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Supplementary Figure S1 | General switchboard dynamics. (a) A directed graphG with four nodes a, b, c, and d, five
edges xi (i = 1, . . . , 5), and its switching matrices Sa, Sb, Sc and Sd corresponding to the nodes with the same colours. (b)
The line graph L(G) of the original directed graph G. The colours of the edges in L(G) corresponds to that of the nodes in (a).
The nonzero elements in the adjacent matrix of L(G) correspond to the elements with same colours in the switching matrices
of G in (a). (c) An undirected graph G with four nodes a, b, c, and d, two edges, and its switching matrices Sa, Sb, Sc and Sd

corresponding to the nodes with same colours. (d) The bidirectional (undirected) graph transformed from G by turning each
edge in G to two directed edges with opposite directions, i.e., (xi, x′i) (i = 1, 2). Its switching matrices are the same as that in
(c). (e) The line graph L(G) of the bidirectional (undirected) graph. The colours of the edges in L(G) corresponds to that of
the nodes in (d). The nonzero elements in the adjacent matrix of L(G) are corresponding to the elements with same colours in
the switching matrices of G in (c) and the bidirectional (undirected) graph in (d).
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Supplementary Figure S2 | Controllability bounds and strong structural controllability of exponentially dis-
tributed networks. (a)-(b) The upper and lower bounds of nD for directed and undirected networks with exponential degree
distributions (EX). (c)-(d) The upper and lower bounds of mD for directed and undirected EX networks. (e)-(f) Strong struc-
tural controllability nssc as a function of the average degree 〈k〉 for directed and undirected EX networks. Data points are
numerical results and curves are analytical results. All the numerical results are obtained by averaging over 50 independent
networks realizations. See Supplementary Note 10 for network models.
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Supplementary Figure S3 | Controllability bounds and strong structural controllability of Scale-free networks
from configuration model. (a)-(b) The upper and lower bounds of nD for directed and undirected SF networks. (c)-(d) The
upper and lower bounds of mD for directed and undirected SF networks. (e)-(f) Strong structural controllability nssc as a
function of the scaling exponent γ for directed and undirected SF networks. γ is the scaling exponent and κ is the exponential
cutoff parameter of the SF network. The exponential cutoff parameter for the blue full lines in (b) and (d) and the black full
lines in (e) and (f) are, from top to bottom, κ = 1, 2, 3, 5, 10, 100, and reverse order for others. The dashed lines are associated
with κ = ∞. Note that the range of the upper or lower bounds is large in the SF networks generated by configuration model.
This is because of the fact that the average degree 〈k〉 depends on the γ and κ. Along with the change of γ and κ, 〈k〉 changes
as well. Due to the significant role of 〈k〉 in controllability, large variance of controllability is observed by changing γ and κ.
See Supplementary Note 10 for network models.
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Supplementary Figure S4 | Transition between upper and lower bounds. The transition from the upper bound
( 1
L
rank(Sv) = 1/L) to the lower bound ( 1

L
rank(Sv) = 1) by adjusting the density ρ of the elements with random value in (a)

L× L switching matrix and (b) L× µL switching matrix. Data points are numerical results and curves are analytical results.
All the numerical results are obtained by averaging over 50 independent networks realizations.
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Supplementary Figure S5 | Controllability bounds of driven edges in real networks. (a)-(b) The upper bound mreal
D

obtained directly and the theoretical prediction of the upper bound manalyse
D in the real directed and undirected networks,

respectively. (c)-(d) The lower bound mreal
D obtained directly and the theoretical prediction of the lower bound manalyse

D in real
directed and undirected networks, respectively. See Supplementary Note 8 for the analytical results of the real networks.
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Supplementary Tables

Supplementary Table S1 | Controllability of edge dynamics in regular networks. For each regular
network with nodes number N , we show the number of its directed edges M , the upper bounds (NU

D and
MU

D ), the lower bounds (NL
D and ML

D) and strong structural controllability Nssc.

Name M NU
D NL

D MU
D ML

D NSSC

Directed chain graph N − 1 1 1 1 1 N

Undirected chain graph 2(N − 1) N − 2 1 N − 2 1 2

Directed ring graph N 1 1 1 1 N

Undirected ring graph 2N N 1 N 1 0

Directed star graph with the central point

k+v = N − 1

N − 1 1 1 N − 1 N − 1 N − 1

Directed star graph with the central point

k−v = N − 1

N − 1 N − 1 N − 1 N − 1 N − 1 N − 1

Undirected star graph 2(N − 1) 1 1 N − 2 1 N − 1

Directed fully connected graph N(N − 1) N 1 N2−2N 1 0

Undirected fully connected graph N(N − 1) N 1 N2−2N 1 0

Directed k-regular connected graph (k+v =

k−v = k/2 for each node) with k > 2

Nk/2 N 1 N(k/2−
1)

1 0

Undirected k-regular connected graph

(kv = k for each node) with k > 1

Nk N 1 N(k−1) 1 0
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Supplementary Table S2 | Summary of the real directed and undirected networks analyzed in the
paper. For each real network, we show the number of nodes, the number of edges, physical description
and the semantics of edges.

Type No. Class Name Nodes Edges Description (semantics of A→ B)

Regulatory 1 Directed Ownership-USCorp
[42]

8497 6726 Ownership network of US corporations (A owns B)

2 Directed TRN-EC-2 [41] 423 578 Transcriptional regulatory network (A regulates B)

3 Directed TRN-Yeast-1 [43] 4684 15451 Same as above

4 Directed TRN-Yeast-2 [41] 688 1079 Same as above

Trust 5 Directed Prison inmate [56, 57] 67 182 Social networks of positive sentiment (A is trusted by B).

Food Web 6 Directed St.Marks [58] 45 224 Food Web in YthanEstuary (A preys on B).

7 Directed Seagrass [59] 49 226 Food Web in Seagrass (A preys on B).

8 Directed Grassland [60] 88 137 Food Web in Grassland (A preys on B).

9 Directed Ythan [60] 135 601 Food Web in Ythan (A preys on B).

10 Directed Silwood [61] 154 370 Food Web in Silwood (A preys on B).

11 Directed Little Rock [62] 183 2494 Food Web in Littlerock (A preys on B).

Electronic
circuits

12 Directed S208a [41] 122 189 Electronic sequential logic circuit (B is a function of A).

13 Directed s420a [41] 252 399 Same as above.

14 Directed s838a [41] 512 819 Same as above.

Neuronal 15 Directed C. elegans [63] 297 2359 Neural network of C.elegans (B is within one synapse or gap
junction distance from A).

Citation 16 Directed Small World [64] 233 1988 Citation network in S.Milgram’s Small World (A cites B).

17 Directed SciMet [64] 2729 10416 Citation network in Scientometrics (A cites B).

18 Directed Kohonen [65] 3772 12731 Citation network in T.Kohonen’s Small World (A cites B).

Internet 19 Directed Political blogs [66] 1224 19090 Hyper links between web logs on US politics (A links to B).

20 Directed p2p-1 [67, 68] 10876 39994 Gnutella peer-to-peer file sharing network (A sent messages
to B).

21 Directed p2p-2 [67, 68] 8846 31839 Same as above.

22 Directed p2p-3 [67, 68] 8717 31525 Same as above.

Organizational 23 Directed Freeman-1 [69] 34 695 Social network of network researchers (A was nominated by
B on a questionnaire as acquaintance).

24 Directed Consulting [70] 46 879 Social network from a consulting company (B turned toA for
advice).

Language 25 Directed English words [71] 7381 46281 The words network in English (A links to B).

26 Directed French words [71] 8325 24295 The words network in French (A links to B).

Transportation 27 Directed USair97 [72] 332 2126 US Airline 1997 (There are flights from A to B).

28 Undirected USA top-500 [73] 500 5980 Flight network in USA.

Social com-
munication

29 Undirected Facebook[74] 4039 88234 The online social network as similar as Facebook.

Internet 30 Undirected Internet-1997 [75] 3015 5156 Autonomous Systems topology of the Internet.

31 Undirected Internet-1999 [75] 5357 10328 Same as above.

32 Undirected Internet-2001 [75] 10515 21455 Same as above.

Autonomous
systems

33 Undirected Oregon1-010331 [67] 10670 22002 Autonomous Systems peering information inferred from Ore-
gon route-views.

34 Undirected Oregon1-010526 [67] 11174 23409 Same as above.

35 Undirected Oregon2-010331 [67] 10900 31180 Same as above.

36 Undirected Oregon2-010526 [67] 11461 32730 Same as above.

37 Undirected AS-733 [67] 6474 13895 Same as above.

Collaboration
networks

38 Undirected Ca-GrQc[67] 5242 14496 Collaboration network of Arxiv General Relativity.

39 Undirected Ca-HepTh [67] 9877 25998 Collaboration network of Arxiv High Energy Physics Theory.

40 Undirected Ca-HepPh [67] 12008 118521 Collaboration network of Arxiv High Energy Physics.

41 Undirected Ca-AstroPh [67] 18772 198110 Collaboration network of Arxiv Astro Physics.
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Supplementary Note 1: The minimum number of driver node in a line graph

Exact controllability. The exact controllability was recently proposed in Ref. [22] as a framework for

identifying the minimum set of driver nodes to achieve full control of networks with arbitrary structures

and link weights between nodes. Consider a network withN nodes described by the ordinary differential

equation [46, 47]:

ẋ = Ax +Bu, (S1)

where vector x = (x1, x2, ..., xN )T captures the states of nodes, u represents the external input signals

with u = (u1, u2, ..., um)T , A ∈ RN×N denotes the coupling matrix among nodes with aij representing

the weight of a directed link from node j to i (for undirected, aij = aji), and B ∈ RN×m is the control

matrix.

The exact controllability theory for complex networks stems from the Popov-Belevitch-Hautus (PBH)

test [46, 47, 48]. According to the PBH test, system (S1) is fully controllable if and only if

rank (cIN −A,B) = N (S2)

for any complex number c, where IN is the identity matrix of dimension N . The minimum number ND

of driver nodes is defined in terms of B as ND = min{rank(B)}.

The rank of the matrix [cIN − A,B] is contributed by the number of its linearly independent rows.

Thus, the minimum rank of B should be equal to the number of linearly dependent rows in matrix

[cIN − A], which is equal to N − rank(λMIN − A), where λM is the eigenvalue associated with the

maximum geometric multiplicity. Note thatN−rank(λMIN−A) is nothing but the maximum geometric

multiplicity of the state matrix A. Thus, for arbitrary network structures and link weights, the minimum

numberND of driver nodes is determined by the maximum geometric multiplicity µ(λi) of the eigenvalue

λi of A:

ND = max
i
{µ(λi)}. (S3)

Particularly, for a large sparse network in the absence of self-loops, the expectation of eigenvalues

of adjacent matrix is E(λ) = 1/N
∑N

i=1 λi = 1/N
∑N

i=1 aii ≈ 0. Thus, µ(λM
i ) arises at λ = 0 with

high probability [49]. Furthermore, we know that the geometric multiplicity associated with the zero

eigenvalue is equal to rank deficiency [50]: µ(0) = N − rank(A). Thus, the minimum number ND of

driver nodes determined by the maximum geometric multiplicity of λ = 0 in large sparse networks is

ND = max{1, N − rank(A)}. (S4)
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The minimum number of driver nodes in a line graph. For the dynamical process occurring on the

node of a line graph L(G), according to the exact controllability theory [22], the minimum number

N
L(G)
D of driver nodes in L(G) is determined by the maximum geometric multiplicity of its adjacent

matrix, i.e., NL(G)
D = maxi{µ(λi)}. Now we focus on the expected eigenvalues in the line graph L(G).

We first estimate the sparsity of L(G). The sparsity is defined by the ratio of the actual number of

edges to the maximum number of possible edges among nodes. For a directed network, the sparsity is

approximately ρ = M/N2 for a sufficiently large N . Note that the number of nodes in the line graph

L(G) is equal to the number of edges in L(G)’s original directed or undirected network G. Hence the

sparsity of L(G) is

ρL(G) =
ML(G)

N2
L(G)

=

∑N
i=1 k

+
i k
−
i

[1/2
∑N

i=1(k+
i + k−i )]2

=

∑N
i=1 k

+
i k
−
i

1/4
∑N

i=1

∑N
j=1(k+

i k
+
j + k+

i k
−
j + k−i k

+
j + k−i k

−
j )
,

(S5)

where k+
i and k−i are the out-degree and in-degree of node i in G, respectively, and N is the number of

nodes in G. This implies that in a line graph L(G), the sparsity depends on the degree distribution of

both in- and out-degree in G.

Consider a directed or undirected network G with homogeneous degree distribution. An extreme

case is that each node has the same in- and out-degree. In this case, the sparsity of its line graph L(G) is

ρL(G) =
ML(G)

N2
L(G)

=
Nk2

N2k2
=

1

N
, (S6)

where k is the in- and out-degree of each node in G. Consider a directed or undirected network G with

heterogeneous degree distribution. An extreme case is that one node v has k+
v = k−v = N and the other

N − 1 nodes have k+
v = k−v = 1 in G. Then the sparsity of its line graph L(G) is

ρL(G) =
ML(G)

N2
L(G)

=
N2 +N − 1

(2N − 1)2
≈ 1

4
. (S7)

According to the above analysis, L(G) of a homogeneous network G is sparse, so that zero dominates

the eigenvalue spectrum and is associated with the maximum geometric multiplicity. Meanwhile, for the

extreme case of the G with the most heterogeneous degree distribution, the adjacent matrix of its L(G)

is

9



W =


∗

0
. . .
∗

∗ · · · ∗
...

. . .
... 0

∗ · · · ∗

 , (S8)

where W is a (2N − 1) × (2N − 1) matrix, and the nonzero elements in the lower-triangle stem from

the N × N switching matrix of node v with k+
v = k−v = N and other N − 1 switching matrices

contribute N − 1 nonzero elements to the upper-triangle. Despite the violation of sparsity in this case,

the expectation of eigenvalues of the adjacent matrix of L(G) is still E(λ) ≈ 0. Taken together, we

demonstrate that for the line graph L(G) of a large directed or undirected G with arbitrary structures,

the maximum geometric multiplicity of its adjacent matrix occurs at the eigenvalue λ = 0. Thus, for an

arbitrary line graph L(G), its minimum number NL(G)
D of driver nodes is determined by the geometric

multiplicity associated with the zero eigenvalue and can be evaluated by

N
L(G)
D = max{1,M − rank(W )}, (S9)

whereM is the number of edges in the original directed or undirected networkG. We have examined that

for all networks studied in the main text and in Supplementary Information, zero dominates eigenvalue

spectrum of L(G) and is associated with the maximum geometric multiplicity.
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Supplementary Note 2: The relation between the switching matrix and the adjacency ma-

trix of line graph.

For the relation between the switching matrix and the adjacency matrix of line graph, a lemma

concerning the line graph is necessary, as follows [51]:

Lemma 1 A directed network without multiple arcs is a line graph if and only if any two columns (rows)

of its adjacent matrix are always either identical or orthogonal.

In the adjacent matrix of the line graph L(G), identical columns (rows) indicate that the locations of

nonzero elements in two columns (rows) are the same, and orthogonal columns (rows) indicate that the

locations of nonzero elements in two columns (rows) are different entirely. The above lemma indicates

that, for two arbitrary nodes in the line graph, their neighbouring nodes are either the same or entirely

different.

According to the definition of the general switchboard dynamics (GSBD) and the above lemma, we

offer a theorem as follows.

Theorem 1 In the GSBD, all of the nonzero elements in the adjacent matrix of line graph L(G) stem

from the switching matrices Sv in the original directed or undirected (bidirectional) graph G, and the

nonzero elements in identical columns (rows) stem from the same switching matrix.

Proof. For a line graph L(G) stems from a directed or bidirectional network G, an edge in L(G) repre-

sents a length-two directed path in the original networkG, and each length-two directed path corresponds

to an element in the switching matrix of a node in G. The key finding is that there is a one-to-one corre-

spondence between the nonzero elements in the adjacent matrix of line graph L(G) and the elements in

the switching matrices of the original network G. Furthermore, according to the definition of the GSBD,

we know that the value of a nonzero element in the adjacent matrix of L(G) is equal to the value of

the correspondent element in the switching matrix in the original network G. Thus, all the nonzero ele-

ments in the adjacent matrix of the line graph stem from the switching matrices in the original directed

or undirected network.

In the GSBD, a switching matrix Sv is a k+
v × k−v matrix, and each element describes a switchboard

relationship from one incoming edge to one outgoing edge of node v. According to the transformational

rule, the nodes of L(G) correspond to the edges of the original network G, and each edge of L(G)

represents a length-two directed path of G. Hence, a node v with k+
v > 0 and k−v > 0 in G contributes

k+
v + k−v nodes and k+

v × k−v edges to L(G). Moreover, it is easy to see that, in the adjacent matrix W

11



of L(G), the nonzero elements corresponding to the above k+
v × k−v edges locate in identical columns

(rows). Taken together, the nonzero elements in the identical columns (rows) in the adjacent matrix

of L(G) stem from the same switching matrix in the original directed or undirected network G. This

concludes our proof.

An example is shown in Fig. S1. For both directed and undirected (bidirectional) networks, the

nonzero elements in the adjacent matrix of L(G) correspond to the elements with the same colours in the

switching matrices of G. We see that all nonzero elements in the adjacent matrix W of line graph L(G)

(Fig. S1(b) and (e)) stem from the switching matrices in the original directed or undirected (bidirectional)

graph G (Fig. S1(a) and (c)), and the nonzero elements in identical columns (rows) stem from the same

switching matrix.

Lemma 1 and Theorem 1 allow us to formulate the theorem below.

Theorem 2 The rank of the adjacent matrix of line graph L(G) is equal to the sum of the rank of all

switching matrices in the original directed or undirected (bidirectional) network G, i.e.,

rank(W ) =
N∑
i=1

rank(Si), (S10)

where N is the number of nodes in the original directed or undirected network G.

Proof. According to Lamma 1 that any two columns (rows) in the adjacent matrix W of line graph L(G)

are always either identical or orthogonal, we can obtain the canonical by simply exchanging columns and

rows (elementary transformation), which will not change rank(W ). As an example, the adjacent matrix

W in Fig. S1(b) can be transformed into the canonical form

W =


∗ ∗ 0 0 0
∗ ∗ 0 0 0
0 0 ∗ ∗ 0
0 0 0 0 ∗
0 0 0 0 0

 . (S11)

Because rank(W ) is not changed, rank(W ) is equal to the sum of the rank of sub-matrices composed

of the nonzero elements in identical columns (rows). Moreover, according to Theorem 1, all nonzero

elements in the adjacent matrix ofL(G) stem from the switching matrices inG, and the nonzero elements

in identical columns (rows) stem from the same switching matrix. Therefore, the rank of a sub-matrix

consisting of the nonzero elements in identical columns (rows) in the adjacent matrix of L(G) is equal

to the rank of its corresponding switching matrix in the original G. This concludes our proof.

12



Supplementary Note 3: The key results of ND and MD

Proof of the key results. In the GSBD, the dynamical process occurring in the edges of a directed or

undirected G can be turned into the dynamical process on the nodes of G’s line graph L(G), and the

driven edges in G correspond to the driver nodes in L(G). Thus, the minimum number MD of driven

edges in a directed or undirected network G is equivalent to the minimum number NL(G)
D of driver nodes

in the line graph L(G).

We first consider NL(G)
D in a given line graph. For the line graph L(G) of G with arbitrary structure,

its NL(G)
D is determined by the geometric multiplicity associated with the zero eigenvalue, which can

be estimated by Eq. (S9). Note that, in general, according to Eq. (S9), there is no driver node in a

connected component if the adjacent matrix of this component is of full rank. However, for an isolated

component, without driver node, external input signal cannot reach any node in the component, rendering

the component uncontrollable. This thus calls for a single driver node that can be any single node in the

component to receive input signals to fully control the component.

Therefore, we provide a general approach to identifying the minimum number MD of driven edges

in G, which is

MD = M −
N∑
i=1

rank(Si) +
C∑
i=1

βi, (S12)

where C is the number of connected components in G and βi = 1 if the switching matrices of all nodes

in component i are square matrices with full rank, and βi = 0 otherwise.

Now we obtain the minimum number ND of driver nodes required to control the dynamical process

occurring in the edges of network G. We know that the edges number in G is equal to the sum of

out-degree of each node, i.e., M =
∑N

i=1 k
+
i . Thus, Eq. (S12) can be reformulated to be

MD =
N∑
i=1

(
k+
i − rank(Si)

)
+

C∑
i=1

βi. (S13)

Equation (S13) indicates that a node i with rank(Si) < k+
i has to drive k+

i − rank(Si) outgoing edges

of the node. To be specific, Si of a driver node is not of full row-rank, which yields the general formula

of ND:

ND = N(rank(Si)<k
+
i ) +

C∑
i=1

βi, (S14)

where βi is the same as in Eq. (S12). Because a driver node can only drive its outgoing edges, we only

consider the row rank of switching matrices rather than column rank. Therefore, despite M =
∑N

i=1 k
−
i ,

we only use M =
∑N

i=1 k
+
i associated with outgoing links and the row rank of switching matrices,

13



which yields Eq. (S13). In the whole Supplementary Information below, rank refers to row-rank for

simplicity.

ND and MD in the upper and lower bounds based on local structural information. We provide

general formulas ofND andMD for both directed and undirected networks. The upper and lower bounds

are associated with unweighted and structural switching matrices, respectively.

In general, for arbitrary switching matrices, rank(Si) of all nodes has to be calculated to obtain ND

and MD. However, for unweighted switching matrices and structural switching matrices, we are able to

discern driver nodes and driven edges exclusively based on the in- and out-degrees of nodes.

For a directed network with unweighted switching matrices corresponding to the upper bound, the

switching matrix of node v with k+
v > 0 and k−v > 0 can contribute only one to the rank of W , which

accounts for the fact that a node with k+
v > 1 must be a driver node, and a node with k−v = 0 and k+

v = 1

must be a driver node as well. Thus for the upper bound, we have

NDU
D = N(k+v >1) +N(k−v =0,k+v =1) +

C∑
i=1

β′i, (S15)

where the number of nodes under some conditions is defined as N(∗) with the conditions in its subscript

and β′i is 1 if the ith connected component contains only the nodes with k+
v = k−v = 1. The minimum

number of driven edges is mainly determined by the number of nodes with k−v > 0 and k+
v > 0, i.e.,

MDU
D = M −N(k−v >0,k+v >0) +

C∑
i=1

β′i. (S16)

For a directed network with structural switching matrices corresponding to the lower bound, the rank

of the switching matrix of node v with k+
v > 0 and k−v > 0 contributes min(k+

v , k
−
v ) to the rank of W .

Hence, a node with k−v < k+
v must be a driver node, and the minimum number of driver nodes is

NDL
D = N(k−v <k

+
v ) +

C∑
i=1

β′′i , (S17)

where β′′i is 1 if the ith connected component is balanced (a connected component consisting of the

nodes with k+
v = k−v > 0). The minimum number of driven edges is mainly determined by the sum of

the smaller value between the in- and out-degree, which is

MDL
D = M −

N∑
i=1

min{k−i , k
+
i }+

C∑
i=1

β′′i . (S18)
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For an undirected (bidirectional) network with unweighted switching matrices corresponding to the

upper bound, all nodes have the same in- and out-degree. We denote the degree of a node as kv = k+
v =

k−v . The minimum number of driver nodes is mainly determined by the nodes with kv > 1, which is

NBU
D = N(kv>1) +

C∑
i=1

β′i. (S19)

The minimum number of driven edges is mainly determined by the number of nodes with kv > 0, which

is

MBU
D = M −N(kv>0) +

C∑
i=1

β′i. (S20)

For an undirected (bidirectional) network with structural switching matrices corresponding to the

lower bound, all switching matrices are square matrices with full rank except the isolated nodes. A

single driver node and a single driven edge are required in each balanced component. The minimum

numbers of both driver nodes and driven edges are determined by the number of balanced components,

which is

NBL
D = MBL

D =
C∑
i=1

β′′i . (S21)
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Supplementary Note 4: Reproducing structural edge controllability

Our GSBD framework can reproduce the structural edge controllability of directed networks. We

will prove that ND and MD obtained by our framework in a directed network associated with structural

switching matrices are equal to the structural edge controllability ND and MD in Ref. [38].

According to structural edge controllability [38], for a directed network with structural switching

matrices, ND is determined by the number of divergent nodes (the nodes with k+
v > k−v ) in G and one

arbitrary node from each balanced component, which is equal to NDL
D obtained from Eq. (S17).

Furthermore, according to structural edge controllability, each divergent node must control k+
v − k−v

of its outgoing edges, and the randomly selected nodes in each balanced component must control only

one of its outgoing edges, which yields

MSC
D =

N∑
i=1

max
(
k+
i − k

−
i , 0

)
+

C∑
i=1

β′′i

=
1

2

N∑
i=1

∣∣k+
i − k

−
i

∣∣+
C∑
i=1

β′′i .

(S22)

In the following, we will prove thatMDL
D obtained from Eq. (S18) is equal to the value ofMSC

D calculated

by the above equation. To be specific,

MDL
D = M −

N∑
i=1

min{k+
i , k

−
i }+

C∑
i=1

β′′i

=
1

2

N∑
i=1

(
k+
i + k−i

)
−

N∑
i=1

min{k+
i , k

−
i }+

C∑
i=1

β′′i

=
1

2

N∑
i=1

[(
k+
i + k−i

)
− 2min{k+

i , k
−
i }
]

+
C∑
i=1

β′′i ,

(S23)

where the parenthetical part is

(
k+
i + k−i

)
− 2min{k+

i , k
−
i }

=

{
k+
i − k

−
i if k+

i ≥ k
−
i

k−i − k
+
i if k+

i < k−i

=
∣∣k+
i − k

−
i

∣∣ ,
(S24)

which proves MDL
D = MSC

D for directed networks. Therefore, we prove that our GSBD framework

reproduce the structural edge controllability in directed networks.
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Supplementary Note 5: Analytical results

General formulas of nD and mD for arbitrary networks. The dependence of nD and mD in the upper

and lower bounds on local structures allows us to derive analytical results of edge controllability in terms

of the joint degree distribution of model networks. We assume that in- and out-degree of each node are

uncorrelated to offer analytical results.

For a directed network with unweighted switching matrices associated with the upper bound, the

nodes with k+
v = 0 are not driver nodes, as well as the nodes with k−v > 0 and k+

v = 1. By neglecting

balanced components with all nodes holding k+
v = k−v = 1 with negligible probability, the fraction of

driver nodes can be given from the joint degree distribution P (k−v = i, k+
v = j) = Pij , which is

nDU
D = 1−

∞∑
i=0

Pi0 −
∞∑
i=1

Pi1

= 1− P0 − P1 + P01,

(S25)

i.e., we remove the joint probabilities for the cases with k+
v = 0, or with k−v > 0 and k+

v = 1 simultane-

ously. The fraction of driven edges is given by

mDU
D =

1

M

M −N
1−

∞∑
i=1

Pi0 −
∞∑
j=1

P0j − P00


= 1− 1

〈k〉

(
1− 2

∞∑
i=0

Pi0 + P00

)

= 1− 1

〈k〉
(1− 2P0 + P00) ,

(S26)

i.e., we remove joint probabilities when in-degree and/or out-degree are/is zero. Here, the average degree

is 〈k〉 =
〈
kin
〉

=
〈
kout

〉
= M/N .

For a directed network with structural switching matrices corresponding to the lower bound, we have

proved that our GSBD framework can reproduce the structural edge controllability in directed networks.

Thus, the fraction of driver nodes is given by [38]

nDL
D =

∞∑
i=0

∞∑
j=i+1

Pij =
1

2

(
1−

∞∑
i=0

Pii

)
, (S27)

i.e., the fraction of driver nodes is equal to the half of the fraction of non-balanced nodes. The fraction
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of driven edges is given by [38]

mDL
D =

N

M

∞∑
i=0

∞∑
j=i+1

(j − i)Pij

=
1

〈k〉

∞∑
i=0

∞∑
j=1

jPi,(i+j).

(S28)

The above equation is derived based on the fact that there are NPij divergent nodes with in-degree i and

out-degree j, and each of them has to drive j − i edges.

For an undirected network with unweighted switching matrices corresponding to the upper bound,

components only consisting of the nodes with k+
v = k−v = 1 are not negligible. Note that the number

of the components is determined by the number of isolated edges, i.e. the edge does not connect to any

other edges in the original undirected network. The fraction of isolated edges can be evaluated by the

joint probability P (i, j) in the undirected network, i.e.,

P (1, 1) = Pn(1)Pn(1) =
P (1)2

〈k〉2
=

P 2
1

〈k〉2
, (S29)

where P (1, 1) is the probability of an edge eij with ki = kj = 1, P (k) denotes the degree distribution

of the undirected network, and Pn(k) denotes the excess degree distribution of the undirected network,

that is, the degree distribution for a node at the end of a randomly chosen link. Here, the average degree

〈k〉 of an undirected network is equal to
〈
kin
〉

and
〈
kout

〉
of the correspondent bidirectional network.

The isolated nodes without edges are not driver nodes, similar to the nodes with k+
v = k−v = 1. Thus

the fraction of driver nodes is given by

nBU
D =

1

N

(
N −NP0 −NP1 +

1

2
MP (1, 1)

)
= 1− P0 − P1 +

1

2 〈k〉
P 2

1 ,

(S30)

where we remove the faction of isolated nodes and the nodes with k+
v = k−v = 1 from the drive node set,

and include the probability of finding components composed of the nodes with k+
v = k−v = 1. MD of

an undirected network with unweighted switching matrices is mainly determined by the number of the

nodes with nonzero degree. The fraction of driven edges is given by

mBU
D =

1

M

(
M −N(1− P0) +

1

2
MP (1, 1)

)
= 1− 1

〈k〉
(1− P0) +

1

2 〈k〉2
P 2

1 ,

(S31)
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where the probability of the presence of isolated nodes is removed and the probability that components

consisting of the nodes with k+
v = k−v = 1 is included.

For an undirected network with structural switching matrices corresponding to the lower bound,

the minimum numbers of driver nodes ND and driven edges MD are determined by the number of

connected components. For an undirected network with c = M/N , the fraction of connected components

nCC = NCC/N is given by [44]

nCC =

{
1− c if 0 ≤ c ≤ 1

2 ,
1
2c

(
x(c)− x(c)2

2

)
if c > 1

2 ,
(S32)

where x(c) =
∑∞

k=1
kk−1

k! (2ce−2c)k. The fraction of driver nodes is given by

nBL
D = nCC − P0, (S33)

i.e., we remove the probability for the fact that the connected components are isolated nodes. The fraction

of driven edges is given by

mBL
D =

N

M
(nCC − P0)

=
1

〈k〉
(nCC − P0).

(S34)

In the following, we combine our general formulas of nD and mD with degree distributions of net-

works to offer analytical results of three representative networks, including random networks, scale-free

networks and networks with an exponential degree distribution.

Erdős-Rényi networks. Directed and undirected Erdős-Rényi (ER) networks are generated by static

model [52]. For directed ER networks, both the in- and out-degrees follow a Poisson distribution. Thus,

for the upper bound of directed ER network, the expected fraction of driver nodes is given by

nDU
D = 1− (〈k〉+ 1)e−〈k〉 + 〈k〉 e−2〈k〉. (S35)

The expected fraction of driven edges is

mDU
D = 1− 1

〈k〉
(1− 2e−〈k〉 + e−2〈k〉). (S36)
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For the lower bound of ER directed network, the expected fraction of driver nodes is [38]

nDL
D =

1

2

(
1−

∞∑
i=0

〈k〉2i

i!i!
e−2〈k〉

)

=
1

2

(
1− e−2〈k〉I0(2 〈k〉)

)
,

(S37)

where Ia(x) is the modified Bessel function of the first kind. The expected fraction of driven edges

is [38]

mDL
D =

e−2〈k〉

〈k〉

∞∑
i=0

∞∑
j=1

j
〈k〉2i+j

i!(i+ j)!

=
e−2〈k〉

〈k〉

∞∑
j=1

jIj(2 〈k〉),
(S38)

For undirected ER networks, each undirected edge represents two directed edges with opposite di-

rections. Thus, we have k+
v = k−v for each node, and both the in- and out-degrees follow the Poisson

distribution. For the upper bound of undirected ER networks, the expected fraction of driver nodes is

nBU
D = 1− (〈k〉+ 1)e−〈k〉 +

〈k〉
2
e−2〈k〉. (S39)

The expected fraction of driven edges is

mBU
D = 1− 1

〈k〉

(
1− e−〈k〉

)
+

1

2
e−2〈k〉. (S40)

For the lower bound of undirected ER networks, the expected fraction of driver nodes is

nBL
D = nCC − e−〈k〉, (S41)

and the expected fraction of driven edges is

mBL
D =

1

〈k〉

(
nCC − e−〈k〉

)
. (S42)

Scale-free networks based on static model. Directed and undirected scale-free (SF) networks are
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generated by static model [52]. Both the in- and out-degrees follow a power-law distribution [53], i.e.,

P (k) =
[〈k〉 (1− a)]1/a

a

Γ(k − 1/a, 〈k〉 (1− a))

Γ(k + 1)
, (S43)

where Γ(z, a) is the incomplete Gamma function and Γ(z, a) → Γ(z) for z → ∞. We let δ denote
[〈k〉(1−a)]1/a

a and let Γk denote Γ(k−1/a,〈k〉(1−a))
Γ(k+1) .

For the upper bound of directed SF networks, the expected fraction of driver nodes is

nDU
D =1− δ(Γ0 + Γ1) + δ2Γ0Γ1 (S44)

The expected fraction of driven edges is

mDU
D =1− 1

〈k〉
(
1− 2δΓ0 + δ2Γ2

0

)
. (S45)

For the lower bound of directed SF networks, the expected fraction of driver nodes is

nDL
D =

1

2

(
1− δ2

∞∑
i=0

Γ2
i

)
. (S46)

The expected fraction of driven edges is

mDL
D =

δ2

〈k〉

∞∑
i=0

∞∑
j=1

jΓiΓi+j . (S47)

For the upper bound of undirected SF networks, the expected fraction of driver nodes is

nBU
D = 1− δ(Γ0 + Γ1) +

1

2 〈k〉
δ2Γ2

1. (S48)

The expected fraction of driven edges is

mBU
D = 1− 1

〈k〉
(1− δΓ0) +

1

2 〈k〉2
δ2Γ2

1. (S49)

For the lower bound of undirected SF networks, we use the fraction of connected components nCC

in undirected ER network to approximate the expected fraction of driver nodes, yielding

nBL
D = nCC − e−〈k〉. (S50)
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The expected fraction of driven edges is

mBL
D =

1

〈k〉

(
nCC − e−〈k〉

)
. (S51)

Exponentially distributed (EX) networks. The EX networks with an exponential degree distribution

are generated by configuration model [54]. Both the in- and out-degrees follow the same exponential

distribution, which is

P (k+
v = k) = P (k−v = k) = Ce−k/κ, (S52)

where C = 1− e−1/κ and κ = 1/log 1+〈k〉
〈k〉 .

For the upper bound of directed EX networks, the expected fraction of driver nodes is

nDU
D = 1− C − Ce−1/κ + C2e−1/κ

= 〈k〉
(

1

〈k〉+ 1
− 1

(〈k〉+ 1)2
+

1

(〈k〉+ 1)3

)
.

(S53)

The expected fraction of driven edges is

mDU
D = 1− 1

〈k〉
(1− 2C + C2)

= 1− 〈k〉
(〈k〉+ 1)2

.

(S54)

For the lower bound of directed EX networks, the expected fraction of driver nodes is [38]

nDL
D =

1

2

(
1− C2

∞∑
i=0

e−2i/κ

)

=
1

2

(
1− 1− e−1/κ

1 + e−1/κ

)

=
〈k〉

2 〈k〉+ 1
.

(S55)
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The expected fraction of driven edges is [38]

mDL
D =

C2

〈k〉

∞∑
i=0

∞∑
j=1

je−(2i+j)/κ

=
1

〈k〉
1− e−1/κ

1 + e−1/κ

∞∑
j=1

je−j/κ

=
〈k〉+ 1

2 〈k〉+ 1
.

(S56)

For the upper bound of undirected EX networks, the expected fraction of driver nodes is

nBU
D = 1− C − Ce−1/κ +

1

2 〈k〉
C2e−2/κ

= 1− 1

〈k〉+ 1
− 〈k〉

(〈k〉+ 1)2
+

1

2 〈k〉

(
1

〈k〉+ 1

)2( 〈k〉
〈k〉+ 1

)2

=
〈k〉2

(〈k〉+ 1)2
+

〈k〉
2(〈k〉+ 1)4

.

(S57)

The expected fraction of driven edges is

mBU
D = 1− 1

〈k〉
(1− C) +

1

2 〈k〉2
C2e−2/κ

= 1− 1

〈k〉

(
〈k〉
〈k〉+ 1

)
+

1

2 〈k〉2

(
1

〈k〉+ 1

)2( 〈k〉
〈k〉+ 1

)2

=
〈k〉
〈k〉+ 1

+
1

2(〈k〉+ 1)4
.

(S58)

For the lower bound of undirected EX networks, we use the fraction of isolated components nCC in

ER undirected network to estimate the expected fraction of driver nodes, which is

nBL
D = nCC − e−〈k〉. (S59)

The expected fraction of driven edges is

mBL
D =

1

〈k〉

(
nCC − e−〈k〉

)
. (S60)

Scale-free networks based on configuration model. The SF networks with power-law degree distribu-

tions are generated by configuration model [54]. Both in- and out-degrees follow the same power-law
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degree distribution with scaling exponent γ and an exponential cutoff, which is

P (k+
v = k) = P (k−v = k) = Ck−γe−k/κ. (S61)

The pure power-law distribution has no cutoff (κ→∞), which is

P (k+
v = k) = P (k−v = k) = Ck−γ . (S62)

For the upper bound of directed SF networks, the expected fraction of driver nodes is

nDU
D = 1− P0 − P1 + P01

= 1− Ce−1/κ

= 1− e−1/κ

Liγ(e−1/κ)
,

(S63)

where C = 1/Liγ(e−1/κ) and Lis(z) is the polylogarithm function. The polylogarithm Lis(z) reduces

to the Riemann zeta function ζ(s) for z = 1. Hence, for the upper bound of pure power-law (κ → ∞)

distributed directed networks, the expected fraction of driver nodes is simplified as

nDU
D = 1− 1

ζ(γ)
. (S64)

The expected fraction of driven edges is

mDU
D = 1− 1

〈k〉
(1− 2P0 + P00)

= 1− 1

〈k〉

= 1− Liγ(e−1/κ)

Liγ−1(e−1/κ)
,

(S65)

where 〈k〉 = CLiγ−1(e−1/κ). When κ→∞, the expected fraction of driven edges is simplified as

mDU
D = 1− ζ(γ)

ζ(γ − 1)
. (S66)
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For the lower bound of directed SF networks, the expected fraction of driver nodes is [38]

nDL
D =

1

2

(
1− C2

∞∑
i=0

k−2γe−2k/κ

)

=
1

2

(
1− C2Li2γ(e−2/κ)

)
=

1

2
− Li2γ(e−2/κ)

2Liγ(e−2/κ)2
.

(S67)

When κ→∞, the expected fraction of driver nodes is simplified as

nDL
D =

1

2
− ζ(2γ)

2ζ(2γ)2
. (S68)

The expected fraction of driven edges is [38]

mDL
D =

C2

〈k〉

∞∑
i=1

∞∑
j=1

ji−γe−i/κ(i+ j)−γe−(i+j)/κ

=

∑∞
j=1 je

−j/κ∑∞
i=1

e−2i/κ

iγ(i+j)γ

Liγ(e−1/κ)Liγ−1(e−1/κ)
.

(S69)

When κ→∞, the expected fraction of driven edges is simplified as

mDL
D =

∑∞
j=1 j

∑∞
i=1 i

−γ(i+ j)−γ

ζ(γ)ζ(γ − 1)
. (S70)

For the upper bound of undirected SF networks, the expected fraction of driver nodes is

nBU
D = 1− P0 − Ce−1/κ +

1

2 〈k〉
C2e−2/κ

= 1− e−1/κ

Liγ(e−1/κ)
+

e−2/κ

2Liγ(e−1/κ)Liγ−1(e−1/κ)
.

(S71)

When κ→∞, the expected fraction of driver nodes is simplified as

nBU
D = 1− 1

ζ(γ)
+

1

2ζ(γ)ζ(γ − 1)
. (S72)

The expected fraction of driven edges is

mBU
D = 1− 1

〈k〉
(1− P0) +

1

2 〈k〉2
C2e−2/κ

= 1− Liγ(e−1/κ)

Liγ−1(e−1/κ)
+

e−2/κ

2Liγ−1(e−1/κ)2
.

(S73)
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When κ→∞, the expected fraction of driven edges is simplified as

mBU
D = 1− ζ(γ)

ζ(γ − 1)
+

1

2ζ(γ − 1)2
. (S74)

For the lower bound of power-law and pure power-law (κ → ∞) distributed undirected networks,

the expected fraction of driver nodes is

nBL
D = nCC − P0 = nCC, (S75)

The expected function of driven edges is

mBL
D =

1

〈k〉
(nCC − P0)

=
Liγ(e−1/κ)

Liγ−1(e−1/κ)
nCC.

(S76)

When κ→∞, the expected fraction of driven edges is simplified as

mBL
D =

ζ(γ)

ζ(γ − 1)
nCC. (S77)

Regular networks. The minimum numbers of driver nodes and driven edges in regular networks can be

simply calculated in terms of local structural information. For instance, a directed chain graph has N −2

nodes with k+
v = k−v = 1, a starting node with k+

v = 1 and k−v = 0, and an ending node with k+
v = 0

and k−v = 1. Thus, the starting node is a driver node for both upper and lower bounds, and an outgoing

edge of this driver node is a driven edge. An undirected chain graph has N −2 nodes with k+
v = k−v = 2

and two terminal nodes with k+
v = k−v = 1. Thus, for the upper bound, N−2 nodes are driver nodes and

each driver node has to drive one outgoing edge; for the lower bound, the undirected graph is a balanced

component and only one driver node and one driven edge are required. The simple analytical results of

several regular networks are shown in Tab. S1.
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Supplementary Note 6: Transition between the upper and lower bounds

We explore the transition between the upper and the lower bound. Without loss of generality and for

simplicity, we only consider a single switching matrix Sv and adjust the element values in Sv to realize

the transition from the upper bound to the lower bound of rank(Sv). If the upper (lower) bounds of

rank(Sv) for all switching matrices are reached, the lower (upper) bounds of nD and mD for the whole

network are achieved as well.

The lower bound of rank(Sv) can be reached by assigning elements with identical values in the

switching matrix Sv with dimension L×µLwhere µ > 1. We study the normalized rank (1/L)rank(Sv)

as a function of the proportion ρ ∈ [0, 1] of random values in Sv. In other words, ρ is the fraction of

elements with random values in Sv and there are only elements with identical values or random values

in Sv.

To study the transition between the upper and lower bounds of (1/L)rank(Sv), a formula in terms

of balls associated with bins is necessary [55], which is

E[z] = (1− 1

β
)α, (S78)

where E[z] is the expectation of the number of empty bins when α balls are placed randomly into β bins.

We assume that each row of Sv is an empty bin, and the emergence of an element with random

value is associated with a ball falling into an empty bin. Thus, we can use the number of empty bins to

approximate the number of linearly dependent rows, and the normalized rank is given by:

1

L
rank(Sv) = 1−

(
1− 1

L

)ρµL2

, (S79)

As shown in Fig. S4(a) and (b), the analytical prediction from the above equation is in reasonable agree-

ment with numerical results for switching matrices with different dimensions.

Both the simulation and analytical results demonstrate that the velocity of the transition from the

lower bound to the upper bound as ρ increases is determined by the higher value between the column

dimension and the row dimension, or in other words, determined by the larger value between in- and

out-degree of a node that is associated with the dimensions of the switching matrix. In general, a node

with a larger incoming or outgoing degree is associated with a fast transition from the lower to the upper

bound through increasing the fraction of the elements with random values, as shown in Fig. S4.
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Supplementary Note 7: Strong structural controllability

In an arbitrary network, a node is said to be strongly structurally controllable (SSC) if, whatever

values the elements in its switching matrix take, the category of the node and that of its outgoing edges

will not change [19, 40]. Similarly, a node is said to be weakly structurally controllable (WSC) if there

exist a switching matrix of this node is not of full rank for a set of elements values. The numbers of

strongly and weakly structurally controllable nodes are denoted by NSSC and NWSC, respectively. We

formulate a theorem as follows.

Theorem 3 In GSBD, the strongly structurally controllable nodes include the nodes with k+
v ≤ 1 or

k−v ≤ 1, and the weakly structurally controllable nodes include the nodes with k+
v > 1 and k−v > 1.

Proof. In the GSBD, switching matrix does not exist for a node with k+
v = 0 or k−v = 0, so that the

change of nonzero elements has no influence to the category of the node and of its outgoing edges. For a

node with k+
v > 0 and k−v > 0, the minimum rank of its switching matrix is one. The change of nonzero

elements will not affect the category of the nodes with k+
v = 1 or k−v = 1 and that of its outgoing edges.

In contrast, the rank of switching matrix can change for a node with k+
v > 1 and k−v > 1. These conclude

our proof: for an arbitrary network, the strongly structurally controllable nodes include the nodes with

k+
v ≤ 1 or k−v ≤ 1, and the weakly structurally controllable nodes include the nodes with k+

v > 1 and

k−v > 1, and N = NSSC +NWSC.

Analytical results of Nssc. The dependence of the Nssc on the joint degree distribution allows us to

derive analytical formulas for the expected fraction of SSC nodes in model networks. The fraction of

SSC nodes in a directed network with a joint degree distribution P (k−v = i, k+
v = j) = Pij can be

formulated as

nSSC =

∞∑
i=0

Pi0 +

∞∑
i=0

P0j − P00 +

∞∑
i=1

Pi1 +

∞∑
i=1

P1j − P11

= 2

( ∞∑
i=0

Pi0 +

∞∑
i=1

Pi1

)
− P00 − P11

= 2(P0 + P1 − P01)− P00 − P11,

(S80)

where we include the joint probabilities for the case associated with k+
v ≤ 1 or k−v ≤ 1, and remove the

repeating parts. Then the fraction of WSC nodes is given by nWSC = 1− nSSC.

28



The expected fraction of SSC nodes in an undirected network is

nSSC = P0 + P1. (S81)

where we include the probabilities of the case associated kv = 0 and kv = 1. Then we obtain the

expected fraction of WSC nodes via nWSC = 1− nSSC.

For directed ER networks, both the in- and out-degrees follow a Poisson distribution. By combining

the degree distribution with the general formulas of nssc, we obtain the expected fraction of SSC nodes,

as follows.

nSSC = 2
(
e−〈k〉 + 〈k〉 e−〈k〉 − 〈k〉 e−2〈k〉

)
− e−2〈k〉 − 〈k〉2 e−2〈k〉

= 2(〈k〉+ 1)e−〈k〉 − (〈k〉+ 1)2e−2〈k〉.

(S82)

For undirected ER networks, the expected fraction of SSC nodes is given by

nSSC = (〈k〉+ 1)e−〈k〉. (S83)

For directed SF networks generated by static model [52], both the in- and out-degrees follow a power-

law distribution. By combining the degree distribution with the general formulas of nssc and assuming

the absence of the correlation between in- and out-degrees of nodes, we obtain the expected fraction of

SSC nodes, as follows.

nSSC = 2(δΓ0 + δΓ1 − δ2Γ0Γ1)− δ2(Γ2
0 + Γ2

1)

= 2δ(Γ0 + Γ1)− δ2(2Γ0Γ1 + Γ2
0 + Γ2

1).
(S84)

For undirected SF networks, the expected fraction of SSC nodes is

nSSC = δ(Γ0 + Γ1). (S85)

For directed exponentially distributed networks, both the in- and out-degrees follow the same expo-

nential distribution. The expected fraction of SSC nodes is

nSSC = 2
(
C + Ce−1/κ − C2e−1/κ

)
− C2 − C2e−2/κ

=
4〈k〉+ 1

(〈k〉+ 1)2
− 3〈k〉2 + 2〈k〉

(〈k〉+ 1)4
.

(S86)
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For undirected exponentially distributed networks, the expected fraction of SSC nodes is given by

nSSC = C + Ce−1/κ

=
2〈k〉+ 1

(〈k〉+ 1)2
.

(S87)

For the directed SF networks generated by configuration model [54], both the in- and out-degrees

follow a power-law degree distribution with a scaling exponent γ and an exponential cutoff. The expected

fraction of SSC nodes for finite κ is

nSSC = 2Ce−1/κ − C2e−2/κ

= 2
e−1/κ

Liγ(e−1/κ)
− e−2/κ

Liγ(e−1/κ)2
.

(S88)

When κ→∞, the expected fraction of SSC nodes is simplified as

nSSC = 2
1

ζ(γ)
− 1

ζ(γ)2
. (S89)

For the undirected SF networks generated by configuration model, the expected fraction of SSC nodes

for finite κ reads

nSSC = Ce−1/κ =
e−1/κ

Liγ(e−1/κ)
. (S90)

When κ→∞, the expected fraction of SSC nodes is simplified as

nSSC =
1

ζ(γ)
. (S91)

For regular networks, Nssc can be exactly calculated based on local information. For instance, a

directed chain graph has N − 2 nodes with k+
v = k−v = 1, a starting node with k+

v = 1 and k−v = 0,

and an ending node with k+
v = 0 and k−v = 1. Thus all nodes are SSC in the directed chain graph. An

undirected chain graph has N − 2 nodes with k+
v = k−v = 2 and two terminal nodes with k+

v = k−v = 1.

According to the criterion of SSC nodes, there are two SSC nodes corresponding to the two terminal

nodes. The analytical results of the other regular networks are shown in Tab. S1.
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Supplementary Note 8: Theoretical predictions of real networks

We substantiate how to derive theoretical predictions of driver nodes nD, driven edgesmD and strong

structural controllability nssc for real directed and undirected networks. To be specific, we insert the in-

and out-degree distribution of a real directed network into Eq. (S25) to predict the fraction of driver

nodes nanalyse
D in the upper bound via

nanalyse
D = 1−

∞∑
i=0

Pi0 −
∞∑
i=1

Pi1

= 1− Pout(0)− Pout(1) + Pin(0)Pout(1),

(S92)

where Pout(0), Pout(1) and Pin(0) are the fraction of nodes in the real network with degree k+
v = 0,

k+
v = 1 and k−v = 0, respectively. The theoretical predictions of the fraction of driven edges manalyse

D

and strong structural controllability nanalyse
scc are given in a similar way.
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Supplementary Note 9: Network models and data sets

Static model. Directed and undirected ER and SF networks can be generated by static model [52].

A directed ER network starts from N isolated nodes, and the identical weight 1/N was assigned

to each node, leading to the same selected probability of each node. We randomly select two nodes

and connect them with a directed edge eij from node i to j if there exists no edge between them. This

process is repeated until |E| = M edges are created in the network. The ER networks generated in this

way exhibits the Poisson distribution of both in-degrees and out-degrees, as follows:

P (k) =
e−〈k〉 〈k〉k

k!
, (S93)

where the average degree is 〈k〉 = 〈k+〉 = 〈k−〉 = M/N .

A directed SF network starts from N isolated nodes. We assign two weights pi = i−aout and qi =

i−ain (i = 1, ..., N ) to each node, respectively, where ain, aout ∈ (0, 1). Then two nodes i and j, are

selected with probabilities pi/
∑

k pk and qj/
∑

k qk (k = 1, ..., N ), respectively, and they are connected

by a directed edge eij from node i to j if there exists no edge between them. This process is repeated

until |E| = M edges are created in the network. The in-degree or out-degree distributions of the SF

network are [53]

P (k) =
[〈k〉 (1− a)]1/a

a

Γ(k − 1/a, 〈k〉 (1− a))

Γ(k + 1)
, (S94)

where Γ(s, x) is the incomplete Gamma function, Γ(n) = (n−1)! is the gamma function, and a = ain =

aout. For large k, the above formula gives the asymptotic behavior of the degree distribution, which is

P (k) ' [〈k〉 (1− a)]1/a

a

Γ(k − 1/a)

Γ(k + 1)
∼ k−1−1/a. (S95)

The SF network generated in this way follows a power law distribution of both the in-degrees and out-

degrees, and the scaling exponents are γin = (1 + ain)/ain and γout = (1 + aout)/aout, respectively.

Note that, for a SF network generated by static model, its in-degree and out-degree of a node are

correlated, i.e., a node with a large in-degree usually has a large out-degree (the first node i = 1 has the

maximum in-degree and out-degree). To eliminate the correlation, after assigning two weights i−ain and

i−aout to each node, we randomly reset the order of both weight sequences. As a result, after the reset,

the weights of first node may be p1 = i−aout and q1 = j−ain , where i 6= j 6= 1 and 0 < i, j ≤ N . Thus,

the correlation between in- and out-degrees of any nodes will be negligible in the SF network.

The ER and SF undirected networks are generated in the same way as the directed networks.
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Configuration model. EX and SF networks can be generated by configuration model [54].

For an undirected network with a given expected degree sequence K = (k1, k2, ..., kn) following an

exponential or power-law distribution, every node vi is assigned weight ki. The probability of establish-

ing an edge eij is according to the joint weights of the nodes at both ends:

Pij =
kikj∑
l kl

, (S96)

where max(k2
i ) <

∑
l kl, and the ki is not limited to be integers.

The directed EX and SF networks have a similar generating process as above. Two expected degree

sequences k+ and k− following an exponential or power-law distribution are given, and a node vi is

assigned node weight k+
i and k−i . We reset the order of both weight sequences stochastically to eliminate

the correlation between in- and out-degrees of each node in directed networks. The probability of creating

an edge eij is according to the joint weights of the nodes at both ends:

Pij =
k+
i k
−
j∑

l kl
, (S97)

where max(k+
i k
−
j ) <

∑
l kl, and k+

i and k−i are not limited to be integers.

Real networks. The details of the real-world directed and undirected networks in the main text and

Supplementary Information are presented in Tab. S2. For each real network, we show its type, name, the

number of nodes, the number of edges, and physical description. Note that, to be sufficiently clear, we

give the semantics of edges in directed networks.
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