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ABSTRACT

Information infrastructures, such as the Internet and Computational Grids, have enabled a
networked computing and communication environment. Although many organizations de-
pend on network-centric information operations to support critical missions, existing informa-
tion infrastructures provide little guarantee of the dependability of network-centric
computing and communication. This paper discusses some problems with the dependability
of existing information infrastructures, such as stateless or centralized resource management.
A Complex Adaptive Systems approach to dependability of futuristic information infrastruc-
tures is then presented with emphasis on the detection of emergent states at the regional
and global levels of these infrastructures, and the self-synchronized control of such infrastruc-
tures in response to emergent states. The key concept underlying our control strategy at the
regional or global level is that the two attributes of the Complex Adaptive System in a dynamic
environment, accessibility to many states and sensitivity to small perturbation, present us
with an opportunity to manipulate the system’s dynamics. © 2003 Wiley Periodicals, Inc. Syst
Eng 6: 225–237, 2003
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1. INTRODUCTION

An information infrastructure connects information
systems belonging to different administrative domains.
Information infrastructures, such as the Internet and
Computational Grids, have enabled a networked com-
puting and communications environment, which has
been used by many organizations to perform network-
centric information operations for critical missions.
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Network-centric information operations are charac-
terized by information moving between computational
nodes on the network, towards information superiority
with 100% relevant content and accuracy, and zero time
delay for the content, quality, and timeliness of infor-
mation. Network-centric information operations de-
pend on network-centric operational architectures, such
as a high-performance information infrastructure that
provides a speedy, dependable backplane sharing of
various computational resources (including data re-
sources, computation resources, communication re-
sources, and visualization resources) on the computing
and communications network.

This paper addresses the dependability of informa-
tion infrastructures by addressing performance goals
and control strategies at the regional and global levels
of an information infrastructure based on Complexity
Theory for Complex Adaptive Systems in an effort to
overcome existing problems. We first discuss problems
with the dependability of existing information infra-
structures. We then describe an information infrastruc-
ture as a Complex Adaptive System, followed by an
outline of control strategies for dependability according
to Complexity Theory for Complex Adaptive Systems
[Badii and Politi, 1997; Lewin, 1999]. Next, we give
some background concepts from nonlinear dynamics
and complex systems [Ott, 2002], followed by discus-
sions on detecting emergent states and controlling about
desirable and undesirable emergent states. Finally, we
provide a brief summary of the paper.

2. PROBLEMS WITH EXISTING
INFORMATION INFRASTRUCTURES

Existing information infrastructures, such as the In-
ternet and Computational Grids, provide little depend-
ability guarantees for networked computing and
communication. The Internet supports the sharing of
computational resources on a network based on the
“best-effort” model, in which trust among participating
parties is all but assumed. That is, participant A will
satisfy the need of other participants as long as the
current capacity of participant A’s computational re-
sources can still do so. Hence, resources are made
available for use by anyone regardless of the state of the
resources until those resources are completely depleted.
This “best-effort” model has provided an environment
for crafty exploits and denial-of-service attacks that
have occurred and presented a significant threat to the
realm of information superiority. For example, if a
malicious hacker sends large amounts of data in a very
short period of time to a router covering a certain sector
of an information infrastructure, the router keeps filling

up its queue with incoming data streams until its queue
is full and no other data streams can be accepted and
routed, thereby causing a denial-of-service attack.
Moreover, quality of service (QoS) for a user’s applica-
tion is not guaranteed because other users may emerge
at any time to compete for and share computational
resources. Thus, little resource management and QoS
guarantees exist for dependable information operations
on the Internet.

Computational Grids [Foster and Kesselman, 1999],
the so-called next-generation information infrastruc-
ture, address the resource management problem by
using centralized brokers or mating agents to assign
networked computational resources to users’ applica-
tions. The centralized authority of resource manage-
ment (top-down, command-directed synchronization of
network-centric information operations) works only
within a small-scale networking environment of
closely-coupled administrative domains, such as a net-
work of several national supercomputing centers, as
currently demonstrated [National Science Foundation,
2000].

Centralized authority of resource management does
not scale up to an information infrastructure where
many independent administrative domains exist, as
these domains may not necessarily obey this authority.
First of all, administrative domains for different organi-
zations likely act on their own to rapidly respond to
local situations and meet local contingencies as they see
them. Secondly, information operations through inter-
actions among different administrative domains are
typically complex and nonlinear. These two factors
make even local influences from closely coupled,
friendly administrative domains hard to predict. That is,
the information infrastructure itself is a Complex Adap-
tive System which best organizes from the bottom up
through self-synchronization according to Complexity
Theory [Badii and Politi, 1997; Lewin, 1999]. The
top-down, centralized synchronization of resource
management in Computational Grids cannot scale up to
a large-scale, complex, adaptive information infrastruc-
ture in a dynamically changing environment.

Theoretical research on marketing mechanisms of
sharing resources, such as auctioning, bidding, and
negotiation, also exists [Foster and Kesselman, 1999].
However, auction and bidding are traditionally used to
ensure a fair competition for a static object, such as an
art piece. Auction and bidding may not be appropriate
for administration domains in the information infra-
structure. It does not make sense for an administrative
domain to auction its resources, because service re-
quests for the resources and the state of resources
change dynamically. It is also improbable that an ad-
ministrative domain for a private organization or a
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military organization would auction its resources for
bidding. Moreover, it is less reasonable to assume that
negotiations for sharing resources can be carried out in
a completely automatic fashion. It is equally unreason-
able to assume that administrative domains will be able
to negotiate with each other about the sharing of re-
sources when contingencies occur in real time. It is
more realistic to have a dynamic coalition of adminis-
trative domains. For example, a dynamic coalition of
corporate administrative domains form contracting re-
lationships and agree as to how resources are allocated
and where the resources are located when the dynamic
coalition is created. For an administrative domain de-
pendability is of greater concern than fairness.

3. AN INFORMATION INFRASTRUCTURE
AS A COMPLEX ADAPTIVE SYSTEM

An information infrastructure is like a marketplace
where both the demand for, and supply of, computa-
tional resources exists. System resources, such as those
used for computation, data, communication, and visu-
alization, provide services to processes generated by
users’ applications. These resources include such things
as CPUs, files, databases, routers, communication
links, and display devices.

An information infrastructure consists of a large
number of administrative domains, among which com-
putational resources may be shared. Each domain is an
agent that independently manages its own resources and
schedules arriving processes, as shown in Figure 1.
Some administrative domains may form a dynamic

coalition of agents (see Fig. 1) over a period of time in
order to share computational resources for superior
information operations, such as distributed information
storage/retrieval, parallel computation, and fault toler-
ance. For example, administrative domain A can use
resources (e.g., host machines) or keep redundant re-
sources (e.g., data files) in administrative domain B as
back-up resources for when A experiences intrusions or
failures of service. Administrative domains belonging
to companies with contracting relationships, such as an
auto maker, its distribution centers, and its retailers,
may form a dynamic coalition to have closely-coupled
relationships.

There are a variety of resources in the administrative
domain of an agent. A resource (R), and processes (P)
requesting services, along with the supply-demand re-
lationships between the resource and processes, form a
dynamic system as shown in Figure 1. Queues (Q) may
be used to store processes waiting for a resource. For
example, an administrative domain may consist of a
router, several host machines, and the communication
links connecting them. A user’s ftp application enters
the domain to request some information that resides on
one of the domain’s host machines. This application
yields a series of processes: the process requesting the
router’s service to send a request to the host machine,
the process requesting the host’s service to retrieve and
send the requested information to the router, and the
process requesting the router’s service to forward the
information to the source of the request. The router may
have two queues: an inbound queue for data packets

Figure 1. The dependable information infrastructure as a Complex Adaptive System.
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entering the domain and an outbound queue for data
packets leaving the domain.

An information infrastructure is a Complex Adap-
tive System with a large collection of agents interacting
in a dynamically changing environment. Complexity
Theory for Complex Adaptive Systems states that the
information infrastructure best organizes from the bot-
tom up through the self-synchronization of agents and
their local interactions [Badii and Politi, 1997; Lewin,
1999]. The aggregate system behavior of a set of agents
and interconnections emerges from the evolving, local
interactions of the agents in a dynamically changing
environment. We describe the bottom-up self-synchro-
nized control strategies of QoS-centric stateful resource
management for dependable information infrastructure
in an effort to overcome problems with existing infor-
mation infrastructures: the top-down centralized re-
source management in Computational Grids and the
stateless resource management in the Internet. The con-
trol strategies operate on resources and processes with
respect to performance goals at three levels: the local
level within an individual agent, the regional level
within a dynamic coalition of agents, and the global
level in the information infrastructure.

Considering individual processes that request serv-
ices from individual resources in the administrative
domain of an agent, an agent’s local-level performance
goal is to provide QoS guarantees for the processes that
are admitted. The following QoS-guarantee functions
are usually required: admission control, process sched-
uling, and QoS conformance monitoring. There are
many research efforts regarding QoS metrics for the
output performance of processes, and QoS-centric man-
agement of individual resources within an administra-
tive domain [Chatterjee et al., 1997; Giroux and Ganti,
1999; Lawrence, 1997; Liu, Xiong, and Sun, 2000;
Sabata et al., 1997]. This paper focuses on the perform-
ance goals and control strategies at the regional and
global levels of the information infrastructure.

4. CONTROL STRATEGY AT THE
REGIONAL AND GLOBAL LEVELS OF THE
INFORMATION INFRASTRUCTURE

A dynamic coalition at the regional level of the infor-
mation infrastructure usually includes a large number
of administrative domains. When the dynamic coalition
is formed, the administrative domains reach an agree-
ment as to how resources are allocated and where the
resources are located, including both operational and
backup resources. The information infrastructure at the
global level also includes a large number of administra-

tive domains, some of which may form dynamic coali-
tions.

Neither the dynamic coalition nor the information
infrastructure as a system has a meta-agent for central-
ized control. Each system is a Complex Adaptive Sys-
tem with a large number of agents interacting with each
other in a nonlinear fashion. Within each system, indi-
vidual agents determine local control actions, which
affect the resources and processes within their admin-
istrative domains, as well as interactions with other
agents. For example, processes rejected by one agent
may be directed to other agents with similar resources.
Such information operations are usually non-linear
[Coombs and Birx, 2000]. The same control strategy
based on bottom-up self-synchronization from Com-
plexity Theory [Badii and Politi, 1997; Lewin, 1999] is
appropriate for both the dynamic coalition and the
information infrastructure.

The individual resources and processes in an admin-
istrative domain are managed by its agent. Therefore, a
dynamic coalition and the information infrastructure as
a Complex Adaptive System are more concerned with
aggregate system performance; specifically, aggregate
traffic flows at the regional and global levels respec-
tively. Such flows emerge from the inbound and out-
bound traffic flows of individual administrative
domains. The performance goal at the regional or global
level is to optimize aggregate traffic flows at that level.
Hence, with respect to control strategy and performance
goals, a dynamic coalition and the information infra-
structure differ mainly in the size or scope of the system.

To measure aggregate traffic flows at each level, we
can set up a number of observation points within the
scope of the respective system to obtain collective
measures of traffic flows at those points. For example,
at the regional level of a dynamic coalition, we can set
up a number of observation points at key routers that
control the coalition’s main traffic flows. Queue lengths
and traffic flow rates [Giroux and Ganti, 1999; Liu,
Xiog, and Sun, 2000] are typically used to measure
traffic flows through routers.

In either the regional or the global system, we can
designate an agent to collect time-series measurements
of traffic flows at the observation points. The agent then
reports situations occurring at the level of interest to
individual agents within that scope. Such a designated
agent is analogous to the National Weather Forecasting
Center that collects weather data and disseminates
weather reports.

The environment associated with a regional (dy-
namic coalition) or global (information infrastructure)
system is generally uncertain and extremely dynamic.
It is highly unlikely that in such an environment, aggre-
gate traffic flows in a Complex Adaptive System can
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settle into a stable equilibrium so that system perform-
ance is stable. Given that the system is persistently
unstable, our tasks are to:

1. Detect an unstable aggregate or emergent state
embedded in the phase space

2. Develop a control strategy to stabilize the system
about an emergent state that gives desirable per-
formance of aggregate traffic flows

3. Develop a control strategy to drive the system out
of an emergent state that gives undesirable per-
formance of aggregate traffic flows.

Emergent states are typically ordered states, each
with its own basin of attraction. That is, in a noiseless
situation, each emergent state has a predefined set of
initial conditions in the phase space that asymptote to
it. Chaotic or random behavior is usually due to chaotic
sets on the basin boundary. A chaotic set typically has
embedded within itself an infinite number of unstable
periodic orbits. In an unstable or noisy environment, the
system can move from one basin to another, generating
various temporal emergent behaviors in the course of
time evolution.

At the regional or global level, the performance goal
of optimizing aggregate traffic flows is to minimize the
number and time of crises, in that level’s aggregate
traffic flows, which correspond to undesirable emergent
states of aggregate system behavior. To illustrate this
point, let us consider a transportation network (a simple
analogy of a dynamic coalition or information infra-
structure). In a transportation network, vehicle drivers
and transportation departments are the agents. Vehicle
drivers decide on the movement of vehicles that request
services from road resources. Transportation depart-
ments manage the use of the road resources by setting
and adjusting traffic lights, opening and closing streets,
designating detours, and so on. The movement of a
vehicle, the on–off switch of a traffic light, or the
open-close of a street produces only local impact. How-
ever, a crisis, such as traffic congestion arising from a
major traffic accident and its chain effects of stopping
or slowing down traffic, can produce much larger re-
gional or possibly global impact, which in turn becomes
the concern of many agents in the scope of the impact.
This is why many vehicle drivers not only watch local
traffic situations but also listen to radios for regional or
global traffic reports. When no crises occur in a trans-
portation network, its agents will not try to interfere
with the aggregate behavior of the network. Therefore,
aggregate traffic flows are left alone to follow a natural
course, except when signs of crises arise and call for
action.

Similarly, in the dynamic coalition or information
infrastructure, an individual agent of an administrative
domain must monitor not only QoS of processes in the
administrative domain with respect to the local per-
formance goals, but also watch for crises in regional or
global traffic flows with respect to the regional and
global performance goals.

The control strategy to minimize the number and
time of crises in aggregate traffic flows at each level is
based on the concept that the dynamic coalition or
information infrastructure as a Complex Adaptive Sys-
tem best organizes from the bottom up through self-syn-
chronization. Consider the handling of crises, such as
traffic congestions, in a transportation network. If all
vehicle drivers listen to radios reporting regional or
global traffic flows and adjust the movement of their
vehicles, such as taking a detour to avoid the area of
traffic congestion, the traffic congestion can be greatly
alleviated before corrective actions are taken to clear the
accident scene and restore the normal road condition.

Hence, the control strategy at the regional or global
level includes the following steps:

1. Each agent closely monitors the state space of the
regional or global system in which it belongs to
detect embedded emergent states.

2. If the emergent state is desirable, each agent in
the system acts locally to stabilize the system
about that state; if the emergent state is undesir-
able, each agent in the system acts locally to drive
the system out of that state.

Since stabilizing the system about desirable emer-
gent states prolongs the time of desirable system per-
formance, and driving the system out of undesirable
emergent states shortens the time of undesirable system
performance, the control strategy will minimize the
number and time of crises in aggregate traffic flows at
the regional or global level. The following sections
discuss detecting emergent states and controlling the
system about those states. Since several concepts in
complex systems and nonlinear dynamics will be used
in the discussion, we first present some background
material.

5. BACKGROUND: NONLINEAR
DYNAMICS AND COMPLEX SYSTEMS

A dynamical system can be mathematically described
by either a set of first-order differential equations that
do not depend explicitly on time, or by a set of discrete-
time maps. The dynamical variables in these equations
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constitute the phase space, and the number of them is
the phase-space dimension.

Given a set of initial conditions for the system, its
evolution corresponds to a trajectory in the phase space.
It can occur that trajectories from many different initial
conditions approach in time to some asymptotic sets in
the phase space. These are the limit sets. Attractors are
one class of limit sets. In order for a limit set to be
attracting, the phase-space region from which trajecto-
ries approaching the set are initiated must have a finite
volume. The finite phase-space region, containing all
initial conditions leading to trajectories approaching an
attractor, is the basin of attraction of that attractor.

Attractors can be nonchaotic or chaotic. The former
include limit cycles and periodic or quasiperiodic at-
tractors. Chaotic attractors are characterized by a sen-
sitive dependence on initial conditions. That is, two
trajectories starting out with a small difference in their
initial conditions are separated exponentially in time.
The rates of the exponential separation in different
eigendirections along a trajectory define the spectrum
of the Lyapunov exponents.

Chaotic limiting sets are not necessarily attracting.
It is common for dynamical systems arising from many
natural phenomena to have nonattracting chaotic sets,
for which the set of approaching initial conditions has
zero phase-space volume. Thus, for a random initial
condition, the trajectory can stay near a nonattracting
chaotic set for only a finite time before leaving the set
and approaching an attractor. Chaos in this sense is
merely transient. For a system with multiple coexisting
attractors, each with its own basin of attraction, the
presence of a nonattracting chaotic set on the basin
boundary can lead to serious difficulties in predicting
to which attractor a specific initial condition ap-
proaches. When the system has many coexisting attrac-
tors, nonattracting chaotic sets on the basin boundary
can give rise to a high level of complexity in the dynam-
ics, rendering the system complex.

A complex system is characterized by the following:
(1) it consists of many components that are intercon-
nected in a complicated manner; (2) the components
can be either regular or irregular; and (3) the compo-
nents exist on different length and/or time scales, i.e., a
complex system exhibits a hierarchy of structures.
These are also called the three traits of a complex
system [Badii and Politi, 1997].

According to this characterization of complexity, a
nonlinear dynamical system, even if its equations are
simple, can exhibit complex behaviors. Examples in-
clude situations where there are many coexisting attrac-
tors and nonattracting chaotic sets on the basin
boundaries, or where there are a few coexisting attrac-
tors but a nonattracting chaotic set permeates the entire

basin of attraction [Poon and Grebogi, 1995; Lai and
Grebogi, 1996; Lai, 1999].

6. DETECTION OF EMERGENT STATES

To detect emergent states, the nature of emergent states
must be fully understood. An emergent state is associ-
ated with recognizable changes in the invariant proper-
ties of the underlying state. In particular, an emergent
state is accompanied by a significant reduction in the
number of degrees of freedom, or dimensionality, of the
dynamics and, possibly, by a high level of functional
correlation (or generalized synchronization) among the
interacting agents. There exist well-established meth-
odologies in nonlinear dynamics that can be adapted to
computing system dimension and detecting possible
synchronization of Complex Adaptive Systems. In this
regard, two situations need to be distinguished: (1) An
accurate mathematical model of the system, repre-
sented either by a set of continuous-time differential
equations or discrete-time maps, exists; or (2) such a
model does not exist and the only information available
about the system is the measurements of a limited
number of intrinsic system variables. In the first case,
possible emergent states can be detected by direct nu-
merical simulation of the system equations to yield, for
instance, (i) the set of unstable periodic orbits embed-
ded in the dynamics and their eigenvalues, and (ii) the
stability properties of all coexisting emergent states. In
the second case, the system dynamics has to be recon-
structed from the time-series measurements to yield
information about the various emergent states. From the
reconstructed phase space, one can detect unstable pe-
riodic orbits, emergent states, and their stability prop-
erties.

We emphasize that, as we described in the back-
ground materials, simple but nonlinear systems can
exhibit complex behaviors [Poon and Grebogi, 1995;
Lai and Grebogi, 1996; Lai 1999]. Thus, for complex
systems, both situations can be expected where the
system equations can or cannot be put on paper. In the
former case, the availability of a mathematical model
can facilitate searching for emergent states. In the latter
case, identification of emergent behaviors can be done
through measurements, or time series. If only a single
time series is available, the requirement is that it must
be sufficiently long so that the corresponding trajectory
in the phase space visits many emergent states. The
availability of multiple time series from a set of inde-
pendent measurements can alleviate the otherwise strin-
gent length requirement for time series. Emergent states
from a complex system are commonly unpredictable,
due to the three traits characterizing complexity. This
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unpredictability is caused, however, by the intrinsic
property of the system itself. It does not depend on
whether an explicit mathematical model for the system
is available or not. From model or time series, one can
learn a great deal but only about the statistical properties
of the possible emergent states. This is so because
simulations using different sets of initial conditions or
independent measurements generally result in different
trajectories or time series, which are useful only in the
statistical sense. The unpredictability has little to do
with whether the system equations are simple or the
measured time series are sufficiently long.

A technique that has been utilized commonly in
chaotic phase-space reconstruction, and that we will
apply to a regional or global system as a Complex
Adaptive System, is the delay-coordinate embedding
method to reconstruct the phase space [Takens, 1981].
Suppose that we have collected the time-series meas-
urements, e.g., queue lengths or traffic flow rates, at a
number of observation points in the system. Such time
series typically assume discrete values, but they are
approximately continuous if the amount of data is large.
Let ui(t) (i = 1, …, l) be a set of l such time series. Since
the system is complex, we conceive that in order to
describe it, a large number, say M, of independent
variables is necessary. The number of independent vari-
ables necessary to describe the system is the dimension
of the system. Typically we expect l, the number of
available time series, to be less than M. In order to be
able to estimate M and assess other dynamical proper-
ties of the system, it is necessary to reconstruct a phase
space with a sufficient number of independent vari-
ables.

In the delay-coordinate embedding technique [Tak-
ens, 1981], from each measured time series ui(t) (i = 1,
…, l), we build up a vector with q components, as
follows: ui(t) = {ui(t), ui(t + τ), . . . , ui[t + (q − 1)τ]},
where τ is the delay time, as shown in Figure 2. In order
for the time-delayed components ui(t + jτ) (j = 1, …, q
– 1) to serve as independent variables, the delay time
τ needs to be chosen carefully. Roughly, if it is too small,
then adjacent components, say ui(t) and ui(t + τ), will
be too correlated for them to serve as independent
coordinates. If, on the other hand, τ is too large, then
neighboring components are too uncorrelated for the
purpose. Empirically, one can examine the autocorrela-
tion function of ui(t) and decide a proper delay time
[Theiler, 1986]. Since we have l time series available,
we can then construct a vector with m ≡ ql components,
as follows:

x(t) = {u1(t), u1(t + τ), . . . , u1[t + (q − 1)τ],

u2(t), u2(t + τ), . . . , u2[t + (q − 1)τ], . . . ,

ul(t), ul(t + τ), . . . , ul[t + (q − 1)τ]}.

In principle, with a given l, we can choose q so that
the total number components m in the vector x(t) is
much larger than M, the number of independent vari-
ables needed to describe the system. It is necessary to
stipulate that m be larger than M because of the mathe-
matical theorem by Takens [1981], which guarantees
that the reconstructed phase space in which the vector
x(t) lives is a faithful representation of the original
dynamical system. In our case, m ≥ 2M + 1. One then
obtains a one-to-one correspondence between the re-
constructed phase space and the original dynamical
system (Sauer, Yorke, and Casdagli, 1991). We shall
refer to m as the embedding dimension. From the recon-
structed phase space, M can be estimated as the dimen-
sion of the system—the number of independent
variables necessary to describe the system.

As the system evolves in time, various emergent
states appear. The dimensionality of these states, or the
number of independent variables needed to describe
them, is typically different from M. For instance, one
can conceive a particular type of emergent state where
a substantial number of agents becomes synchronized
in their dynamical behavior. Due to synchronization,
the number of independent variables (also called the
number of degrees of freedom) that are necessary to
describe the state can apparently be smaller than M,
roughly the number of independent variables required
to describe the system when all agents behave inde-
pendently (no synchronization). Thus, sensing charac-

Figure 2. A schematic illustration of delay coordinates from
a single time series ui(t).

                                           DEPENDABLE INFORMATION INFRASTRUCTURES AS COMPLEX ADAPTIVE SYSTEMS  231



teristic changes in the dimensionality of the system state
is an effective way to detect emergent states. In what
follows we shall use D to denote the dimensionality of
emergent states (to distinguish from M).

A commonly computed dimension in nonlinear time
series analysis is the correlation dimension D2, which
we take to be a good approximation of D. Grassberger
and Procaccia [1983] showed that D2 can be evaluated
using the correlation integral C(ε), which is defined to
be the probability that a pair of points, chosen randomly
in the reconstructed phase space, is separated by a
distance less than �  on the emergent state. Typically,
C(ε) scales with ε as C(ε) ~ ε−D2, which provides a
computational way to evaluate D2 [Grassberger and
Procaccia, 1983; Ding, Ott, and Grebogi, 1993; Lai,
Lerner, and Hayden, 1996; Lai and Lerner, 1998].

Hence, a designated agent in a regional or global
system:

• Collects the time-series measurements of aggre-
gate traffic flows at the observation points

• Detects emergent states
• Evaluates these states as to whether or not they

are desirable
• Informs individual agents in the system of these

desirable or undesirable emergent states.

To evaluate whether or not an emergent state is
desirable, we can use Statistical Process Control (SPC)
techniques [Ye, Borror, and Zhang, 2002; Ye and Chen,
2003; Ye, Emran, Chen, and Vilbert, 2002; Emran and
Ye, 2002] to compare the time-series measurements of
traffic flows resulting in the emergent state against the
“normal” time-series measurements of traffic flows be-
fore the emergent state. The emergent state is desirable
if the measurements of aggregate traffic flows are sig-
nificantly better in the emergent state than those in the
“normal” state. The emergent state is undesirable if the
measurements of aggregate traffic flows are signifi-
cantly worse in the emergent state than those in the
“normal” state.

To learn and control a complex system, the recent
concept of “attribution of credit” is interesting [Axelrod
and Cohen, 2000]. To explain the idea, we quote di-
rectly from Axelrod and Cohen [2000]: “If we are
designing interventions, improvement on some meas-
ure is what we want to promote. For a system to exhibit
adaptation that enhances survival (or another measure
of success), it must increase the likelihood of effective
strategies and reduce the likelihood of ineffective strate-
gies. We call such a process attribution of credit if an
agent uses a performance criterion to increase the fre-
quency of successful strategies or to decrease the fre-
quency of unsuccessful ones.” In a broad sense, our
method can be regarded as a process of attribution of

credit, as follows: We detect many possible emergent
states and use a performance criterion to select the
desirable emergent states; efforts are then devoted to
stabilize some of these emergent states; and finally, the
system is then more likely to operate under effective
strategies. This is apparent because if no intervention is
introduced, then the system will visit the undesirable
and desirable emergent states in an unpredictable way.

A key feature in the control of complex systems is
that, quite counterintuitively, complexity can in fact
facilitate the process of attribution of credit. Suppose
we wish to change the performance criterion, which
naturally results in a different set of desirable emergent
states. Due to the existence of a large number of emer-
gent states, it is relatively easy to determine the new set
of desirable states and to apply small controls to steer
the system to visit them more (this is equivalent to
increasing the frequency of successful strategies). That
is, in response to a change in the performance criterion,
only a slight change in the system is necessary to
achieve the attribution of credit. This is to be contrasted
to the case of non-complex systems where a change in
the performance criterion often requires a large change
to the system for it to generate some new, desirable
states.

7. CONTROL OF THE SYSTEM ABOUT
DESIRABLE AND UNDESIRABLE
EMERGENT STATES

Let us now consider the control strategies: stabilizing
the system about a desirable emergent state or driving
the system out of an undesirable emergent state. In the
phase space, the dynamics of the Complex Adaptive
System interplays among the large number of emergent
states and chaotic sets on the basin boundary. Under the
influence of noise, it can be expected that the system
moves among different emergent states in time, in con-
trast to simple, low-dimensional nonlinear systems
where the evolution is always towards one dominating
attracting set. In other words, the dynamics of a Com-
plex Adaptive System tend to alternate among different
emergent states, each of which is sensitive to small
perturbations. The key concept underlying our control
strategy at the regional or global level is that the two
attributes of the Complex Adaptive System in a dy-
namic environment, accessibility to many states and
sensitivity to small perturbation, present us with an
opportunity to manipulate the system’s dynamics.

Our control strategy of stabilizing the system about
a desirable emergent state is then as follows. When the
system comes to a desirable emergent state, we will
apply small control perturbations to stabilize the system
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about it to prolong the desirable emergent state as much
as possible. Since control is applied only when the
system falls in the vicinity of the desirable emergent
state, the required magnitude of the perturbations can
be made arbitrarily small. That is, the desirable system
performance can be achieved at low cost. Suppose that,
at a later time, the system moves out of the desirable
emergent state due to the interplay among the emergent
states, the chaotic sets on the basin boundaries and
noise. We can then stop perturbing the system so that
the system can evolve by itself ergodically, and wait
until the system gets close to the new desirable state.
This strategy offers a great deal of flexibility: Due to
the accessibility of the system to many emergent states,
any desirable state can easily be stabilized with little
cost.

The feasibility of controlling complex dynamics us-
ing the above concept has been demonstrated success-
fully in both theory [Dressler and Nitsche, 1992;
Romeiras et al., 1992] and experiments in numerous
fields including physics, chemistry, and biology [Boc-
caletti et al., 2000; Garfinkel et al., 1992]. Here we draw
on just one example: the successful control of a chaoti-
cally beating rabbit heart [Garfinkel et al., 1992]. A
heart consists of a large number of interconnected cells,
which is very similar to a Complex Adaptive System in
the information infrastructure. A chaotically beating
heart is certainly undesirable, just as a randomly behav-
ing system in the information infrastructure is not as
desirable as emergent states producing good traffic flow
performance. Normally, the only accessible informa-
tion about the heart is a time series, such as the heartbeat
rate as a function of time. From such a time series, a
mathematical phase space can be reconstructed by us-
ing the delay-coordinate embedding technique. It was
demonstrated, experimentally, that by delivering small
electrical pulses at times calculated from the dynamics
of the heart in the reconstructed phase space, a chaotic
heart can be converted into a periodically beating one
[Garfinkel et al., 1992]. Because of the common fea-
ture, complexity, between a cardiac network and a
Complex Adaptive System in the information infra-
structure, it is hopeful that the latter may be harnessed
in a similar way.

To calculate the required control perturbations, we
can adopt the idea of controlling chaos [Ott, Grebogi,
and Yorke, 1990a, 1990b; Lai and Grebogi, 1997a,
1997b; Grebogi, Lai, and Hayes, 1997; Boccaletti et al.,
2000) for the control of Complex Adaptive Systems
(Poon and Grebogi, 1995]. The key ingredient for the
control of chaos [Ott, Grebogi, and Yorke, 1990a,
1990b] is the observation that a chaotic set, on which
the trajectory of the chaotic process lives, has embedded
within it a large number of unstable low-period periodic

orbits. In addition, because of ergodicity, the trajectory
visits or accesses the neighborhood of each one of these
periodic orbits. Some of these periodic orbits may cor-
respond to a desired system performance. The second
ingredient is the realization that chaos, while signifying
sensitive dependence on small changes to the current
state and hence rendering the system unpredictable over
a long period of time, also implies that the system’s
behavior can be altered by using small perturbations
[Ott, Grebogi, and Yorke, 1990a, 1990b]. Then, the
accessibility of the chaotic system to many different
periodic orbits combined with its sensitivity to small
perturbations allows for the control and the manipula-
tion of the chaotic process. Specifically, the Ott-Gre-
bogi-Yorke (OGY) approach is then as follows. One
first determines some of the unstable low-period peri-
odic orbits that are embedded in the chaotic set. One
then examines the location and the stability of these
orbits and chooses one that yields a desirable system
performance. Finally, one applies small control to sta-
bilize this desired periodic orbit. However, all this can
be done from data [Ott, Grebogi, and Yorke, 1990a,
1990b] by using nonlinear time series analysis for the
observation, understanding and control of the system.
This is particularly important since chaotic systems are
rather complicated and detailed knowledge of the equa-
tions of the process is often unknown.

In our information infrastructure, the emergent
states correspond to unstable periodic orbits and the
wandering among these states corresponds to chaotic
motion. Let us say that we have the following M-dimen-
sional  discrete-t ime dynamical  systems:
xn+1 = F(xn, pn), where F is a smooth vector function,
and pn is an accessible parameter that can be externally
perturbed. For example, pn can be the number of open
inbound and outbound queues of the key routers in a
dynamic coalition at a given time. The agent for each
router can open or close a queue at any time. Hence, pn

results from the individual agents’ local actions of open-
ing or closing queues, rather than a top-down command.

We conceive using only small controls, so we restrict
p to lie in some small interval: pn − p

_
 < δ, where p

_

is a nominal parameter value, e.g., the number of the
open inbound and outbound queues of the routers in a
dynamic coalition while in the desirable emergent state.
If pn is outside this interval, we set pn = p

_
. Assuming

that the dynamical system F(xn, p
_
) generates behaviors

with various emergent states, our goal is to vary the
parameter pn within the range (p

_
 − δ, p

_
 + δ) in such a

way that for almost all initial conditions, the system
dynamics converges onto a desirable emergent state. To
do this, we consider a small neighborhood of size
comparable to δ of the desirable emergent state. In this
neighborhood, the dynamics is approximately linear.
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Since linear systems can be stabilized based on the
controllability law, it is reasonable to assume that the
desirable emergent state can be stabilized by feedback
control. The ergodic nature of the complex dynamics
guarantees that the state trajectory enters the neighbor-
hood. Once inside, we apply the stabilizing feedback
control law [Ogunnaike and Ray, 1994] to keep the
trajectory in the neighborhood of the desirable emer-
gent state.

A key feature of the above control strategy is that we
actually make use of a complex system’s sensitivity to
small changes to stabilize it around a desirable state by
using only small perturbations. While feedback control
is applied in a small linear neighborhood of the desir-
able state, the control perturbations are small and time-
dependent. Insofar as the control is present, the system
can be stabilized around the desirable state. When small
noise is present, the required strength of the perturba-
tion should be greater than the noise amplitude to ensure
control. In the rare event when the noise becomes large
(as for Gaussian noise), it is possible that control will
be lost. In this case, when the system leaves the linear
neighborhood of the desirable state, we turn off the
control. Because of ergodicity, at a later time the system
will enter the linear neighborhood again, reactivating
control. In this sense, linear feedback control law, which
works ideally for linear system, can be robust for non-
linear systems as well. It is possible that nonlinear
control law can be derived for complex systems, which,
however, may require perturbations of large magnitude.
Our strategy emphasizes on taking the advantage of a
complex system’s sensitivity to small changes to
achieve control by small perturbations, for which a
linear control law appears to suffice. This is usually not
possible even for linear systems, where large control is
required to bring the system to a desirable state.

The OGY idea of controlling chaos has been dem-
onstrated to be capable of stabilizing a desired random
trajectory, which has potential applications to problems
such as synchronization of chaotic systems [Lai and
Grebogi, 1993], conversion of transient chaos into sus-
tained chaos [Lai and Grebogi, 1994], communication
with chaos [Hayes, Grebogi, and Ott, 1993; Bollt, Lai,
and Grebogi, 1997] and selection of a desired chaotic
phase [Nagai and Lai, 1995].

Let us consider the control strategy of driving the
system out of an undesirable emergent state. A crisis is
an undesirable emergent state characterized by a high
degree of synchronization among agents in the network.
For example, in a transportation network near the scene
of a major traffic accident, all vehicles are driving at
approximately the same speed. It is thus important to
design control that will desynchronize the dynamical
system to drive the system out of the undesirable emer-

gent state. A physically observable state of synchroni-
zation implies the existence of (1) an underlying mathe-
matical object, the so-called synchronization manifold
which is stable with respect to perturbations that are
transverse to it, and (2) dynamically invariant sets in the
manifold [Nagai and Lai, 1997; Lai and Grebogi, 1999].
Embedded in the invariant sets are periodic orbits that
can be either transversely stable or unstable. The syn-
chronization state being stable means that the majority
of these periodic orbits are transversely stable. Gener-
ally, however, there is still a subset of periodic orbits
that are transversely unstable, even when the manifold
itself is transversely stable. Nagai and Lai [1997] inves-
tigated how the dynamical interplay between these two
distinct groups of periodic orbits lead to synchroniza-
tion in a network of coupled complex elements that
exhibit chaotic behaviors by calculating their weighted
transverse stability coefficients. The existence of this
particular set of periodic orbits provides an opportunity
to draw the system out of the synchronization state. In
particular, we envision that a number of these trans-
versely unstable periodic orbits can be observed and
recorded from analyzing the time series using the de-
lay-coordinate embedding technique. When the time-
evolved state of the system falls in the neighborhood of
one of these “desynchronized” periodic orbits, small
controls are applied to stabilize the system state about
it so that the system is no longer in a synchronized state.
The idea of control is thus similar to that utilized by
OGY to stabilize a desirable unstable periodic orbit. To
reduce the time required for the system state to fall into
a desynchronized orbit, one can induce perturbations
that break the symmetry, which leads to the existence
of the synchronization manifold in the first place. Such
symmetry-breaking perturbations could be, for in-
stance, a serious mismatch between agents coupled in
the system or external forces applied at a selected set of
locations in the system.

For example, when a crisis of aggregate traffic flows
occurs in a dynamic coalition, all flows in the dynamic
coalition may move at the same pace. The individual
agents of the key routers in the dynamic coalition can
then reset the on–off switches of inbound and outbound
queues in those routers so that traffic flows in and out
of important host machines will move faster, whereas
traffic flows in and out of unimportant host machines
will move slower. The individual agents of the routers
can also decrease the speed with which they forward
messages to a congested area.

Overall, the control strategy at the regional and
global levels aims to let individual agents continue what
they are doing when a regional or global system gets
into a desirable emergent state as a result of the self-
synchronization of its agents in a favorable environment
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in order to prolong self-synchronization, and to let
individual agents change what they are doing when the
system gets into an undesirable emergent state as a
result of self-synchronization in an unfavorable envi-
ronment in order to break the self-synchronization or
desynchronize.

We wish to remark that our control strategy is suit-
able for stabilizing relatively local, suboptimal states.
There is no guarantee that it can yield a globally opti-
mized state. The main reason is that a complex system
is characterized by the presence of many emergent
states at different spatial and time scales. It is not clear
whether a complex system possesses any globally opti-
mal state. Even if it does, to our knowledge, at the
present there appears to be no method to determine or
control a global state that is optimal under certain
performance criterion. Our strategy is based on the idea
of “using complexity to harness complexity,” which is
similar to the idea of controlling chaos [Ott et al.,
1990a]. Nevertheless, we are fully aware of the fact that
our approach will in general not optimize, but rather
improve, network performance. The control of subop-
timal states, as we have described, can be an effective
way to cope with complex systems. Our hope is that
investigating and implementing the control approach
proposed in this paper may help generate better ideas
for global control and optimization of complex systems.

8. SUMMARY

This paper provides a theoretical discussion on per-
formance goals and control strategies at the regional
and global levels of an information infrastructure based
on Complexity Theory for Complex Adaptive Systems.
We outline the conceptual design of the bottom-up
self-synchronization approach to QoS assurance and
stateful resource management for a dependable infor-
mation infrastructure. This approach has the potential
to overcome problems with existing information infra-
structures, for example, the top-down centralized re-
source management with Computational Grids and the
stateless resource management with the Internet.
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