
Supplemental Information for

Locating multiple diffusion sources in time varying networks
from sparse observations

Zhao-Long Hu, Zhesi Shen, Shinan Cao, Boris Podobnik, Huijie Yang, Wen-Xu Wang, and
Ying-Cheng Lai

S1. Locating multiple sources in continuous time dynamical
networks

In the main text we focus on discrete time varying systems. Here, we show that our source
locating framework can readily be extended to continuous time dynamical networks. For con-
creteness, we consider the following network diffusion model:

ẋi(t) = β
N∑
j=1

[wij(t)xj(t)− wji(t)xi(t)] , (S1)

where xi(t) is the state of node i at the time t, β is the diffusion coefficient (constant), and wij(t)

[wji(t)] is the weight of the directed link from node j to node i (i to j) at time t. Combining
Eq. (S1) and outputs from these nodes, we have{

ẋ(t) = βL(t)x(t),

y(t) = Cx(t),
(S2)

where x(t) ∈ RN represents the complete state of the network system at time t, N is the
number of nodes. The matrix L(t) = W (t)−D(t) with W (t) ∈ RN×N is the adjacency matrix
of elements wij(t), D(t) ∈ RN×N is a diagonal matrix with element di(t) representing the total
out-weight

∑
j∈Γi(t)

wji(t) of node i, Γi(t) is the set of neighbors of node i at time t, y(t) is the
vector of q outputs at time t, and C ∈ Rq×N is the output matrix with q denoting the number of
messenger nodes. The output response of the system is

y(t) = CΦ(t, t0)x(t0), (S3)

where Φ(t, t0) = e
∫ t
t0

βL(τ)dτ is the state transition matrix, which can be computed from the
adjacency matrix W (t). For convenience, we stack all the outputs y(t) into a vector: Y =

[y(t0); · · · ;y(t0+0.1); · · · ;y(t0+0.2); · · · ;y(t0+ t)]. Intuitively, N snapshot measurements
of the network state are needed for a unique solution. Without loss of generality, we sample at
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time interval tT to obtain
y(t0)

y(t0 + tT )
...

y(t0 + (N − 1)tT )

 =


C

CΦ(tT , t0)
...

CΦ((N − 1)tT , t0)

x(t0) = O · x(t0), (S4)

where the matrix O ∈ RqN×N is the observability matrix in canonical control theory. A unique
solution of Eq. (S4) exists and the state vector x(t0) at initial time is observable if and only if
the rank condition rank(O) = N is satisfied. These considerations establish the applicability
of our framework of sources localization to continuous time dynamical network systems.

S2. Structural observability of time varying networks
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Fig. S1. Independent paths and identification of all minimum sets of messenger nodes in a
time varying network. (a) Two independent paths for observing nodes a and d. The network is
fully observable because we have NOR({a, d}) = 4. (b) Two independent paths for observing
nodes b and d. The network is also fully observable. The blue arrow lines specify independent
paths from messenger to other nodes. The sources can be located from the messenger set {a, d}
or {b, d}, i.e., the configuration of the minimum messengers that ensure full localization of the
diffusion sources may not be unique.

1. Identifying all minimum sets of messenger nodes in a time varying net-
work

Figures S1(a,b) show, for the time varying network described in Fig. 1 in the main text, two
configurations of the minimum messenger set that guarantees full observability of the network.
For example, as shown in Fig. S1(a), when a and d are messengers, there are two independent
paths to other nodes (node b and c), and we have NOR({a, d}) = 4, entailing that the network
is fully observable. While the minimum number of messengers is two, the configuration of the
messengers is not unique: often there are more than one configuration of messenger node set
that can ensure full observability of the network. For example, if we choose nodes b and d to be
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messengers, the network is also fully observable. The independent paths in this case are shown
in Fig. S1(b).

2. Relationship between independent paths and the number of distinct ac-
tivations

We present examples to demonstrate that the number of independent paths starting from a mes-
senger node is the number of distinct activations of the links going out from this node. Note
that, at a certain activation time t, there is at most one independent path starting from a messen-
ger node to the top layer (t = 0). For example, as shown in Fig. S1(a), if we choose node d as
a messenger node, there are two paths starting at t = 2, i.e., d → b and d → c. At t = 1, node
b also has two paths, i.e., b → a and b → b. Then for messenger d, there are three paths, i.e.,
d → b → a, d → b → b and d → c → c. However, it is necessary to choose one of them to be
an independent path, because two of them are dependent paths. Since d has only one activation
time, i.e., t = 2, there is a single independent path from d.

As another example, if we choose b to be a messenger node, as shown in Fig. S1(b), it
has two different activation times: t = 1 and t = 2. As a result, there are two independent
paths from b: b → a → c starting from t = 2 and b → a starting from time t = 1. This
example also indicates that the number of independent paths from b is at most the number
of distinct activations. It can happen that two independent paths starting from two different
activation times share the same ending node, rending the number of independent paths less than
distinct activation times. However, such a situation is rare if the network does not possess a tree
structure, as there usually exist many independent paths that do not share an ending node.

The examples illustrate that NOR({v}) can be approximated by nOR({v}) ≈ (lv + 1)/N ,
where lv is the number of different activations of node v, and the unity stems from the messenger
node itself.

3. Derivation of the probability of having exactly l distinct activations

In the main text, we give the probability of having exactly l distinct activations for one node at
activation time z1, . . . , zk on each edge. To derive it, we resort to the solution of the problem
of partitioning a set of n objects into k non-empty subsets, in which the number of ways is the
Stirling number of the second kind. The number of ways of assigning l different time tags to
the total z1 + · · ·+ zk activation time is(

T

l

)
l!× 1

l!

l∑
j=0

(−1)l−j

(
l

j

)
jz

1+···+zk , (S5)

where the first part on the left of × is the ways of choosing l different time tags from T , and the
right part is the Stirling number. Because of the restriction that, for each edge, its z activation
times must be different, the above equation needs to be modified by replacing jz

1+···+zk with
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∏k
i

(
j
zi

)
and the summation should start from max(z1, . . . , zk). The final form is

(
T

l

) l∑
j=max(z1,...,zk)

(−1)l−j

(
l

j

) k∏
i

(
j

zi

)
. (S6)

S3. Observable range associated with different messenger find-
ing strategies

In this section, we provide a greedy optimization algorithm to find an approximately minimum
set of messengers to achieve full observability of time varying networks. We also compare the
performance of the greedy optimization with those of other degree-based messenger selection
algorithms.

1. Greedy Optimization Algorithm

Our goal is to solve the following optimization problem

maxQ⊆VR(Q), (S7)

where Q is the set of selected messengers and R(Q) ≡ rank[O(Q)] is the generic rank of O.
The observability function R(Q) has several properties, which can be used to speed up the
greedy optimization algorithm. Firstly, we have R(∅) = 0, i.e., nothing can be observed if we
do not place any messenger. Secondly, R(∗) is nondecreasing, i.e., R(Q1) ≤ R(Q2) for all
Q1 ⊆ Q2 ⊆ V . The third and most important property is the submodular property, i.e., for all
placements Q1 ⊆ Q2 ⊆ V and messenger v ∈ V \Q2, the following holds:

R(Q1 ∪ {v})−R(Q1) ≥ R(Q2 ∪ {v})−R(Q2). (S8)

Maximizing submodular functions in general is NP-hard. A commonly used optimization strat-
egy is the greedy algorithm, which starts from the empty messenger set Q0 = ∅ and iteratively,
in step s, add the node v so as to maximize the marginal gain

δv = argmaxv∈V \Qs−1
R(Qs−1 ∪ {v})−R(Q). (S9)

The algorithm stops once full observability is achieved. While evaluating the observability
function R(Q) based on the maximum flux carries the computational complexity O(N |E|) and
is therefore demanding, what is needed is an approximation evaluation of qN functions if we
select q messengers, where |E| is the number of edges of the network. We can exploit the
property of submodularity further to reduce the function evaluations. In particular, we propose
the following improved greedy optimization algorithm.

1. Calculate the observability centrality of every node and obtain a list in a descending order.
The observability centrality can be approximated by the number l of distinct activations.
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2. For Q = ∅, calculate the increment δv for each v ∈ V , take the nodes in the descending
order of δv, and add the node with the largest value of δv into Q.

3. Recalculate the δv for the top ranked node in the list V \ Q, and insert the node into the
existing queue based on its marginal gain δv.

4. If the top ranked node remains in its top position, go to 5; else go to 3.

5. Add the top ranked node into Q and go to 3 until full observability is achieved.

The computational cost associated with the improved greedy algorithm and the original one is
presented in Fig. S2. The improved algorithm shows a great reduction in the number of required
iterations of computing marginal gain.

N

Fig. S2. Computational iterations of evaluating marginal gains for improved and original
greedy algorithms. The square (solid and empty) points are for the original algorithm, and the
circle (solid and empty) points are for the improved algorithm.

2. Observable range of model and empirical networks

To appreciate the performance robustness of the greedy algorithm, we study the following
degree-based messenger selection strategies for comparison:

• max−deg: choose nodes with the largest degree,

• min−deg: choose nodes with the smallest degree,

• ran− deg: choose nodes at random.
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We first compute the theoretical result of max−deg based on the descending order of degree:
k = N − 1, N − 2, · · · , 1, 0 with degree distribution p(k). A fraction q/N of messenger nodes
are chosen from this list, and the normalized observable range is

nOR(Q) =
∑
i∈Q

p(ki)NOR(ki), (S10)

where NOR(ki) is the observable centrality for the messenger i with degree ki.
For ER networks, p(k) is approximately e−⟨k⟩⟨k⟩k/k!. For SF networks, in the thermody-

namic limit, we have p(k) = 2(⟨k⟩/2)2k−3. For the number q of messenger nodes, we combine
the form of p(k),

∑N−1
k∗ p(k) ≤ q/N , and

∑N−1
k∗−1 p(k) ≥ q/N to determine the degree threshold

k∗. Let q/N =
∑N−1

k∗ p(k) + ∆. We have ∆ = q/N −
∑N−1

k∗ p(k) and obtain nOR(Q) as

nOR(Q) = [
N−1∑
k∗

nOR(k)p(k)N ] + ∆nOR(k
∗ − 1). (S11)

The normalized observable centrality of node of degree k is shown in the main text, i.e.,

nOR(k) = (⟨l⟩+ 1)/N, (S12)

where ⟨l⟩ representing the distinct activations of node with degree k is given in the main text.
Combining Eqs. (S11) with (S12), we can obtain the normalized observable range of messenger
set Q with the largest degree.

For the strategy min−deg, we treat it in a similar way. While for the strategy ran− deg, it
is only necessary to compute ⟨nOR⟩q, where ⟨nOR⟩ =

∑
k p(k)nOR(k).

We analyze the behavior of nOR with different messenger selection strategies. Figure S3
shows that nOR from the max-deg strategy is quite close to that from the greedy strategy, e-
specially for relatively larger values of zmax, suggesting the local information based max-deg
strategy as an efficient alternative to the greedy strategy that is based on global optimization.
Another finding is that a small fraction p of messenger nodes is sufficient to fully locate multiple
sources for both ER and SF networks. In addition, the value of nOR with the min-deg strategy
is the smallest for both ER and SF networks, a result distinct from that for static networks. The
lattice networks are used here for comparison.

We also test our framework using three empirical time-dependent networks (Table S1). The
results in Fig. S4 show that only a quite small value of p is needed to ensure full localization of
diffusion sources in the empirical networks. Similar to ER and SF networks, the resulting nOR

value from the min-deg strategy is the smallest for all the empirical networks.
For both model and empirical networks, numerical calculations are in good agreement with

theoretical predictions, especially for larger values of zmax. Naively, one might expect that
sources in a more frequently changing network would be more difficult to be identified. How-
ever, we find that in both model and real networks, diffusion sources in more rapidly changing
networks can be located more readily (cf., the case with zmax = 1 versus that with zmax = 5 in
Fig. S3 and hour versus day in Fig. S4).
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Fig. S3. Normalized observable range for different types of networks. In ER, SF and
lattice networks, for different values of T and zmax, the normalized observable range nOR as a
function of the fraction p of messengers for four strategies: max−deg, min−deg, ran − deg,
and greedy for (a-c) zmax = 1 and T = 5, (d-f) zmax = 5 and T = 10, where (a,d), (b,e)
and (c,f) are for ER, SF, and lattice networks, respectively. The different symbols indicate the
corresponding simulation results. The theoretical predictions denoted by the solid curves for
strategies max−deg, min−deg, ran − deg, are from Eq. (3) in the main text. The networks
size is N = 100 and the average degree is ⟨k⟩ = 6 for ER and SF networks, and ⟨k⟩ = 4 for
lattice networks. All results are obtained by averaging over 50 independent realizations and the
vertical bars indicate the standard error.

S4. Sources localization of different messenger selection s-
trategies

With the above definition of strategies for choosing messengers, here we study the performance
of source localization for different messenger selection strategies. As shown in Fig. S5, the
performance of max-deg strategy and greedy strategy are quite similar, and it is slightly better
than that of ran-deg strategy. Meanwhile, the min-deg strategy perform the worst due to the
lowest observing range given the same number of messengers compared to other strategies.

S5. Distribution of AUROC

In this section, we study the distribution of the value of AUROC for sources localization
with different noise amplitudes. From Fig. S6(a-c), we can find that when there is no noise,
σ = 0, all the values of P(AUROC=1) exceed 0.85. For hospital and high school data set-
s, P(AUROC=1)≈ 0.95. The value P(AUROC= 0.5) for ACM is about 0.05, suggesting that
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there is about 0.05 chance as the case of random guess. Fig. S6(d-f) show that there may exist
AUROC< 0.5, but the probability is low even under a strong noise environment. For instance
σ = 1, F(AUROC=0.5)< 0.12. For ACM data set, noise doesn’t seem to affect the outcome.
As a whole, Fig. S6 indicates that the probability to find a large AUROC is high, and the rest of
AUROC almost obey an uniform distribution.

S6. Description of empirical networks

We use three empirical time varying networks: Hospital, High school and ACM. All the three
data sets represent active contacts during 20-second intervals of data collection. The character-
istics of the three empirical networks are listed in Table S1. For simplicity, we use an hour or a
day as the time window.

S7. Performance assessment of sources localization

The area under a receiver operating characteristic (AUROC) is a widely used statistical char-
acteristic in engineering, medicine, and physics, which measures the area under a probability
curve that ranks a randomly chosen positive event higher than a randomly chosen negative one.
AUROC for source localization is defined in terms of true positive rate (TPR) and false positive
rate (FPR), defined as

TPR(s) =
TP(s)

P
and FPR(s) =

FP(s)

N − P
, (S13)

where s is the cutoff (threshold) in the list of the reconstructed state xi(t) at time t, TP(s)
[FP(s)] is the number of true (false) positives in the top s reconstructed values of xi(t), and P

(N − P ) is the number of positives (negatives) in the gold standard. AUROC is the area under
the TPR-FPR curve.
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Table S1. Characteristics of the three empirical time-dependent networks. The quan-
tities N and |E| denote the network size and the number of contacts, respectively. Al-
l three networks are undirected. The structural data of the networks are available at:
http://www.sociopatterns.org/datasets/.

Data sets Name N |E| Duration Description

Hospital 75 32424 97 hours

network of contacts between patients,

patients and health-care workers

(HCWs) and among HCWs in a

hospital ward in Lyon, France,

December 6, 2010. The study included

46 HCWs and 29 patients

High school 126 28561 76 hours

network of contacts between students

of three classes in a high school in

Dec. 2011, in Marseilles France

ACM 113 20818 59 hours

the ACM Hypertext 2009 conference:

the dynamical network of face-to-face

proximity of 110 conference attendees
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Fig. S4. Observable range for empirical time varying networks. Normalized observable
range nOR as a function of the fraction p of messengers for three empirical time varying net-
works associated with four strategies: max−deg, min−deg, ran− deg and greedy: (a,b) hos-
pital network, (c,d) high School network, and (e,f) ACM. For panels (a,c,e), the time window
is an hour. For panels (b,d,f), the time window is a day. The theoretical predictions denoted by
solid curves are from the formula nOR(Q) ≈

∑
i∈Q(li + 1)/N in the main text. More details of

the empirical networks and the meaning of time window are described in Table S1. All results
are obtained by averaging over 50 independent realizations and the vertical bars indicate the
standard error.
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Fig. S5. Performance of source localization for different messenger selection strategies.
AUROC as a function of nM without noise for hospital (a), high school (b) and ACM (c),
respectively. Parameters are p = 0.15, β = 0.05 and Ns = 3. The time window is a day.
All symbols are obtained by averaging over 500 independent realizations with the vertical bars
indicating the standard error.
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Fig. S6. Distribution of AUROC for different noise amplitudes. Distribution of AUROC
P(AUROC) for hospital (a), high school (b) and ACM (c), respectively. Cumulative distribution
of AUROC F(AUROC) for hospital (d), high school (e) and ACM (f), respectively. The standard
deviation of measurements σ is set to 0, 0.1 0.5 and 1. Others parameters are p = 0.15, β = 0.05
and Ns = 1. The time window is a day. The distribution results are obtained by 500 independent
realizations.
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