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Autapses promote synchronization 
in neuronal networks
Huawei Fan1, Yafeng Wang1, Hengtong Wang1, Ying-Cheng Lai1,2 & Xingang Wang   1

Neurological disorders such as epileptic seizures are believed to be caused by neuronal synchrony. 
However, to ascertain the causal role of neuronal synchronization in such diseases through the 
traditional approach of electrophysiological data analysis remains a controversial, challenging, and 
outstanding problem. We offer an alternative principle to assess the physiological role of neuronal 
synchrony based on identifying structural anomalies in the underlying network and studying their 
impacts on the collective dynamics. In particular, we focus on autapses - time delayed self-feedback 
links that exist on a small fraction of neurons in the network, and investigate their impacts on network 
synchronization through a detailed stability analysis. Our main finding is that the proper placement of 
a small number of autapses in the network can promote synchronization significantly, providing the 
computational and theoretical bases for hypothesizing a high degree of synchrony in real neuronal 
networks with autapses. Our result that autapses, the shortest possible links in any network, can 
effectively modulate the collective dynamics provides also a viable strategy for optimal control of 
complex network dynamics at minimal cost.

An autapse is referred to as a special synapse that connects the axon and dendrites of the same neuron. Autapses 
were first discovered in 1972 in the pyramidal cell of neocortex cerebri (Golgi preparations of rabbit occipital 
cortex)1. Because of their aberrant and incestuous structure, autapses were originally regarded as “a wiring error” 
in the development of the brain and therefore were conceived as playing no actual role in the biological functions 
of the underlying neural network. Twenty-five years later, autapses were found commonly in the neural circuits 
of the cat’s visual cortex2, suggesting that autapses may actually have certain biological usage3,4. Sign of ubiquity 
of autapses emerged subsequently, when they were discovered in multiple areas in the brain such as neocortex, 
hippocampus, cerebellum, substantia nigra, and striatum5–8. There was experimental evidence that autapses are 
sparse and are present only on a small fraction of the neurons in the underlying brain neuronal network5,6. With 
respect to the functional role of autapses, significant improvement in the spike-time precision of the neocortical 
interneurons was found in the presence of inhibitory autapses6, and excitatory autapses were found to be essential 
to persistent activities of certain neurons of Aplysa8. In theoretical and computational studies, issues that have 
been addressed concerning the roles of autapses include: persistence in recurrent neural networks9, generation of 
oscillatory behavior of a single neuron10, switching among distinct dynamical states (e.g., quiescent, periodic or 
chaotic)11, induction of wave patterns in a regular network of neurons12, signal detection in stochastic neurons13, 
emergence of coherence resonance in single neurons and in neural networks14, and promotion of rhythmic prop-
agation in neuronal networks15.

A fundamental issue in complex networks with significant implications to biology and physiology is syn-
chronization16, a ubiquitous phenomenon in natural systems17. A widely known example is epilepsy, a disorder 
characterized by seizures, which affects over 50 million people worldwide. The classical understanding is that sei-
zures are associated with hypersynchrony18. This principle, however, has been challenged19–22, and the dynamical 
origin of epilepsy in relation to synchrony has been continuously debated23,24. As a matter of fact, the lingering 
and unanswered question in this field of medicine is whether epileptic seizures are associated with an increased or 
a decreased level of neuronal synchrony. To certain extent, this question may be addressed through the approach 
of data analysis: by analyzing EEG (electroencephalogram) or ECoG (electrocorticogram) data recorded from 
epileptic patients and calculating measures of synchrony, one hopes to be able to assess the possible causal role 
of synchronization in triggering a seizure. Indeed, there were previous efforts in developing seizure detection 
and characterization frameworks based on partial synchrony among multichannel brain data, with the finding 
that, depending on the type of seizures, there can be either an enhancement or a reduction in the degree of 
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synchrony25–27. The data based approach has one deficiency: it reveals no information about the interplay between 
seizure and synchrony at the localized neuronal network level, as the EEG or ECoG data reflect only the collective 
neuronal activities at much larger scales. This leads to a related question: suppose epileptic seizures are indeed 
associated with synchronization (either enhanced or reduced) in small scale neuronal networks, what charac-
teristic structural features do the networks possess to promote or suppress synchrony? Identification of unusual 
and unconventional features in the seizure network structure which predominately affect synchronization can 
potentially lead to a deep understanding of the interplay between seizure and synchrony.

In this paper, we develop the computational and theoretical foundation for hypothesizing that autapses asso-
ciated with single neurons are capable of significantly modulating synchrony at the network level. In particular, 
implementing a widely studied nonlinear neuron model on complex networks of different topologies, we assume 
the existence of autapses on a small fraction of the neurons and investigate quantitatively how global synchroniza-
tion of the network is affected by the locations, strength, and time delays of the autapses. We find that, in general, 
the presence of a sparse set of autapses can increase dramatically the odds for the whole network to achieve global 
synchronization. We develop a criterion that allows us to determine, for a given set of autapses, their optimal loca-
tions in the network to maximize synchrony. The implication is that autapses can serve as an effective structural 
indicator at the single neuron level for anticipating synchronization in networks that contain such neurons. In 
epilepsy, for example, there are distinct types of seizures that are associated with neuronal networks in different 
regions of the brain. If it is possible to examine the structural details of the representative neurons in such a net-
work, the presence of autapses would imply a higher probability for synchronization and, consequently, a more 
appreciable likelihood that synchrony is the culprit of the corresponding seizure. This may provide insights into a 
possible resolution of the interplay and causal relation between synchrony and certain types of seizures. With the 
advance of biotechnologies, we hope that it would be possible to test our hypothesis that autapses are correlated 
with synchrony through structural examination at the single neuron level and dynamics characterization at the 
network level. In a broader perspective, our finding that autapses, the shortest possible links in any network, are 
able to modulate the collective dynamics might provide an alternative approach to controlling the dynamics of 
complex networks, especially for situations where long-distance links are costly and infeasible.

Results
Understanding the role of autapse in promoting neuronal synchronization through a toy network  
model.  To demonstrate that autapses can promote global synchronization in neuronal networks, we start 
with a toy model consisting of four coupled neurons (Fig. 1). Mathematically, an autapse can be modeled as a self-
loop in the network with a time delay τ (see Methods). As shown in Fig. 1(a1), in the absence of any autapse, the 
network has four nodes and four mutual links (edges). The coupling strength associated with each edge is deter-
mined by the parameter ε normalized by the nodal degree (including the autapse) (see Methods). We assume that 
each node corresponds to an idealized neuron, whose dynamics are identical and described by the Hindmarsh-
Rose (HR) oscillator28–32:

Figure 1.  The impact of a single autapse on synchronization in a toy neuronal network. (a1) Without any 
autapse, the network has four nodes and four edges, where each node is a Hindmarsh-Rose neuron. (b1–d1) 
Network structure when a single autapse (represented by the red curve with an arrow) is present at node 1, 
2, and 4, respectively. (a2–d2) For the network structures in (a1–d1), respectively, the dynamical behaviors 
of the network in terms of synchronization. Shown in each panel is a plot of the x variable from each node 
versus the averaged value of this variable over all the nodes during the time evolution. When there is global 
synchronization, all the variables are equal to their average value at any instant of time, tracing out a straight 
line segment along the diagonal. Any deviation from the diagonal signifies lack of synchronization. The uniform 
coupling parameter is ε = 1 and the time delay associated with the autapse is τ = 4.
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where x is the membrane potential, y and z represent the transport rates of the fast and slow ion channels corre-
sponding to the spiking and bursting variable, respectively, I is the external stimulating current that determines 
the nature of the isolated neuronal dynamics, e.g., periodic or chaotic. To appreciate the ability of autapses to pro-
mote synchronization for complicated dynamics, we choose the parameters of the HR neuron so that it exhibits 
a chaotic attractor (see Methods).

A single autapse can be present at any node, and there are three distinct cases, as shown in Fig. 1(b1–d1), 
respectively (due to the symmetry in the network structure, an autapse on node 3 is equivalent to one on node 
2). To determine if there is global synchronization in the network, we plot one dynamical variable, e.g. xi(t), from 
each node (for i = 1, …, 4), versus the network averaged variable defined as xave(t) = ∑ixi(t)/4 for a relatively large 
time interval. When the network is completely synchronized, we have xi(t) = xave(t) for i = 1, …, 4, so the dynam-
ical trajectory will trace out a straight line segment along the diagonal in the (xi, xave) plane. Any deviation from 
the diagonal indicates lack of synchronization in the system. From Fig. 1(a2–d2), we see that, without any autapse 
(a2), the network is not synchronized. When an autapse is present at node 1 or 4, which has the largest and the 
smallest degree, respectively, there is global synchrony in the network, as shown in Fig. 1(b2) and (d2), respec-
tively. Adding an autapse at node 2 (or 3) will not result in global synchronization (c2). These results indicate that 
the presence of a single autapse at a proper location in the network can promote synchronization.

Intuitively, from the network synchronization theory33–47, the introduction of an autapse is likely to discourage 
global synchronization because the time delay associated with the autapse effectively makes the dynamics of the 
neuron hosting the self-loop non-identical to other neurons in the network at which no autapses are present. 
Previous simulation of an isolated neuron showed11 that, with the addition of an autapse, the neuronal dynamics 
could be changed drastically, e.g., from chaotic to periodic. If the dynamics of the individual nodes are charac-
teristically different, the synchronization manifold existing for identical nodal dynamics may be destroyed48. 
The phenomenon of autapse promoted synchronization, as exemplified in Fig. 1(b2) and (d2), thus seems to be 
counterintuitive. However, an examination of the dynamical behavior of neuron 1 (or neuron 4) reveals that, even 
in the presence of an autapse, its trajectory is identical to that without the autapse. This observation suggests that, 
in spite of the autapse, the network still possesses a global synchronization manifold. In Methods, we provide a 
heuristic argument for the existence of a synchronization manifold in the presence of an autapse. (It is worth not-
ing that, depending on the time-delay parameter, the dynamics within the synchronization manifold may differ 
from those of the individual, isolated neurons. For the time-delay parameter used in Fig. 1(b), there are periodic 
dynamics in the synchronization manifold).

To demonstrate that autapses can promote synchronization in a more quantitative manner, we exploit the 
concept of master stability function (MSF)49. Given a networked system possesses the synchronization manifold, 
the MSF method proposed in 1998 by Pecora and Carroll49 has become the golden standard in the study of syn-
chronization in complex dynamical systems. To appreciate the physical significance of the MSF method, we note 
that, as the network approaches a global synchronization state, the variables of the nodes approach each other 
asymptotically due to the mutual entrainment caused by the coupling. The subspace in which the synchronous 
solution lies is the synchronization manifold whose dimension is typically much smaller than that of the full 
phase space. Specifically, let xs(t) be the synchronous state of the network and {δxi(t)} be the infinitesimal per-
turbations added on node i at time t. Whether the perturbed system is restorable to the synchronous state can be 
inferred from the MSF49.

δ σ δ= + ⋅

y DF x DH x y[ ( ) ( )] ,s s

with δy and σ = ελ being the perturbation in the eigenmode space and the generic coupling strength, respectively. 
The quantity ε represents the uniform coupling strength, and {λ} are the eigenvalue spectrum of the Laplacian 
matrix defining the network structure (see Methods). Denoting Λ as the largest Lyapunov exponent calculated 
from the above equation, we have that the variation of Λ with σ gives the shape of the MSF curve. When the 
coupling configuration and the synchronous dynamics (i.e., the dynamics of an isolated node) are given, the MSF 
curve is independent of the particular network structure. If the dynamics in the synchronization manifold is 
stable with respect to perturbations in the transverse subspace, synchronization can be physically realized. In this 
case, the value of Λ is negative for all the transverse perturbation modes σi = ελi for i = 2, …, N (N is the num-
ber of coupled oscillators and the mode associated with λ1 = 1 describes the motion along the synchronization 
manifold. See Methods for details). For the general nodal dynamics and coupling configuration, the value of Λ is 
negative only in certain interval36,49,50 of the generic parameter. As such, for a network of coupled nonlinear oscil-
lators to be synchronizable, the necessary condition is that all the generalized coupling strengths of the transverse 
modes {σi} fall entirely the interval of negative Λ. (A mathematical formulation of the MSF is given in Methods).

We calculate the MSF curve for the small neuronal network in Fig. 1 without or with an autapse at each node, 
to assess the impact of autapse on synchronization. For a fixed value of ε, the argument of σ (i.e., the generalized 
coupling parameter) is directly proportional to the eigenvalue λ of the network coupling matrix. For convenience, 
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we choose ε = 1 and plot Λ versus λ (see Methods). Figure 2(a) shows such a plot for τ = 4 (the same parameter 
values as in Fig. 1). We have Λ < 0 for λ ∈ (σ1, σ2) with σ1 ≈ −0.7 and σ2 ≈ 1. The structure of the small neuronal 
network gives λ1 = 1 = σ2 and λ1 > λ2 ≥ λ3 ≥ λ4. Stable synchronization of the network is thus determined solely 
by the the smallest eigenvalue λN: synchronization is (is not) achievable for λN > σ1 (λN < σ1). Without any 
autapse Fig. 1(a1), we have λ4 = −0.73. Since λ4 < σ1, the network is not synchronizable - in agreement with the 
numerical result in Fig. 1(a2). When an autapse is present at neuron 1 Fig. 1(b1), we have λ4 = −0.5 > σ1, so the 
network is synchronizable, as indicated by Fig. 1(b2). Similarly, for an autapse at neuron 4 Fig. 1(d1), we have 
λ4 = −0.5 > σ1 so there is synchronization Fig. 1(d2). However, when the single autapse is attached to neuron 2 
Fig. 1(c1) we have λ4 = −0.72 < σ1, so the network is non-synchronizable, as indicated by Fig. 1(c2).

In general, when the network structure is given so that all eigenvalues {λi} (i = 1, …, N) are known, whether 
stable synchronization can arise is determined by the MSF curve, where the range of the negative values of the 
MSF, namely the stable region, determines whether all the transverse eigenmodes are stable. For network systems 
without time delay (the general model studied in literature), the existence and the size of the stable region depend 
only on the local nodal dynamics and the coupling function, but not on the coupling strength49,50. For our neuronal 
network with autapses, however, the stable region depends also on the coupling strength parameter and the time 
delay. To uncover the effect of these two parameters on the stable region of the MSF curve, we decrease the cou-
pling strength to ε = 0.8 and calculate the corresponding MSF, as shown in Fig. 2(b). Comparing Fig. 2(a) and (b),  
we see that not only the range but also the shape of the stable synchronization region are modified: the stable 
region now consists of three separated subregions: (−0.82, −0.75), (−0.72, 0.36), and (0.61, 0.67). To obtain a 
full picture of the distribution of the stable regions in the three-dimensional parameter space (ε, λ, τ), we show 
in Fig. 2(c–f) the value of Λ in four different parameter planes. In general, network synchrony is sensitive to the 
network structure (characterized by the eigenvalue spectrum {λi}), the coupling parameter (ε), and the time 
delay parameter τ associated with the autapse. The sensitive dependence of stable synchronization region on var-
iations in ε and τ is a typical feature of ragged synchronization51. The remarkable phenomenon is that, regardless 
of the changes in the parameters, insofar as there is an autapse, stable synchronization regions [blue regions in 
Fig. 2(c–f) persist. That is, for an unsynchronized neuronal networked system, the presence of a single autapse is 
able to induce stable synchronization.

Figure 2.  Master stability functions (MSFs) for the network of four neurons. For the toy neuronal network 
model in Fig. 1, the stability of the MSF, as characterized by Λ, for different combinations of the system 
parameters. The synchronization state is stable when Λ < 0 for all the transverse modes, and will be unstable 
when Λ < 0 for any of the transverse modes. All results are obtained by solving Eq. (9) numerically (see 
Methods). (a) For ε = 1 and τ = 4, Λ versus λ. We see that Λ is negative in the region λ ∈ (−0.7, 1), indicating 
that stable synchronization will be achieved when all the transverse modes are located in this parameter 
interval. (b) For ε = 0.8 and τ = 4, Λ versus λ, where now Λ is negative in three subregions: λ ∈ (−0.82, −0.75), 
λ ∈ (−0.72, 0.36), and λ ∈ (0.61, 0.67). (c) For fixed ε = 1, contour plots of Λ in the parameter plane (λ, τ), 
where the blue color indicates parameter regions of stable synchronization (Λ < 0) and the red color specifies 
the regions where synchronization is unstable or cannot be realized physically (Λ > 0). (d–f) Contour plot of 
Λ in the parameter planes (λ, ε), (λ, τ), and (λ, ε) for fixed τ = 4, ε = 0.8, and τ = 6, respectively. The general 
phenomenon is that, through variations of the parameters (λ, τ, and ε), the region of stable synchronization can 
be readily modified.
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Autapse centralities and synchronization optimization.  Suppose a small set of autapses are distrib-
uted into a neuronal network, to which set of neurons should the autapses be attached so that the network 
achieves the maximum synchronizability? To address this question for the general case of multiple autapses is 
difficult. We thus first consider the relatively simple case of a single autapse and develop a theoretical criterion to 
determine the optimal location for the autapse. Equivalently, it is necessary to find the autapse centrality, a quan-
tity that measures the impact of a specific autapse on the network synchronizability. From the MSF formalism, we 
have that the autapse induces a shift in the eigenvalues of the network coupling matrix. Specifically, let G0 and G 
be the network coupling matrices without and with the autapse, respectively. Letting λ j

0 and λj be the jth eigen-
value of the respective matrices, we write the eigenvalue shift as λ λ λΔ ≡ −j j j

(0). In the typical case where the 
MSF curve possesses only one bounded stable region, the network can reach a global synchronous state only if the 
eigenmodes in the transverse subspace associated with the largest and the smallest nontrivial eigenvalues (λ2 and 
λN, respectively) are both stable. The impact of the autapse on the network synchronizability can then be charac-
terized by the shifts in the two nontrivial eigenvalues: λ λ λΔ = −i

2 2 2
(0) and λ λ λΔ = −N

i
N N

(0), with i denoting 
the neuron that receives the autapse. A large value of λΔ i

2 or λΔ N
i  signifies a more significant impact. We thus 

propose the quantities λΔ i
2 and λΔ N

i  as two autapse centrality measures.
To characterize the autapse centralities quantitatively, we develop a perturbation-based approach by treating 

the autapse as a small alteration to the network structure. With the perturbation, the normalized network matrix 
can be written as G = G(0) + G(1), where G(1) is the perturbation matrix induced by the autapse. Assuming that the 
autapse is attached to neuron i which has degree ki, we have the elements of G(1) as = +g k1/( 1)ii i

(1) , 
= − +g k k1/[ ( 1)]ij i i

(1)  if there is a link between neurons i and j, and =g 0ij
(1)  for other elements. Letting e2 = [e2,1, 
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(0) of G(0) [i.e., λ=G e e(0)
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For a densely connected network, we have k 1i  and so 
g gij ii

(1) (1). Under the approximation =g 0ij
(1) , we have 

that the matrix G(1) has only one non-zero element: gii
(1), leading to the following simplified version of Eq. (1):

λΔ = ′ = ′ + .e e g e e k/( 1) (2)i i ii i i i2 2, 2,
(1)

2, 2,

The smallest eigenvalue λN can be treated in a similar way. We have

λΔ = ′ = ′ +e e g e e k/( 1), (3)N N i N i ii N i N i i, ,
(1)

, ,

where eN = [eN,1, eN,2, …, e2,N]T is the normalized eigenvector associated with the eigenvalue λN
(0) of G(0): 

λ=G e eN N N
(0) (0) ), and = ′ ′ … ′−e e e e[ , , , ]N N N N N

1
,1 ,2 ,  is the left eigenvector associated with eN. Equations (2) and (3) 

characterize the impact of a single autapse on the synchronizability of the underlying neuronal network, as they 
show that the autapse centrality of a neuron is determined jointly by the neuron degree k and the two eigenvectors 
of the original network coupling matrix: e2 and eN.

To verify Eqs (2) and (3) numerically, we present in Fig. 3 the two autapse centrality measures for complex 
networks of distinct topologies. In particular, Fig. 3(a–f) are for a scale-free, random, and small-world network, 
respectively. The three networks have the same size N = 100 and average degree 〈k〉 = 6. Introducing a single 
autapse onto each neuron alternatively, we calculate the two centrality measures: the variations of the two extreme 
eigenvalues, Δλ2 and ΔλN. Figure 3(a,b) show the autapse centralities versus the nodal index and degree, respec-
tively. From Fig. 3(a), we see that the centralities exhibit large variations among the neurons, while Fig. 3(b) shows 
that the hub neurons are less sensitive to the autapse than the non-hub neurons in spite of the large fluctuations 
in the values of Δλ2 and especially of ΔλN. Figure 1(c) and (d) show the numerical values of Δλ2 and ΔλN versus 
the theoretical predictions of Eqs (2) and (3), respectively. For Δλ2, the numerical and theoretical results are not 
exactly equal to each other but exhibit a high degree of linear correlation. For ΔλN, the numerical and theoretical 
values are approximately equal. For the random network, the numerical results of both centralities are approxi-
mately equal to the theoretical values, as shown in Fig. 3(e). The results for the small-world network are similar 
to those for the scale-free network Fig. 3(f). Overall, there is a reasonable agreement between the two centrality 
measures calculated numerically and predicted theoretically.

We now address the issue of multiple autapses. By introducing autapses to a judiciously chosen set of neurons 
(one autapse to each neuron), we seek to optimize network synchronization. We again exploit Eqs (2) and (3), 
which suggest that the optimal set of neurons should be selected according to the largest possible values of the 
autapse centralities calculated based on a single autapse. Suppose the number of available autapses is m. We 
arrange the centrality values for individual nodes in a descending order and choose the m neurons from the top 
of the list. To test this optimization strategy, we compare its performance with those of two alternative strategies: 
degree-based and random, where for the former, the set of neurons (each receiving one autapse) are selected 
according to the nodal degree in the descending order, while for the latter, the set is chosen randomly. In simula-
tions, we use the scale-free network in Fig. 3(a), with the same nodal dynamics and coupling function as in 
Fig. 2(a). As the stable region of the MSF curve is bounded Fig. 2(a), the relevant autapse centrality is ΔλN: the set 
of neurons to the receive the autapses can be chosen according to the descending order of the values of ΔλN. We 
calculate the network-averaged synchronization error of the variable x: δ〈 〉 ≡ 〈 ∑ | − |〉=x N x t x t(1/ ) ( ) ( )i

N
i ave T1 , with 

xave(t) being the nodal average value and 〈...〉T being the time average. Our computations reveal that, as the 
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number of autapses m is increased through a critical point (denoted as mc), the synchronization error decreases 
to zero, as shown in Fig. 4. For our autapse centrality based optimization strategy, we have mc ≈ 45, while the 
degree based and random strategies give mc ≈ 52 and mc ≈ 60, respectively. Among the three strategies, ours 
yields the minimum number of autapses required for the network to be fully synchronized.

Generality and robustness of autapse-centrality based synchronization strategy.  We address 
a number of issues to further substantiate the main result that autapses could promote global synchronization 
in neuronal networks, including: (1) the performance of autapse-centrality based synchronization strategy for 
other types of complex networks; (2) the impacts of parameter mismatches among neurons on global synchroni-
zation; and (3) the influences of the system parameters on the minimum number of autapses required for global 
synchronization.

So far we have demonstrated that the autapse-centrality based strategy outperforms the conventional degree 
based and random strategies in promoting global synchronization in scale-free network, as shown in Fig. 4. Our 

Figure 3.  Distribution of autapse centrality for complex neuronal networks of distinct topologies. For a given 
network, the centrality measures can be calculated when a single autapse is attached to a node in the network. 
Varying the node across the network leads to a distribution of each centrality. (a) For a scale-free network, the 
distribution of Δλ2 and ΔλN, (b) the variations Δλ2 and ΔλN with respect to the neuron degree k, (c) Δλ2 with 
respect to the theoretical prediction Eq. (2) denoted as ∆λ th

2 , and (d) ΔλN versus λΔ N
th, the prediction given by 

Eq. (3). (e) For an ER random neuronal network, Δλ2 versus λΔ th
2 . (f) For a small-world network generated by 

rewiring 5% of the links of a regular lattice, Δλ2 versus λΔ th
2 . The insets in (e) and (f) show ΔλN versus λΔ N

th 
for the respective networks. The networks have the same size (N = 100) and average degree (〈k〉 = 6). The 
parameters of the neuronal dynamics are the same as those in Fig. 2.
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theoretical analysis implies that this result should hold for the general network model, regardless of the net-
work topologies. An example is given in Fig. 5, which displays the synchronization performance of the three 
strategies for the random and small-world networks. We see that, as for the case of scale-free networks in Fig. 4, 
the autapse-centrality based strategy always requires the least number autapses in achieving global network 
synchronization.

In real systems, parameter mismatches among the neuronal dynamics and the network links are inevitable. To 
gain insights into whether autapses could promote synchronization in networks consisting of non-identical neu-
rons, we consider the toy network model in Fig. 1 and introduce small mismatch in the parameters (I, ε, and τ).  
To be concrete, we vary the coupling strength waut and the time delay τaut of the autapse and investigate how 
network synchronization is deteriorated as the values of waut and τaut are deviated from those of the synaptic 
connections. Setting w = 1 and τ = 4 for the synaptic connections, we calculate the synchronization error 〈δx〉 as 
a function of waut. The numerical results are shown in Fig. 6(a). We observe 〈δx〉 = 0 for waut > 0.3. To see how 
mismatched coupling strength affects synchronization, we plot in Fig. 6(b) and (c) the neuron trajectories for 
waut = 0.1 and waut = 0.5, respectively, where there is still global synchronization for the latter but for the former, 
synchronization is lost. This indicates that, even when the mismatch of waut is about 50% Fig. 6(c), synchroniza-
tion can still be achieved. In fact, given waut > 0.3, global synchronization will be maintained regardless of the 
mismatch amplitude Fig. 6(a). The underlying reason for the robustness of global synchronization to the mis-
match of waut is that, due to the normalized coupling scheme (see Methods), the dynamics of the synchronous 
manifold is independent of the autapse strength.

Figure 6(d) demonstrates the robustness of network synchronization in the presence of mismatch in time delay, 
where the behavior of 〈δx〉 versus Δτ = τaut − τaut is shown for fixed waut = 1. We see that the network is well syn-
chronized for a small amount of mismatch in the time delay. For example, we have 〈δx〉 < 0.1 for Δτ ∈ (−0.08, 0.1).  
For a relatively large amount of mismatch, synchronization is lost, as shown in Fig. 6(e) for Δτ = 0.2. In general, 
for Δτ ≠ 0, the local dynamics of the autapsed neuron are different from those of the other neurons, making 
global synchronization difficult. However, as shown in Fig. 6(f), if the mismatch amount Δτ is not too large, all 
neurons in the network can still be well synchronized.

In general, the number of autapses required to synchronize a complex network depends on the network 
parameters such as the connecting density, the degree distribution, the delay parameter, and the coupling strength 
among the neurons. For the scale-free network in Fig. 4 of 100 nodes and average degree 〈k〉 = 6 and by the 
parameters ε = 1 and τ = 4, mc = 45 autapses are required for global synchronization. This critical number of 
autapses, however, could be changed significantly by varying the network parameters. To shown an example, we 
fix the network structure and the parameter τ used in Fig. 4 but changing the value of ε to 0.95, and recalculate 
the number of required autapses for different synchronization strategies. The numerical results are shown in 
Fig. 7. We see that, for the autapse-centrality based, degree based, and random strategies, the critical numbers of 
autapses required for global synchronization are reduced to, respectively, to mc = 19, 31, and 35.

Discussion
In this paper, we study neuronal autapses, a type of structural anomalies that give certain neurons a time-delayed, 
self-feedback loop. Autapses, when they were first discovered1, were thought of playing no specific biological or 

Figure 4.  Performance of autapse centrality based strategy to optimize network synchronization. For the scale-
free network in Fig. 3(a), the variation of network average synchronization error δx versus the number m of 
autapses for different synchronization strategies. For the autapse centrality strategy (open triangles), autapses 
are added to neurons in the descending order of neuron autapse centrality. For the degree (open circles) and 
random (open squares) strategies, the set of neurons receiving autapses is selected, respectively, according to the 
descending order of nodal degree and randomly. The minimum numbers of autapses for the autapse-centrality-
based, degree-based, and random strategies are mc = 45, 52, and 60, respectively, where the autapse centrality 
strategy requires the smallest number of autapses. The neuronal dynamics and coupling parameters are the 
same as those in Fig. 2.
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physiological role. Only later were their potential impacts in biological functions found or suggested3–8. In view 
of the fundamental importance of synchrony in biology, physiology, and biomedical sciences, we focus our study 
on the possible role of autapses in modulating neuronal synchrony through computation and theory. Our main 
finding is that, for a complex neuronal network, even the existence of autapses on a small fraction of the neurons 
can promote synchrony significantly. In particular, using both a small toy network and larger networks of distinct 
complex topologies, we introduce autapse to a fraction of neurons and analyze the change in the network syn-
chronizability. Based on a systematic analysis of the impact of a single autapse at different nodes in the network, 
we develop centrality measures to analyze the situation of multiple autapses in terms of their optimal placement 
in the network to realize robust synchronization of the entire network. Our work provides the computational and 
theoretical foundation for hypothesizing the positive role of autapses in promoting synchronization in neuronal 
networks.

It is an accepted notion that synchrony in neuronal networks is strongly correlated with certain neurological 
diseases such as epileptic seizures18, but whether such a disease can be attributed to an increasing level of syn-
chrony has been a controversial issue19–22. At the present it remains difficult to ascertain, through the traditional 
approach of EEG or ECoG data analysis, whether a general, well defined causal relation between an elevation 
of synchrony and the occurrence of seizure exists. The main idea underlying our work is to focus on “unusual” 
features or structural anomalies in neurons and to study their role in modulating neuronal synchrony. Suppose 
for certain type of seizure, the responsible neuronal network in a brain region can be identified. Whether there 
exist structural anomalies in some neurons in this region can then lead to insights into the interplay between 

Figure 5.  Performance of autapse-centrality based synchronization strategy for the random and small-world 
networks. The size, average degree, local dynamics and coupling function of the networks are identical to 
those for scale-free networks Fig. 4. (a) Results for random networks. The parameters are: (ε, τ) = (0.95, 4). 
The minimum numbers of autapses for the autapse-centrality based, degree based and random strategies are 
mc = 23, 34 and 36, respectively. (b) Results for small-world network, which is constructed with the rewiring 
probability p = 0.1 for (ε, τ) = (0.95, 1.8). The minimum numbers of autapses for the autapse-centrality based, 
degree based and random strategies are mc = 13, 17 and 20, respectively. For both the random and small-world 
networks, the autapse-centrality based strategy requires the least number of autapses in achieving global 
synchronization.
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synchrony and the particular type of seizure. Generally, the issue of synchronization goes much beyond the scope 
of epileptic seizures with broad implications to biology and physiology16.

We discuss a few technical issues. Firstly, to make the model theoretically tractable, we assume that the isolated 
neuronal dynamics are identical and the links (including the autapses) have the same coupling strength and time 
delay. However, in real systems, parameter mismatches among the neuronal dynamics and network links can be 
expected. We have gained preliminary insights into whether autapses can promote synchronization in networks 
of non-identical neurons, by introducing small mismatches in parameters (I, ε, and τ) in the toy network model 
in Fig. 1. Our computations reveal, for example, when the time delay parameter has a 2% mismatch among the 
network links, global synchronization can still be achieved. Secondly, in our study we adopt the scheme of nor-
malized couplings to enable computation and analysis of the MSF and the proposal of autapse centralities. If the 
couplings are not normalized, such a theoretical analysis would not be possible and it appears at the present that 
one must rely on numerical simulations to uncover and quantify the role of autapses in synchronization. Thirdly, 

Figure 6.  Impacts of parameter mismatch on synchronization. Two types of parameter mismatch are 
considered for the toy network in Fig. 1: in the coupling strength and in the time delay. The values of these two 
parameters associated with the synaptic connections are fixed at (w, τ) = (1, 4), whereas those of the autaptic 
connection, denoted as waut and τaut, respectively, are varied. (a) For fixed τaut = 4, the network synchronization 
error 〈δx〉 versus waut, where 〈δx〉 = 0 for waut > 0.3. (b) For waut = 0.1, the neurons are desynchronized. (c) For 
waut = 0.5, the neurons are completely synchronized. (d) For fixed waut = 1, 〈δx〉 versus Δτ = τaut − τaut. The 
neurons are desynchronized when Δτ is large (e) but they are well synchronized when Δτ is small (f).
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we assume linear feedback couplings in the network. While this type of coupling scheme does have physiological 
support (e.g., in terms of electrical synapses underlying the neuronal connections), it remains unknown whether 
other types of couplings, e.g., those with chemical synapses, can lead to effective modulation of network synchro-
nization by autapses.

Finally, we point out the significance of our work in general network science and engineering with respect to 
the problems of synchronization and control. A focus in this area of research has been on the role of long-range 
connections, such as those in small-world networks53, in promoting network synchronization36. From a practical 
standpoint, long range connections may be costly54. For example, for neural networks in the human brain55, while 
there are white fiber tracts among distant cortical areas which are essential for the brain functions, the network 
connectivity is still dominated by short-distance, local connections, due to the minimization principle of the 
axonal length and energy consumption. A similar issue arises in other realistic systems54 such as traffic networks, 
power grids, communication network, and the Internet. Our finding that autapses, the shortest possible links in 
any network, can play a positive role in promoting synchronization, is encouraging from the perspective of opti-
mal control of complex network dynamics at a minimal cost.

Methods
Model description.  Our model of neuronal network with autapses reads

∑ε
δ

τ η= +
+

− − +
=


x F x H x H x

k
c t t( ) [ ( )( ) ( )] ( ),

(4)
i i i

i il j

N

ij j ij i i
1

where i, j = 1, 2, …, N are nodal indices, N is the network size, xi the state vector of the i th neuron, ε is the cou-
pling parameter, Fi(x) is the velocity field governing the dynamics of the i th neuron when it is isolated, H(x) is 
the coupling function, τij denotes the time delay of signal propagating from neuron j to i, and ηi(t) represents 
the independent, identically distributed Gaussian white noise added to the membrane potential of each neuron, 
with 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t)〉 = (2 × 10−10)δij. The network structure in the presence of autaptic connections 
is characterized by the coupling matrix C = {cij}. For non-diagonal elements, we have cij = cji = 1 if there is a link 
between neurons i and j, otherwise cij = 0. For the diagonal elements, we set cii = δil, where δil is the Kronecker 
delta function and V = {l} (with l = 1, …, m) denotes the set of neurons with autaptic connections. Specifically, 
we have cii = 1 if neuron i possesses an autapse, and cii = 0 otherwise. The quantity ki = ∑j ≠ icij is the number of 
links connected to neuron i (i.e., the degree). To capture the essential network dynamics subject to autapses while 
making the model theoretically tractable, we assume identical time delays: τij = τ. Biologically, this approxima-
tion is reasonable for synapses within the same cortical minicolumn55. The scheme of diffusive (linear feedback) 
coupling assumed in Eq. (4) models the realistic electrical synaptic interactions (e.g., of the gap-junction type) 
among neurons16,56.

In simulations, we set the parameters of the HR oscillator as (a, b, c, d, r, s, xR, I) = (1, 3, 1, 5, 6 × 10−3, −1.6, 
3.2), for which the isolated HR neuron exhibits chaotic bursting dynamics28. The coupling function is chosen to 
be H(x) = [x, 0, 0]T, i.e., the neurons in the network are coupled through their membrane potentials. We use the 
Bogacki-Shampine algorithm57 to simulate Eq. (4), which is a time-delayed, stochastic system of coupled differ-
ential equations. The integration time step is δt = 1 × 10−3.

Figure 7.  Example of how the change of network parameter could reduce the critical number of autapses 
required for global synchronization. For the same network structure and the value of the parameter τ used in 
Fig. 4 but with a change in the coupling strength to ε = 0.95, the network averaged synchronization error δx 
versus the number of autapses for the three synchronization strategies. For the autapse-centrality based, degree 
based, and random strategies, the critical numbers of autapses are mc = 19, 31, and 35, respectively, signifying a 
marked reduction in comparison with the results in Fig. 4.
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Persistence of a global synchronization manifold in the presence of an autapse.  We argue that, 
given that the autapses have an identical time delay with respect to the synaptic connections, the neuronal net-
work possesses a synchronization manifold. Consider the network in Fig. 1(b1), in which the dynamics of neuron 
1 are governed by the equation

∑ε τ ε τ= + − − + 
 − − 


≠


x F x x t x x t x{ ( )

4
[ ( ) ]}

4
( ) ,

j
j1 1 1 1 1

1
1

where the 1st and 2nd terms on the right side represent, respectively, the local dynamics of the autapsed neuron 
and the coupling signals it received from the neighboring neurons. Assume that the network is globally synchro-
nized, and denote xs as the dynamical state within the synchronous manifold, we have xi(t − τ) = xs(t − τ) (for 
i = 1, …, 4). Equation (5) can then be rewritten as
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For neurons without autapse (j = 2, 3, 4), their dynamics are governed by
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which is identical to Eq. (5). That is, in the synchronous state all neurons in the network, regardless of whether 
they are autapsed or not, follow the same dynamical equation. Further, because of the normalized coupling 
scheme, the equations are independent of the network structure. A global synchronization manifold thus persists 
in the presence of autapses, regardless of their locations in the network.

Master stability function based analysis of network synchronization in the presence of autapses.  
To uncover the impact of autapses on network synchronization quantitatively, we analyze the stability of the syn-
chronous manifold. Within the manifold, the dynamics are governed by

ε τ= + − − .

x F x H x Ht x( ) [ ( ( )) ( )] (7)s s s s

Let δxi = xi − xs be an infinitesimal perturbation to xs, whose evolution is governed by the variational equa-
tions obtained by linearizing Eq. (4) about xs:
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for i, j = 1, …, N, where G = {gij} = {cij/(ki + δil)} is the normalized coupling matrix, DF and DH are the Jacobians 
of the isolated neuron dynamics and of the coupling function, respectively. Projecting {δxi} into the eigenspace 
spanned by the eigenvectors of G, we obtain N independent variational equations

δ ε δ ελ τ δ τ= − + − −

y DF x H x y DH x yt t[ ( ) ( )] ( ( )) ( ), (9)i s s i i s i

where δyi is the i th mode of the perturbation, and 1 = λ1 > λ2 ≥ ... ≥ λN are the eigenvalues of G. The mode asso-
ciated with λ1 describes the chaotic motion within the synchronous manifold as corresponding to the dynamics 
of each isolated neuron, and the transverse modes {λj} (j = 2, …, N) determine the stability of the synchronous 
chaotic motion within the synchronization manifold. Denote Λj as the largest Lyapunov exponent calculated from 
the variational equations for the j th mode: the mode is stable (unstable) if Λj < 0 (Λj > 0). The necessary condi-
tion for the synchronous state to be stable is that all the transverse modes decay exponentially with time: Λj < 0 for 
j = 2, …, N. Note that Λ is determined by three parameters (ε, τ, and λ), which is different from systems without 
any autapse49,50,58 in which Λ depends only on the generic coupling strength σ = ελ. For the autapsed network, we 
determine its synchronizability by two steps: (1) finding the stable region of the MSF curve in the parameter space 
(ε, λ, τ) and (2) calculating the eigenvalues {λi} of the normalized coupling matrix G, where the former depends 
on both the local dynamics and the coupling function but the latter is solely determined by the network structure.
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