) Gillespie stochastic trajectories of GFP (green trace) and RFP (red trace) expressions
(correlation coefficient = −0.79). d) Distribution of GFP and RFP expression levels obtained by solving the master equation in the two-gene circuit
coupled by resource competition. e,f) Gillespie stochastic trajectories of GFP (green) and RFP (red) expression (correlation coefficient = −0.01) and
distribution of GFP and RFP expression levels in the two-gene circuit without RC noise (𝜂RC, defined as the noise from the fluctuation of the other mRNA
due to resource competition). The horizontal black lines in (c) and (e) indicate the protein mean. g) Distribution of GFP expression levels in the case
with 𝜂RC (blue dashed curve) and without 𝜂RC (solid red curve). h) FDT analytical solutions of the dependence of the total protein noise (𝜂total, blue
curve), noise from the stochastic birth/death of protein (𝜂p, yellow curve), noise from the fluctuation of its own mRNA (𝜂m, maroon curve), and noise
from the other mRNA (𝜂RC, purple curve) on the translational capacity Jp of limited resources in the host cell for the synthetic gene circuit. Vertical line
represents GFP noise levels for the Jp value used in previous panels.

From simulations, we noticed that, due to resource competi-
tion, the fluctuations of the mRNA of one protein can contribute
to the noise of the other protein. We defined the noise from the
fluctuation of the opposing mRNA due to resource competition
as resource competitive noise (RC noise), denoted as 𝜂RC. This
additional noise can be eliminated by setting the concentration of

one mRNA to a constant (e.g., its mean) in the production rate of
the other protein, thereby keeping the fluctuations of one gene’s
expression from being a factor in the opposing gene’s expres-
sion. By so doing, we were able to determine the contribution
of the resource competition to the total noise. Once eliminated,
the anticorrelation disappears. That is, protein expression peaks
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in the stochastic trajectory can align with either the opposing
protein’s peaks or the valleys, as shown in Figure 1e. The 2D
GFP/RFP probability distribution now becomes circular, as
shown in Figure 1f, in contrast to the ovular distribution in
Figure 1d. It can be seen that high expression areas are now
confined to a smaller region of the phase space than in the
original RC case. This difference can also be seen in the 1D
GFP probability distribution, as shown in Figure 1g, where the
distribution in the RC case (dashed blue curve) is lower and
wider than that in the case where the fluctuations of one gene’s
expression to the other have been eliminated (solid red curve).
The results in Figure 1c–g thus indicate that the extra noise
included in the RC case can be attributed entirely to resource
competition.
To better see the double-edged effects of resource limitation

on the noise levels, we derived the analytical expressions of the
GFP noise using the fluctuation-dissipation theorem (FDT) for
the twomodels, which yielded the decomposition of the total GFP
noise (Section D, Supporting Information). For the RC system,
the square of the GFP total noise is given by

𝜂
2
GFP, total =

(total GFP noise)2

⏞⏞⏞

𝜎2p1

⟨P1⟩2

=
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(1)

where the first two noise terms are the same as the ones in the
UR case (Equation (41) in Section D, Supporting Information).
In particular, the first noise term represents the stochasticity
from the random birth/death of protein (𝜂p), which depends on
the average number of GFP proteins. The second term is due to
the fluctuations of the gene’s own mRNA (𝜂m), which depends
on the gfp mRNA noise and the contribution of gfp mRNA to
its translation quantified by the susceptibility factor H21. The
noise decomposition for the UR system with two noise terms
is consistent with that revealed by previous studies.[23,32,33] The
last term in Equation (1) is specific to the RC system, which
signifies the stochasticity from the other mRNA and depends on

the rfp mRNA noise and the relative inhibition strength of gfp
translation by rfp mRNA as characterized by the susceptibility
factorH23.
Using this analytical solution, we studied how the GFP noise

depends on the parameter Jp, which represents the translational
capacity of limited resources in the host cell for the synthetic gene
circuit. We found that the total GFP noise in the RC system first
decreases then increases slightly with Jp, as shown in Figure 1h.
This is due to the double-edged effects of resource competition on
the noise: the noise reduction effect due to the resource limitation
and generation of RC noise.
It is worthy to note that RC noise fraction actually depends on

the translational rate kp and the resource capacity Jp. As shown
in Figure S2a, Supporting Information, the RC noise fraction in-
creases with the translational rate up to more than 30%. Inter-
estingly, it shows a nonmonotonic dependence on Jp with a max-
imum at the middle, consistent with the dependence of the full
width at halfmaximumof theGFP distribution on Jp (Figure S2b,
Supporting Information). The underlying reason for the low RC
noise fraction at high or low Jp is that resource competition is not
significant with a large value of Jp (high resource level), while the
noise from the birth/death of protein (first noise term) is more
dominant due to the low copy number of proteins with a small
value of Jp (low resource level).
To confirm that resource competition can lead to noise reduc-

tion, we compared the dependencies of the GFP noise on Jp in
RC and UR systems, as shown by the solid light purple and blue
dashed traces in Figure S1d, Supporting Information. It can be
seen that GFP noise is always smaller in the RC case, which is
also provedmathematically (Section E, Supporting Information).
As Jp increases its value, GFP noise in the RC case approaches the
noise level in the UR case. This is reasonable because, as Jp ap-
proaches infinity, the terms in the RCmodel are reduced to those
in the UR model, and the limitation on resources gradually dis-
appears.
Figure 1h and Figure S1d, Supporting Information also

demonstrate how the noise composition changes with the
resource availability. Specifically, the noise from the protein
birth/death (𝜂p) decreases with the resource availability (the yel-
low curve in Figure 1h and Figure S1d, Supporting Information),
due to the increased protein mean (the red curve in Figure S2c,
Supporting Information). It is also noted that 𝜂RC and 𝜂m depend
on Jp through H23 and H21, which decrease and increase with
Jp, respectively (Equations (35) and (36), as shown in Figure 1h.
That is, the noise due to the stochasticity from its ownmRNA in-
creases with the resource availability in the RC system (the ma-
roon curve in Figure 1h) due to the continuous relaxation of the
resource limitations on translation, and approaches the level in
the UR case, which does not change with translational capacity
(Equation (1) with H23 = 0 and H21 = −1 as detailed in Section
D, Supporting Information and displayed by the maroon curve
in Figure S1d, Supporting Information). The RC noise decreases
with the resource availability (the purple curve in Figure 1h),
as the inhibition of one mRNA on the translation of the other
mRNA decreases with increasing translational capacity. Taken to-
gether, our finding shows that resource limitation can decrease
gene expression noise but in turn creates a new type of noise,
resulting in a remarkable double-edged effect on gene expres-
sion noise.

Advanced Genetics 2022, 3, 2100050 2100050 (4 of 13) © 2022 The Authors. Advanced Genetics published by Wiley Periodicals LLC

http://www.advancedsciencenews.com
http://www.advgenet.com


www.advancedsciencenews.com www.advgenet.com

Figure 2. Elimination of resource competition noise through orthogonal resources. a) Diagram illustrating how the use of orthogonal resources elimi-
nates the competition for transcriptional and translational resources. b) Gillespie stochastic trajectory of GFP (green curve) and RFP (red curve) expres-
sion in a two-gene circuit with orthogonal resources (correlation coefficient = 0.02). The horizontal black line indicates the protein mean. c) Distribution
of GFP and RFP expression levels in a two-gene circuit with orthogonal resources obtained from the solutions of the master equation. d) Distribution
of GFP expression levels in a resource competition system (blue dashed curve) and an orthogonal resources system (green curve). e) FDT analysis
revealing the dependence of the GFP total noise levels on RFP mean in a system with resource competition (blue curve) and orthogonal resources
(green curve) using the latter as the base. f) FDT analysis giving the dependence of the protein total noise levels on the effective gene copy number in a
system with unlimited resources (pink curve), resource competition (blue curve), and orthogonal resources (green curve).

2.2. Elimination of Resource Competition Noise through
Orthogonal Resources

Orthogonal resources such as orthogonal RNAP and ribosomes
have been developed to reduce unwanted couplings in gene
circuits due to the competition for the host transcriptional
and translational component.[9–13] We set out to study how the
introduction of orthogonal resources affects noise levels. With
their addition into the two-reporter system, gfp and rfp now pull
from two separate pools of RNAP and ribosomes, as shown in
Figure 2a. Here, we assume that the orthogonal system uses
much less resources than the synthetic gene circuit and thus
did not consider the potential resource competition by the
orthogonal system. As a result, the inhibition links between the
two genes caused by resource competition are removed while the
resource constraint remains. We hypothesized that this would
retain the noise decreasing effects of resource competition while
nullifying the resource competitive noise.
We constructed a model for the orthogonal resource (OR) sys-

tem (Equations (11) and (12) in Section A, Supporting Informa-

tion) and compared its noise behavior with the RC system by
rescaling the transcription and translation rate constants in the
OR model to keep the same means of the mRNAs and proteins
in the two models. The stochastic trajectories reveal that the ex-
pression levels of both proteins are no longer anticorrelated and
fluctuate closer to the mean, as shown in Figure 2b. Accordingly,
the 2D GFP/RFP probability distribution is more compact near
the mean, as shown in Figure 2c. The probability distribution for
the OR case (the solid green curve in Figure 2d) is narrower than
the RC case (the dashed blue curve in Figure 2d), suggesting that
utilization of orthogonal resources can reduce the protein noise
levels. An analytical solution of the protein noise shows that the
resource competitive noise has been removed from the system
(Section D, Supporting Information).
We then studied how the GFP noise levels in the RC and OR

systems change with the RFP mean by increasing the effective
RFP gene copy number. By rescaling the parameters in the RC
system with the OR system as the base, we make the means of
the mRNAs and proteins in the RC system the same as the OR
system. We found that, when there is no RFP, the noise levels in
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the two systems are equal, as shown by the red dot in Figure 2e.
As the RFP mean increases, the GFP noise level in the OR sys-
tem is constant given that its two components do not change with
RFP mean (Figure S3a, Supporting Information), but in RC sys-
tem the total noise increases because both the noises from the
fluctuation of two mRNAs (𝜂m and 𝜂RC) increase although the
noise from the birth/death of GFP (𝜂p) is a constant (Figure S3b,
Supporting Information), thus making the difference in noise
level between two systems increase with RFP mean (Figure 2e).
Note that the maximum RFP mean reached by increasing the
copy number is due to the saturation mediated by resource lim-
itation, as shown in Figure S3c, Supporting Information. This
conclusion holds true if the plasmid copy numbers increase for
both genes. The total noise decreases and reaches a saturation
floor, as shown in Figure 2f, which is consistent with the previous
findings.[34–37] Nonetheless, the noise levels in the UR system are
always the largest, suggesting that utilizing orthogonal resources
is a good strategy to eliminate the contribution of resource com-
petition to gene expression noise.

2.3. Control of Gene Expression Noise by Negatively Competitive
Regulatory (NCR) Controllers

Negative feedback has been utilized extensively to mitigate the
effects of resource competition[14–20] and reduce gene expression
noise.[38–47] Some theoretical analyses have provided us a fun-
damental limitation to the noise suppression through negative
feedback loops.[48,49] While cellular systems in nature may have
evolved complicated regulatory networks to operate close to this
fundamental limit, it is still unclear whether different types of
negative feedback controllers perform similarly for noise reduc-
tion of the synthetic gene circuits, especially under the context
of resource competition. We systematically studied the noise at-
tenuation ability of these negative feedback controllers in the con-
text of resource competition. Previously, we proposed a controller
topology for combating resource competition effects—negatively
competitive regulatory (NCR) controller,[20] as schematically il-
lustrated in Figure 3a. Briefly, in addition to their output pro-
teins, each competing module also creates an sgRNA which is
inhibitory towards the module that produced it. However, these
sgRNAs cannot initiate inhibition until they complex with an
inhibitory CRISPR moiety (e.g., dCas9), which are drawn from
a fixed pool. The resulting inhibitory complexes can then initi-
ate inhibition of their respective modules. This is an example
of mRNA-mediated inhibition of transcription. Such a controller
topology can be generalized to be placed at any one of four places
in the protein production pathway, defined by whether the inhibi-
tion is mediated via mRNA or protein and whether the controller
targets transcription or translation for inhibition. We henceforth
defined four controller subtypes, as shown in Figure 3b: mRNA
inhibits transcription (MIX), protein inhibits transcription (PIX),
mRNA inhibits translation (MIL), and protein inhibits transla-
tion (PIL).
To assess the noise reduction ability of these NCR controllers,

we developed a generalized model for these controllers (Support-
ing Information Section F) and carried out FDT-based numerical
analysis (Supporting Information Section G) for all the four sub-
types with increasing RFP means for a fixed controller strength.

Here we did not consider the resource competition by express-
ing dCas9 as we need the dCas9 to be limited so that the two
modules could compete over to achieve the negative competi-
tion as designed in the NCR controller. For future experimen-
tal design, a tunable dCas9 system will be integrated into the
genome instead of the synthetic gene circuit plasmid. To com-
pare these controllers fairly, both Sc and RFP start at 0 to rep-
resent no controller or no competing module. The maximum
of Sc was set to the value when the noise reduction reaches
saturation, and the maximum value of R2 was set to the value
where the RFP mean reaches its saturation. Figure 3c shows the
GFP noise normalized by the base case without any controller.
For comparison, Figure S4a, Supporting Information shows the
case of non-normalized GFP noise. We found that translation-
inhibiting subtypes (MIL and PIL) have the largest noise reduc-
tion effects as RFP mean increases but they perform poorly at
low RFP means where GFP noise even increases. Transcription-
inhibiting subtypes (MIX and PIX) do not reduce noise signifi-
cantly at high RFP means but are able to decrease noise consis-
tently over all RFP mean values. Importantly, mRNA-mediated
controllers (MIX andMIL) outperform thosemediated by protein
(PIX and PIL) in both the inhibition of transcription and transla-
tion cases. Figure 3d shows that normalized GFP noise decreases
as the controller strength increases with a fixed large RFP mean
but saturates beyond a certain point. Under a smaller ormoderate
RFPmean, normalizedGFPnoise in the PIL case can increase, as
shown in Figure S4b, Supporting Information, or first decreases
then increases, as shown in Figure S4c, Supporting Information
with increasing controller strength. These trends hold with other
RFP means and controller strength. Figure 3e–h demonstrates
how GFP noise changes in the phase plane of RFP mean and
controller strength for all controller subtypes, where deep blue
regions represent large noise reduction and dark red regions in-
dicate either little noise reduction or an increase in noise. MIL
and PIL subtypes have both regions of deep blue but also dark
red, indicating their increasing ability of noise reduction with
RFP mean but poor starting performance at low RFP mean in-
tervals. Heatmaps of MIX and PIX have neither much deep blue
nor dark red region, indicating their ability to consistently reduce
noise over the entire RFPmean interval, albeit atmoderate levels.
It is worth noting, the noise reduction capabilities smoothen out
over the RFP range for all these controller types when the protein
noise of the entire system (defined as the Pythagorean sum of
both GFP and RFP noise) are taken into account as is detailed in
Figure S4d– h, Supporting Information. The large increases in
noise generated by the translational-inhibiting controllers, MIL
and PIL, at low protein mean are buffered by the large decreases
in the noise of the other protein.

2.4. Control of Gene Expression Noise Using Local and Global
Controllers

We investigated local and global negative feedback controllers
that have been used previously to mitigate resource competi-
tive effects.[17,21] Briefly, local controllers incorporate separate
negative feedback loops, that is, every module in the genetic
system has its own negative feedback loop as shown in Figure 4a,
whereas global controllers use a single shared negative feedback
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Figure 3. Control of gene expression noise by negatively competitive regulatory (NCR) controllers. a) Topology of the NCR controller acting on a two-gene
circuit. Each module (GFP, RFP) produces an inhibitory guide RNA (sgR1, sgR2) which is used for self-inhibiting complexes upon binding to a fixed pool
of CRISPR moiety (dCas9). The blunt dash arrows show the self-inhibition and mutual inhibition between two modules due to resource competition.
b) General controller topologies applied at different positions in the protein production pathway defined by the inhibitory moiety type and the target
of inhibition: mRNA inhibits transcription (MIX), protein inhibits transcription (PIX), mRNA inhibits translation (MIL), and protein inhibits translation
(PIL). c) FDT analysis demonstrating the normalized GFP total noise level on the RFP mean with NCR controllers applied in a resource competitive
system for fixed controller strength Sc = 14. The noise levels are normalized to the base case without a controller. d) The dependence of normalized
GFP noise on Sc for RFP Mean fixed at 230. e–h) Normalized GFP noise in the phase plane of RFP mean and NCR controller strength for NCR controller
subtype e) MIX, f) PIX, g) MIL, and h) PIL. Deep blue color represents a strong decrease in the noise levels with respect to the base case with no
controller, and deep red indicates the absence of a significant noise change or even a noise increase over the base case. The horizontal and the vertical
white dashed lines represent the controller strength in panel (c) and the RFP mean used in panel (d), respectively.

loop that represses all modules in the circuit, as shown in Fig-
ure 4b. To compare the efficacy of these controllers in attenuating
noise in the two-gene circuit, we performed FDT analysis for the
systems with each controller applied utilizing one of the four
placement subtypes. We found that global controllers perform
poorly. First, the Global MIX and PIX systems reduce the noise

slightly at low RFP means but are barely able to reduce noise at
higher RFP means, as shown in Figure 4c and Figure S5a, Sup-
porting Information. Second, the global MIL and PIL systems
significantly increase noise for most of the RFP mean intervals,
as shown in Figure 4d and Figure S5b, Supporting Information.
This finding is consistent with the global controller’s inability
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Figure 4. Control of gene expression noise using local and global controllers. a,b) Diagrams of the local and global controllers, respectively, acting on
the two-gene system. c,d) Dependence of the normalized GFP noise levels with local controllers (red curves), global controllers (yellow curves), and
NCR controllers (purple curves), respectively, using MIX and MIL subtypes. The noise levels are normalized to the base case with no controller. e,f)
Deterministic dependence of GFP level on RFP level with various MIL controllers applied, where the parameters are fixed to intersect just at one point for
RFP mean approximately 150 and 250, respectively. g) Average noise reduction coefficient for local, global, and NCR controller types. h) Average noise
reduction coefficient for controller subtypes MIX, PIX, MIL, and PIL.

to attenuate the winner-takes-all resource competitive behavior
found previously.[20]

Systems with a local controller performmore poorly than NCR
controllers at low/moderate RFPmeans, as shown in Figure 4c,d
and Figure S5a,b, Supporting Information. However, there exists
a critical RFP mean value for which Local and NCR cross in ef-
ficacy. The value of this cross-point is parameter-dependent, but
NCR typically performs better at low/moderate RFPmeans while
a local controller typically performs better at high RFP means.
The reason for this cross in controller efficacy can be seen from
the GFP versus RFP mean graphs, as shown in Figures 4e,f. As
the RC noise in GFP is qualitatively related to the slope at a given
point on the GFP vs RFP mean graph, a shallower slope indi-

cates weaker noise. At low/moderate RFP means (Figure 4e), the
two-gene systemwith the NCR controller applied has a rather flat
slope, indicating that the NCR controller can nearly decouple the
two genes from their resource competition at this point and thus
is better at noise reduction. However, at a high RFP mean (Fig-
ure 4f), the slopes of the curves with NCR and local controller
interchange, with the local controller curve now having the shal-
lowest slope and thus a better noise reduction capability.
To obtain more general and conclusive results regarding

which controllers and placement subtypes are optimal for noise
reduction, we defined an average noise reduction coefficient as
the average fold change in total protein noise (defined as the
Pythagorean sum of both GFP and RFP noise) across all protein
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means, controller strengths, and/or controller types/subtypes
(Section H, Supporting Information). The average noise
reduction coefficients are shown in Figure 4g for each con-
troller type and in Figure 4h for all three controller types. These
results demonstrate that the global controllers and the PIL
controllers on average perform poorly (given their negative noise
reduction coefficients) and are generally inappropriate for build-
ing an efficacious noise reducing system. Further support for
this finding is presented in Figures S5c,j and S6c,j, Supporting
Information, where a deep red color emerges for the majority of
the phase plane of RFP mean and control strength for the global
controller. While Local and NCR systems are both relatively
efficacious in attenuating noise, NCR is significantly more con-
sistent in its ability to reduce noise, as shown in Figure 4g. The
two best performing placement topologies are the MIX and MIL
subtypes, with the MIL placement more consistent in its ability
to reduce noise (Figure 4h). We also found that this difference
between MIX and MIL increases with increasing Jp values,
with MIL outperforming MIX. We found this trend to also
be present when orthogonal ribosomes are included (detailed
further below). Furthermore, it can be concluded that a system’s
noise reduction capability in general is determined more by the
type of controller than by which controller subtype chosen. This
can be seen as the noise reduction coefficients from altercation
of controller type (Figure 4g) span approximately 0.36, whereas
altercating the controller subtype only results in a smaller span
of approximately 0.19 (Figure 4h).

2.5. Control of Gene Expression Noise through Combined
Negative Feedback Controllers and Orthogonal Resources

Having demonstrated that both orthogonal resources and neg-
ative feedback controllers can attenuate noise, we investigated
whether their combinations can improve the noise-control capa-
bility. We first focused on the combinations of the most effec-
tive controllers in the RC system, including local-MIX, local-MIL,
NCR-MIX, and NCR-MIL, with orthogonal resources. We then
determined whether the application of an OR system can benefit
negative feedback controllers for noise reduction. As shown in
Figure 5a and Figure S7a– c, Supporting Information, the GFP
noise normalized to the RC base case without a controller indi-
cates that the use of orthogonal resources consistently benefits
local-MIX and NCR-MIX controllers. However, using an OR sys-
tem is barely beneficial to local-MIL and is deleterious to NCR-
MIL, as shown in Figure 5b. The underlying reason is that for the
NCR-MIL controller, when the control node from RFP mRNA
inhibits its translation, it also promotes the translation of GFP
regardless of whether or not GFP level is above or under its aver-
age in the OR case, and thus could actually increase GFP noise.
In the RC case, on the other hand, it only promotes the transla-
tion of GFP when GFP is under its average thus decreasing GFP
noise. That is, NCR is designed for combating resource compe-
tition, so it may not work well with OR system. The GFP noise
normalized to theOR casewithout a controller reveals that the ad-
dition of a local-MIX or NCR-MIX controller is consistently ben-
eficial for the OR system in further attenuating noise, as shown
in Figure 5c and Figure S7d– f, Supporting Information. Even
though local-MIL and NCR-MIL controllers do not provide any

benefit for the OR system at small RFP mean in reducing noise,
the synergy emerges in large RFPmean intervals as shown in Fig-
ure 5c. There is thus consistent synergy between the local/NCR
controllers and orthogonal resources.
Heatmaps of each of the four controller subtypes over the

RFP mean-controller strength plane demonstrate similar behav-
iors for a range of controller strengths, with the fold changes in
GFP noise becomingmore pronounced as controller strength in-
creases, as shown in Figure 5d–g. Both combinations of an OR
systemwith Local-MIX andNCR-MIX are themost effective at re-
ducing noise when compared to an RC system without control.
However, the OR local-MIL and ORNCR-MIL combinations pos-
sess a remarkable ability to reduce noise for higher RFP mean
values, but prove disadvantageous at lower RFP mean.
To quantify the general synergy between the negative feedback

controllers and orthogonal resources, we calculated the average
noise reduction coefficients for all controller types and subtypes
in the OR system, as shown in Figures 5h-i. Similar to the system
without orthogonal resources, the global controller and the PIL
subtype perform poorly, though the global controllers (MIX and
PIX subtypes) are a much better contender when added to the
OR system (Figure 5h and Figures S5a,b and S7b,e, Supporting
Information). Furthermore, the local and NCR controllers per-
form well, with NCR being on average more consistent in its
noise-reduction capability. However, the order of the most effica-
cious controller subtype is different when applied to an OR sys-
tem than the RC system, as shown in Figures 5i and 4h, where
transcriptional inhibition subtypes (MIX and PIX) demonstrate
a better ability to reduce noise than translational inhibition sub-
types (MIL and PIL). Figure 5j shows the dependence of the ac-
cumulative noise reduction coefficient on the controller strength
for the eight best controller and subtype combinations and Fig-
ure S8, Supporting Information shows the analysis on the control
of total protein noise. The curves in the OR systems have a much
higher starting point at small controller strength range due to
the strength-independent noise reduction resulting from the or-
thogonal ribosomal component (Figure 5j). The NCR controllers
are always better than local controllers in the RC systems, while
in the OR system, the latter are slightly better than the former.
This is reasonable as the NCR controller is specifically designed
to mitigate the effects of resource competition. The addition of
orthogonal resources significantly improves the less efficacious
NCR-MIX and local-MIX controllers but does not enhance the
maximum noise-reduction capability for the local-MIL and NCR-
MIL controllers. This is also validated by the Gillespie simula-
tion (Figure S9, Supporting Information). It is worth noting that,
although the noise reduction coefficient of the PIX subtypes is
greater than that of MIL subtypes here (Figure 5i), this effect is
largely due to the fact that the global-PIX controller is signifi-
cantly improved (Supplementary Figure S7b). That is the reason
we chose to analyze MIL over PIX in the best cases comparison
in Figure 5j despite PIX’s seemingly higher noise reduction co-
efficient.

3. Discussion

Uncovering and understanding the origin of gene expression
noise is a fundamental problem in systems and synthetic biology
and has been investigated extensively in the past.[23–30] However,
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Figure 5. Control of gene expression noise through combined negative feedback controllers and orthogonal resources. a,b) Dependence of the normal-
ized GFP noise levels on RFP mean with a local controller (red curves) and NCR controller (purple curves) combined with orthogonal resources (solid
curves), respectively, for MIX and MIL controller subtypes. The dashed curves are cases without orthogonal resources. All data are normalized to those
of the system without a controller (maroon dashed curve). c) Dependence of the normalized GFP noise levels on RFPmean for the OR system combined
with a local controller (solid curves) or an NCR controller (dashed curves) for either the MIX (blue curves) or MIL (pink curves) controller subtypes. All
data are normalized to those in the case with orthogonal resources but no controller (maroon dashed curve). d–g) Normalized GFP noise in the phase
plane of RFP mean and controller strength, respectively, for local-MIX, local-MIL, NCR-MIX, and NCR-MIL combined with orthogonal resources. Deep
blue color represents regions of higher noise reduction. The horizontal white dashed lines represent the controller strength shown in panels (a) and (b).
The average noise reduction coefficient for h) different local, global, and NCR controllers with orthogonal resources, and i) different controller subtypes:
MIX, PIX, MIL, and PIL with orthogonal resources. j) Dependence of the average noise reduction coefficient on the cumulative controller strength for
the cases MIX and MIL of NCR/local controllers applied with or without orthogonal resources.

in all the existing models, unlimited cellular resources are
assumed, which is unrealistic for synthetic gene circuits with
multiple coactivated modules. Our present work has demon-
strated quantitatively that resource competition can significantly
affect the noise behavior of synthetic gene circuits. A key finding
is that resource competition has a double-edged effect on protein
expression noise levels. In particular, resource competition is
able to reduce noise by applying resource constraints to the
system, in the absence of which the gene expression noise level
is maximized. The noise-reduction capability can be attributed to
self-inhibition introduced indirectly into the system by resource

competition. However, the competition introduces a new type
of noise (resource competitive noise) as it creates anticorrelated
links between the genemodules. This double-edged effect makes
the dependence of the total noise level on the resource avail-
ability strikingly non-monotonic. Incorporation of orthogonal
resources can take advantage of this effect to reduce the noise by
orthogonalizing the resource constraints on each gene module.
This technique keeps the resource constraints but removes
the effects of inter-module resource competition, allowing for
fewer variables affecting gene expression while still using self-
inhibition to keep the expression levels relatively close to the
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mean. Development of a completely insulated OR system in the
future has the potential to significantly improve the control of
resource competition. Current OR systems are not completely
orthogonal to the host system and take up additional resources
in the host cell, thus it is necessary to also consider other control
strategies such as feedback controllers to further improve the
control of resource competition.
From a control perspective, negative feedback loops are of-

ten used to suppress the noise level in gene expression.[38–47]

However, previously none of the methods took into account re-
source competition. Nonetheless, a number of negative feed-
back controllers such as local, global, and NCR controllers have
been used in the past to negate unwanted effects of resource
competition,[14–20] raising the question of whether these con-
trollers can be used to reduce gene expression noise in the cir-
cuits with limited resources. Our analysis reveals that global con-
trollers are typically quite ineffective at reducing noise and often
can increase it. In a recent work, we demonstrated that global
controllers are not efficacious at reducing the effects of winner-
takes-all type of resource competition,[20] implying its inability to
reduce resource competitive noise. Local and NCR controllers,
however, both are efficacious at reducing protein noise, with the
latter outperforming the former at low RFPmeans and the oppo-
site behavior at high RFP means. A useful result is that the con-
troller placement topology within the protein biosynthesis path-
way can drastically alter the noise reduction ability of a controller.
Particularly, we found that inhibition mediated via mRNA (MIX
and MIL subtypes) is more efficacious than inhibition mediated
by protein (PIX and PIL subtypes). The reason why MIX and
MIL are more efficacious than PIX and PIL is that proteins have
three sources of noise while the mRNA noise only depends on
its birth/death. In this way, protein has more noise sources than
mRNA, which would cause more variance if they were the effec-
tors for the controllers. Combining orthogonal resources systems
and negative feedback controllers makes the transcriptional in-
hibition strategies (MIX and PIX subtypes) more effective than
translational inhibition strategies (MIL and PIL subtypes). The
conclusions from this work theoretically apply to any organism
as long as there exists significant resource competition, which is
already observed in both bacteria and mammalian cells.[4,6,14,19]

It is important to note that the large array of negative feed-
back controller topologies analyzed in this work have biological
underpinnings and are not merely theoretical. For example, the
MIX, MIL, and PIX subtypes of the local controller have been
demonstrated in vivo by various groups,[17,19,50] the local-PIL con-
troller can be constructed via expression of orthogonal, sequence-
specific RNA-binding proteins as inhibitory effectors.[50,51] Global
controller architectures can be constructed from each of these
systems by replacing the orthogonal feedback modules with
copies of the same regulator[21] where each module performs
the same negative feedback operation but these production pools
are shared amongst modules. While the NCR controller type is
the newest proposed negative feedback architecture, it has not
yet been synthetically constructed in vivo models. In our recent
work,[20] we demonstrated how an NCR-MIX controller could
be theoretically constructed using inhibitory deactivate dCas sys-
tems. It is important that careful consideration should be given
to which dCas system is incorporated in such a design as many
dCas systems suffer from the problemof strong/irreversible dCas

moiety binding.[52] This NCR-MIX controller assumes a con-
stant production of Cas moiety while individual genetic modules
produce sgRNAs that mediate repression. Numerous dCas sys-
tems have been reported to demonstrate sequence-specific RNA-
binding capabilities, opening up the potential for in vivo MIL
constructs for the NCR controller type.[53] Many of these systems
also exhibit sequence-specific DNA-binding behavior. However,
recently a few systems have been discovered that naturally target
RNA such as Csm3, Cmr4, Csm6, and Csx1, the extensive fam-
ily of Cas13 proteins.[54,55] In addition, complex signal process-
ing functions have been designed utilizing adaptive zinc finger
protein complexes (e.g., Bashor et al. demonstrated that a gen-
eralized system utilizing sequence-specific zinc-finger proteins
(ZFPs) and a clamp composed of PDZ moieties strung together
which accepts these ZFPs is capable of performing very complex
signal processing[56]). Since complexing between a conserved
moiety (PDZ clamp) and sequence-specific moieties (ZFPs) is
required to form the inhibitory complexes, it is possible to gen-
erate NCR-PIX systems. Furthermore, certain ZFP constructs
have been demonstrated to have sequence-specific RNA-binding
capabilities: such RNA-binding ZFPs can be potentially paired
with PDZ/PDZ-like clamps to open up the possibility of NCR-
PIL systems.[57]

In our work, potential sources of extrinsic noise in the system
such as the fluctuation of the copy numbers of the transcriptional
resource (RNAPs)[37] and translation resource (ribosomes) are
not included. It was reported that sharing a common regulator
pool could result in indeterminacy of extrinsic noise.[58] It is
worth noting that resource competition makes the two-reporter
expressions anticorrelated. Significant extrinsic noise that
makes two reporters fluctuate in a positively correlated fashion,
together with strong resource competition, may lead to a circular
2D probability distribution. Our models do not take into account
the bursting of gene expression, which can be simulated with
a two-state model[28,59] and can lead to a significant noise at the
transcriptional level, especially under the context of a limited
level of RNAPs. The contribution of these factors to the noise of
synthetic gene circuits needs to be characterized. Furthermore,
our noise analysis has been carried out using the most basic
resource competitive system: an unregulated, unlinked two-gene
system. For future investigation, we intend to look at the noise
behavior in more complex and dynamic systems, such as the
dual self-activating or cascading circuits that we have analyzed
recently.[6,20] The noise from other circuit-host interactions such
as growth feedback[60–65] adds another layer of complexity to the
stochastic gene expression of synthetic circuits. The stochasticity
in cellular growth and its propagation to the synthetic gene
circuits is another potential source of fluctuations.[65–68] It may
also prove insightful to investigate the noise-reducing effects of
other methods for attenuating resource competitive effects, such
as incorporating incoherent feedforward loop topologies[14,18,69]

or antithetic integral feedback[70,71] into the circuit. It is noted
that gene expression noise could be exploited even it is un-
desirable for the deterministic functions of gene circuits. For
example, gene expression noise induces a bimodal response in
a positive feedback loop circuit without cooperativity.[72] At the
populational level, stochastic phenotype switching due to the
gene expression noise gives bacteria an advantage in fluctuating
extracellular environments.[73–77]
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