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Extreme events, a type of collective behavior in complex networked dynamical systems, often can have
catastrophic consequences. To develop effective strategies to control extreme events is of fundamental
importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical
setting, we find that making the network ‘‘mobile’’ can effectively suppress extreme events. A striking,
resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the
probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of
control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding
to current areas such as cybersecurity are discussed.

E
xtreme events occur on a large variety of complex networked systems, examples of which include sudden
bursts of packet flows in the Internet, jamming in computer or transportation networks, abrupt rise of web
requests, and power blackouts in electrical power grid, etc. The intrinsic dynamics responsible for extreme

events are network traffic or flow dynamics1–13 and the corresponding flux-fluctuation behaviors14–22. Especially,
abnormally large fluctuations in the flow exceeding the nodal or link capacities can lead to extreme events, which
either can be triggered by external disturbances or are a type of intrinsically emergent behavior. Extreme events
can have catastrophic consequences, demanding the articulation and development of effective control strat-
egies20,23,24. This problem, despite its uttermost importance to many disciplines, has not been addressed. The
purposes of this report are to present an efficient and physically implementable method and to derive an analytic
theory to understand its working.

This work aims to develop a physically practical control scheme against extreme events emerged from the
intrinsic dynamic factors by using a simple but extensively representative model that captures the essential
mechanism of many complex networked systems with information, material, or energy transportation. Within
this model, as presented in the Methods Section, the random variables essential to the emergence extreme events
are sums of random variables distributed in a binomial fashion (thin-tailed) which have well-defined first and
second order moments. Thus, these sums follow the Lévy-alpha-stable distribution ga(x) with a 5 2 25,26, and we
do not expect the model to characterize all properties observed in reality, such as the ‘‘fat-tailed’’ distributions
corresponding to a , 2.

Our principal idea of controlling extreme events is to make the whole network system time-dependent in that
every node is mobile and consequently the associated set of links is time-varying. The mobility of the nodes can be
characterized by a velocity-like parameter. The system can thus be modeled as a mobile network in which agents
move in random directions but with constant velocity. Between any pair of agents, a link is established to enable
exchange of packets only when their physical distance is within a pre-defined communication radius. We find
that, the number of extreme events depends on the velocity and, strikingly, it exhibits a bell-shape, resonant-type
of functional relation, as exemplified in Fig. 1. That is, there exists an optimal velocity for which the number of
extreme events can be significantly reduced as compared with that in a static network. This finding suggests a
practical control scheme: the occurrence of extreme events can be suppressed by making the network mobile with
proper agent velocity. To understand this striking phenomenon, we develop a detailed analytic theory. To extend
the control, we find a generalized mobility capable of dramatically lowering the control cost. We also develop a
low-cost ‘‘intermittent strategy’’ that harnesses extreme events not only in mobile networks, but also in the
classical ER-random networks27. Since extreme events encompass catastrophic situations such as large-scale
breakdown induced by random failures of nodes or attacks, the general principle that dynamic networks can
be immune to extreme events can have significant applications in the field of security and robustness of complex
systems.
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We emphasize that our work is focused on controlling extreme
events caused by the intrinsic randomness of the system, rather than
external attacks. More sophisticated mechanisms such as failures and
load redistribution, e.g., as triggered by external attacks, would be an
interesting topic of study. Instead of analyzing the extreme value
distributions above the threshold as determined by the extreme value
theory28,29 under the peak-over-threshold setting, our work concen-
trates on calculating the total number of events that exceed a certain
threshold for the purpose of control.

Results
We consider a square domain of size L 3 L in which N agents move at
speed v but in random directions. The communication radius of each
agent is a=L, and the total number of packets on the network at any
given time is W. At time t, the number of packets carried by a node is
w(t), and each packet is delivered to a randomly selected neighboring
node at time t 1 1. In contrast to previous works on synchronization
in mobile-agent networks30–32 where periodic boundary conditions
were often used, we use the ‘‘hard-wall’’ boundary condition for the
consideration that a cross-boundary link connecting two nodes close
to the same boundary but physically distant from each other is not
physical in an actual traffic-flow network, which is discussed in a
later section. We will see that boundary effect plays a crucial role in
the dynamics of extreme events, a fact that will be fully exploited in
our development of the analytic theory.

The existence of optimal mobility and its robustness. Our exten-
sive computations indicate that the existence of an optimal moving
velocity to suppress extreme events is general: it holds under a variety

of boundary shapes, motion schemes, and even heterogeneously
distributed communication radii, as shown in Figs. 1a,b, and c.
This indicates that the characteristic, non-monotonous relation
between nex and velocity v that underlies the control of extreme
events is in fact robust with respect to variants in the system
setting such as the geometric shape of the domain, the manner by
which the individual nodes move, heterogeneity in the nodal
communication range, and packet transportation protocol.

As can be seen from Fig. 1a, different W values do not affect the
existence of the optimal moving velocity. Figure 1b shows, for a
number of variants in the geometric shape of the domain (square,
circle, and stadium), the relation between nex and v. We observe that
the non-monotonous behavior holds for all geometric shapes con-
sidered. As shown, the particular manner by which nodes in the
network move in the space has little effect on the non-monotonous
behavior. In particular, both random walk and deterministic motion
are considered, where for the latter, random moving directions are
chosen initially but at time t, a node moves along the direction of the
velocity at time t 2 1. Figure 1b indicates that the existence of an
optimal velocity to minimize the number of extreme events is highly
robust regardless of the domain geometry, random or deterministic
movements.

In realistic systems, mobile agents’ ranges are not homogeneous.
To model heterogeneity in the nodal communication range, we ran-
domly assign each node a weight m according to the distribution P(m)
, m23. The area of the nodal communication circle is given by

Ai~N A0
mb

iPN
l~1 mb

l

, where A0 5 pa2 is the average communication
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Figure 1 | The number of extreme events versus velocity and mobility. For a network of N 5 1200 nodes in a square domain of size L 5 10 (arbitrary

unit), (a), The number of extreme events nex versus the agent velocity v for W 5 50N, 80N, and 100N; (b), nex of extreme events versus velocity v when

nodes execute random walk (R) or deterministic motion (D) within square, circular, and stadium-shaped domains. The areas of the circle and the

stadium are chosen to be equal to the area of the square L 3 L. (c), Robustness of control with respect to heterogeneity in the nodal communication range:

nex versus v for b 5 21, 0, and 1, where b is a parameter characterizing the distribution of nodal communication range. (d) and (e), robustness of control

with respect to packet-transportation protocol: nex versus velocity v when packet generation and annihilation are taken into account for two situations

where (d) the total number of packets is fixed at W and (e) the number of newly generated packets at each time step is fixed to be W/N. (f), Generalization

of mobility: nex versus mobility, defined as the probability that a node moves with velocity v, for a number of v values. All simulation results are obtained

using 100 realizations in T 5 1000 time steps. The error bars in nex from different realizations have relatively small and similar magnitude in (a–e), and it

monotonously increases with velocity v, as shown in panel (a) [the error bars in (b–e) are omitted for clear visualization]. Here, the definition of an

extreme event on a node is that its number of packets is at least four standard-deviations above the average.
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area over all nodes, mi and ml are the assigned weight values corres-
ponding to nodes i and l, and b is an adjustable parameter character-
izing the heterogeneity of Ai. The distribution of Ai is thus

P Aið Þ*A{3=b
i . For b . 0, majority of nodes have relatively small

communication circles except for a few, and the opposite situation
occurs for b , 0. For b 5 0, the communication circles are all
identical: namely Ai 5 A0 and ai 5 a for i g [1, 2, …, N]. Since
the degree of a node is proportional to its communication area, it is
equivalent to a power-law degree distribution of the mobile network
with the fixed average degree Ækæ 5 N/L2A0. The physical meanings of
positive and negative values of b are the following. In a realistic
wireless sensor network, for example, there are usually anchor nodes
that have much larger communication ranges and play the role of
central controllers of the whole network. This situation can be char-
acterized by some positive value of b. There can also be a few nodes
that malfunction or run low on power supply. These nodes would
have nearly zero communication ranges while most nodes in the
network have finite communication ranges. This corresponds to
the case of a negative b value. Figure 1c shows that the non-
monotonous behavior in the nex-v relation holds regardless of
whether the value of b is positive or negative, indicating the robust-
ness of mobility-based strategy to harness extreme events in the
presence of nodal heterogeneity.

We also consider realistic variants of the packet-transportation
model by randomly assigning each packet a destination node where
the packet annihilates upon its arrival at the destination, and new
packets are generated to balance the annihilation effect. Two packet
generation schemes are studied: (1) the total amount of packets W is
kept constant by generating the annihilated number of packets at
randomly selected nodes; (2) W/N newly generated packets are ran-
domly distributed to nodes to keep W statistically constant but with
fluctuations (the average number of annihilated packets is W/N for
high velocity). As shown in Figs. 1d and e, nearly identical behavior
in the nex-v relation is observed, regardless of the specific packet-
transportation protocol, providing further support for the robustness
of our control method.

While so far we have focused on dynamic networks where agents
move with certain velocity, the idea of making a network mobile to
control extreme events can be generalized to different forms of
‘‘mobility.’’ Here we discuss one variant, in which the mobility is
defined as the probability that any node moves with velocity v. For
relatively high values of v, there exists an optimal mobility value at
which the number of extreme events is minimized, as shown in
Fig. 1f. Notice that the optimal mobility is near zero, indicating that
only a small fraction of the nodes actually move and vast majority of
the nodes remain stationary. The implication is that extreme events

can be effectively mitigated by moving a few nodes, which is advant-
ageous from the consideration of control cost.

Explanation and boundary effect. In the following, we focus on the
development of analytical understanding of the phenomenon. To
begin, we note that, since each node receives packets at time t from
its neighbors that equally distribute all the packets obtained at t 2 1
to all their neighbors, a node’s flow w(t) at time t is contributed to by
its neighbors’ flow at time t 2 1, denoted by wn(t 2 1). In a static
network, the ensemble averaged flow through a node at last time step
is proportional to its degree Æw(t 2 1)æ 5 Wk/(2E). However, in a
time-varying network, this relation no longer holds. In particular, the
flow would be independent of the degree under high velocity, leading
to Æw(t 2 1)æ 5 W/N. We thus hypothesize the following general
relation between Æw(t 2 1)æ and node degree for different regimes of
the velocity v:

w t{1ð Þh i~j vð Þ:k tð Þzg vð Þ, ð1Þ

where j(v) and g(v) are parameters that depend on the velocity only,
and the first and second terms correspond to the velocity-dependent
and velocity-independent flow components, respectively. Generally,
the quantity j(v) decreases with v, since higher mobility tends to
yield a weaker flow-degree correlation. However, g(v) tends to
increase with v due to the increasing degree of randomness in the
dynamics. Thus, for v R 0, the steady network exhibits a high flow-
degree correlation and little randomness, so we have j(v) 5 W/(2E)
and g(v) 5 0. For v R ‘, the correlation is lost, leading to j(v) 5 0
and g(v) 5 W/N. Equation (1) thus represents a universal empirical
law, which we have verified computationally through various models
(see the Methods section). Conservation of the total number of data
packets imposes the following constraint on the parameters j(v) and

g(v): W~N
XN{1

k tð Þ~0
w t{1ð Þh iP kð Þ[j vð Þ~ W{N:g vð Þ½ �= 2Eð Þ.

Setting g(v) 5 0 (or g(v) 5 W/N) yields j(v) 5 W/(2E) (or j(v)
5 0). We see that Eq. (1) contains the results for v 5 0 and v R ‘ as
two limiting cases.

With the help of Eq. (1), the probability for the node at location
b (illustrated in Fig. 2a) to carry w packet, Y(w(t))b, is obtained.
This distribution Yb(w(t)) serves as a centro-symmetric probabil-
ity field for each dimension of the two-dimensional space. For a
static node located at b0, the PDF of its flow is Yb0 w tð Þð Þ. For any
moving node (v . 0) initially at b0, the PDF of its flow, Y w tð Þð Þ,
is contributed by the Yb(w) fields at all the locations it has visited,
and thus can be expressed as an integral of Yb(w). In turn, the
total number of extreme events occurred within T time steps is
obtained as an integral of Y w tð Þð Þ over all possible starting
location,

Figure 2 | Geometrical setting and the theory result. (a), Illustration of various geometrical quantities used in the analysis: communication radius a,

distance b from the middle of the square to the target node, distance bn from the middle of the square to a neighbor of the target node, the widthDbn of the

bar region, and the cutoff region of the communication circle. (b), Results of Eq. 2 for db 5 0.01 and Dbn 5 0.002 (the main features do not depend

on the specific values of db and Dbn).
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nex~NT
ðL=2

0

XW
w tð Þ~q z1

Y w tð Þð Þ

2
4

3
5: 8b

L2
db: ð2Þ

where q is the extreme event threshold. Since g(v) monotonously
increases with v, Figure 2b shows that Eq. (2) successfully explains
the numerically observed non-monotonous behavior as exempli-
fied in Fig. 1a, providing the theoretical foundation for mobility-
based control of extreme events.

Our theory provides a detailed understanding of the effect of velo-
city on the occurrence of extreme events. To further demonstrate
this, we exploit the effect of domain boundary on the emergence of
extreme events by examining the behavior of Æw(t)æb versus b, as
exemplified in Figs. 3a1,b1,c1, where a good agreement between
our theory and simulation for various velocity values can be seen.

Note that bf ~
L
2

{a specifies the position of one communication

radius away from the boundary. For v 5 0, Æw(t)æb is constant for b g

[0, bf] and decreases with b in the interval bf ,
L
2

� �
. As v is increased, a

peak in Æw(t)æb arises for b 5 bf, but on the left and right sides of the
peak, Æw(t)æb is approximately constant and a decreasing function of

b, respectively. For convenience, we call bf ,
L
2

� �
the boundary region.

As a node moves closer to the boundary, more portion of its
communication circle is cut off, leading to lower values of Æk(t)æ
and Æw(t)æb. For v R 0, Y w tð Þð Þ is highly localized so that

Y w tð Þð Þ?Yb w tð Þð Þ. For the static network, extreme events
are approximately equally probable in the domain, except in
the boundary region, as shown in Fig. 3a2. As velocity is
increased from zero, Y w tð Þð Þ depends more strongly on
Yb(w(t))’s and the peak in Æw(t)æb about bf generates a higher
value of q in the neighborhood region of bf, reducing the prob-
ability of extreme events. In the part of the boundary region
where low values of Æw(t)æb meets with high value of q , there
are no extreme events, as shown in Fig. 3b2. For high velocity,
each node appears in the domain with approximately equal
probability and Y w tð Þð Þ is completely delocalized, so we have

Y w tð Þð Þ~ 8
�

L2
� � ðL=2

0
b:Yb w tð Þð Þ db. In this case, there is little

difference in the dynamical behavior of nodes. When a node is
near bf, the sudden increase in the flow can cause an extreme
event, which is the mechanism responsible for high concentra-
tion of extreme events about b 5 bf, as shown in Fig. 3 c2.

Figs. 3a3, b3, c3, and a4, b4, c4 show the patterns of the locations of
the extreme events occurring on nodes for v 5 0, 0.5, and 3 within the
circular and stadium-shaped domains, respectively, where the
motions of nodes are completely random. For deterministic motions
of the nodes, the patterns are similar. Regardless of the geometrical
shape of the domain, a frame of extreme events (FEEs) emerges about
one communication radius away from the domain boundary for high
velocity, providing visual support for the basic idea underlying our
theory: the boundary plays an important role in the emergence of
extreme events.
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Figure 3 | Boundary effect. (a1), (b1), (c1), Behavior of Æw(t)æb versus b from direct simulation (blue squares) and predicted by Eq. (9) (solid black lines)

for v 5 0, 0.5 and 3.0, respectively. Note that v < 0.5 is the optimal value of the velocity that minimizes nex in Fig. 1, and v 5 3.0 represents a relatively high

velocity value for the system of size L 5 10 and communication radius a 5 1. For (a1), we have g(v 5 0) 5 0. Since Eq. (9) indicates a smooth dependence

of Æw(t)æb on b and since a detailed interdependence between g(v) and v is unknown, we find g(v) 5 15 best fits the case in (b1). For (c1), we have

g(v 5 3.0) R g(v R ‘) 5 50. The red dashed line indicates the position of the peak in the curve of Æw(t)æb versus b. (a2), (b2), (c2), Positions of all extreme

events occurred in square domain for v 5 0, 0.5, and 3.0, respectively. (a3), (b3), (c3), Positions of all extreme events occurred in circular domain

for v 5 0, 0.5, and 3.0, respectively. (a4), (b4), (c4), Positions of all extreme events occurred in stadium domain for v 5 0, 0.5, and 3.0, respectively. All

results are obtained from 20 independent statistical realizations.
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To intuitively understand the non-monotonous phenomenon, we
name the nodes within the boundary region (region between the
boundary and the FEE) as boundary nodes (BNs), the nodes sitting
on the FEE as frame nodes (FNs), and the nodes within the FEE as
inside nodes (INs). Each node moves continuously in the space and
acts as one of the three types of nodes from time to time. Due to the
cutoff in the communication circles in the boundary region, the BNs
have lower average degree than the FNs and INs, namely ÆkBNæ ,

ÆkINæ 5 ÆkFNæ. At high velocity, most BNs are in fact originally INs
from the inside carrying ÆwINæ packages, where ÆwINæ is the average
flow of the INs. Apparently, we have ÆwINæ/ÆkINæ , ÆwINæ/ÆkBNæ.
Thus, for BNs, each of their links delivers more packages out than
the INs. As recipients, FNs and INs have the same average degree
(ÆkINæ 5 ÆkFNæ) while FNs have more BN neighbors than INs have.
We then have ÆwFNæ . ÆwINæ, i.e., FNs receive more packages. In
addition, the FNs have more neighbors than the BNs, and thus we
have ÆwFNæ . ÆwBNæ. This mechanism produces the FEE with higher
density of extreme events due to a sudden increase in the flow when
BNs and INs move into the region of FNs. However, the FEE so
generated also increases the threshold q and accordingly decreases
the probability of occurrence of extreme events. Consequently, the
coexistence of the two competing mechanisms generates the non-
monotonous behavior, leading to an optimal velocity. Our theory,
albeit non-rigorous, quantifies the relative strength of the two
mechanisms and determines whether extreme events are facilitated
or suppressed as velocity is increased.

The effect of wormholes. In fact, consider an artificial system in
which a fraction of links can be made cross-boundary. We find
that, as the number of such ‘‘periodic-boundary-condition type’’ of
links is increased, the ability for the mobile network to suppress
extreme events is degraded dramatically, as shown in Fig. 4a. This
finding inspires significant applications in the emerging field of
cybersecurity. Here we present one example by arguing that our
control strategy can be used to detect wormhole attacks on mobile
networks. In particular, a communication wormhole is a long-range
link connecting two nodes beyond each’s communication range, a
recently developed concept in the field of network security33–35.
Suppose any pair of nodes with distance over dwh are connected by
a wormhole. A smaller value of dwh will then introduce more
wormholes into the system. Let pwh be the ratio between the
number of wormholes and the total number of edges E in the
network. As shown in Fig. 4b, for moderate or relatively high
velocity, a slight decrease in dwh can trigger an explosive increase

in nex but there is only incremental change in pwh. Thus, abnormally
large number of extreme events in a mobile network are strong
indication that the network is under wormhole attack. Likewise,
instilling a small number of wormholes into an adversary mobile
network can effectively destroy its functions through the
generation of a large number extreme events.

Suppression of extreme events in intermittently mobile networks.
A network can be made mobile but only intermittently by
introducing a ‘‘frozen’’ time interval DT during which the network
structure is fixed. Specifically, each time after certain nodes in the
network have moved, the network structure remains invariant forDT
time steps before the next movement. For DT 5 0, the network
structure changes at every time step. Regardless of whether nodes
are moving, the packet flow on the network is not interrupted. As
shown in Figs. 5a–d, the number nex of extreme events exhibits a
non-monotonous behavior with velocity v (for fixed values of DT) or
with DT (for fixed value of v). In particular, Figs. 5a,b show, under
hard-wall boundary conditions, nex versus v for a number of fixed
values of DT and versus DT for three values of the velocity,
respectively. We observe that, increasing DT slightly above 0 leads
to a sharp decrease in nex, indicating that making the network
intermittently mobile can be a cost-effective strategy to suppress
extreme events. This holds regardless of the boundary condition.
In fact, an intermittently mobile network system under periodic
boundary conditions possesses a similar ability to suppress
extreme events, as shown in the corresponding plots in Figs. 5c,d.
All these indicate mobility as a general and effective strategy to
suppress extreme events.

While the concept of ‘‘mobility’’ can readily be generalized to static
networks in which the nodes are not allowed to move physically, the
existence of a physical boundary plays a critical role in controlling
extreme events. For example, a network can be regarded as ‘‘mobile’’
insofar as its connection topology is time-varying, which can be
realized, for example, by random rewiring of a subset of links from
time to time in a computer network. In this case, an actual physical
domain for the network cannot be properly defined. To demonstrate
the importance of a physical boundary, we consider a classic ER
network27 with random rewiring. Let PR be the rewiring probability,
the probability that an arbitrary link in the network is removed while
a new link is established between a randomly selected pair of nodes
that were not previously linked. Since the ER random network has no
spatial structure, it is the change of nodal degree that leads to the
variation in nex as PR is increased. As shown in Fig. 5e, nex cannot be
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minimized by PR, indicating inability for random rewiring to sup-
press extreme events. Simulations also show that the number of
extreme events is not affected by the detailed rewiring mechanism,
insofar as the nodal degree is unchanged. However, intermittent
rewiring can reduce nex to certain extent, as shown in Fig. 5f. For
high value of PR in the ER random network, the number of extreme
events, nex, can be solved analytically via the approach of self-
consistent equation (see Methods Section).

Degree bias and scaling. A previous result20 indicated that, in static
networks, extreme events tend to occur more frequently on low-
degree nodes. However, in any real-world network, certain degree
of mobility is expected. Our computation indicates that, insofar as
the network is mobile, extreme events tend to occur on highly
connected nodes whose degrees are larger than the average degree
of the network, as shown in Fig. 6a for a mobile network with hard-
wall boundary conditions. Similar behaviors have been observed for
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mobile networks with periodic boundary conditions and for ER-
random networks as well. We also find a scaling phenomenon
between nex and the total number of packets W, as exemplified in
Fig. 6b.

Discussion
To summarize, we find that extreme events in a complex network can
be effectively controlled by making the network mobile, where the
concept of mobility is general and can be implemented in various
ways. A straightforward manifestation is that every node moves at a
certain velocity but in random directions in a finite physical domain,
in which case an analytic theory is developed to understand the
existence of an optimal velocity to minimize the number of extreme
events. Variants of the mobile schemes can also be considered, prov-
ing the generality of our control strategy. Our theory has significant
applications in the field of cybersecurity, where we articulate and
demonstrate, for example, that wormhole attack on a mobile network
can be detected through the monitoring of extreme events. Control of
extreme events is an extremely important and challenging problem
in science and engineering, and our work may stimulate further
efforts.

Methods
Relation between j(v) and g(v). Figure 7 show the relationship between a node’s flow
w(t 2 1) at time t 2 1 and its degree k(t) at time t for different velocity values, the basic
relation employed in our theoretical analysis in the main text, and the function g(v) is
shown in Fig. 7d. We observe a robust linear relation for mobile networks with
periodic boundary conditions and for ER-random networks27. For mobile networks

with hard-wall boundary conditions, the relation is still linear, especially for low or
high velocity values. For moderate velocity values, there is deviation from the linear
behavior, due to the boundary effect as shown in Fig. 3. (This boundary effect does not
exist in mobile networks with periodic boundary conditions and in ER-random
networks.) In general, we observe an approximately linear relation between w(t 2 1)
and k(t), which can be taken as an empirical law for our analysis of the extreme-event
dynamics in mobile networks.

We present a detailed derivation of the relation between j(v) and g(v). The starting
point is the following packet conservation law:

W~N
XN{1

k tð Þ~0

w t{1ð Þh iP kð Þ

[
W
N

~
XN{1

k tð Þ~0

j vð Þ:k tð Þzg vð Þ½ �P k tð Þð Þ

[
W
N

~j vð Þ:
XN{1

k tð Þ~0

k tð ÞP k tð Þð Þzg vð Þ:
XN{1

k tð Þ~0

P k tð Þð Þ

[
W
N

~j vð Þ: k tð Þh izg vð Þ

[j vð Þ~ W=N{g vð Þ
k tð Þh i :

ð3Þ

The average degree of the whole network is Æk(t)æ 5 2E/N. We thus have

j vð Þ~ W=N{g vð Þ
2E=N

~
W{N:g vð Þ

2E
ð4Þ

Detailed analytical explanation to the non-monotonous behavior. As illustrated in
Fig. 2a, the probability that z packets are delivered to the focal node located at b from a
neighbor of degree kn(t) located at bn and carrying wn(t 2 1) packets is given by
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P z, kn tð Þ, wn t{1ð Þð Þ~
wn t{1ð Þ

z

 !
1

kn tð Þ

� �z
:

1{
1

kn tð Þ

� �wn t{1ð Þ{z
:Pk kn tð Þð Þ:P wn t{1ð Þð Þ,

ð5Þ

where Pk(kn(t)) is the degree distribution of the neighboring nodes:

Pk kn tð Þð Þ~
N{2

kn tð Þ

� �
S bnð Þ

L2

� �kn tð Þ
1{

S bnð Þ
L2

� �N{2{kn tð Þ
,

and S(bn) is the circular communication area of the neighbor located at bn. For bn # L/
2 2 a, the area is a complete circle with S(bn) 5 pa2. However, for L/2 2 a , bn # L/2,
a cutoff by the boundary leads to S(bn) 5 pa2(1 2 a/p) 1 a sin a ? (L/2 2 bn), where a
5 arccos((L/2 2 bn)/a), as shown in Fig. 2a. The quantity P(wn(t 2 1)) is the
probability density function (PDF) of wn(t 2 1), which depends on the velocity v and
further analysis is needed to determine its mathematical form.

Using Eq. (1), we can write the probability for a packet to visit a node as Æwæ/W 5

(1/W)[j(0) ? k 1 g(0)] for v 5 0. For v ? 0, the probability for a node at bn to be visited
is pn 5 Æwn(t 2 1)æ/W 5 [j(v) ? kn(t) 1 g(v)]/W. We thus have

P wn t{1ð Þð Þ~
XN{2

kn tð Þ~1

W
wn t{1ð Þ

� �
pwn t{1ð Þ

n 1{pnð ÞW{wn t{1ð Þ:P kn tð Þð Þ.

Substituting this expression into Eq. (5), we obtain the PDF of z as

P zð Þ~
XW

wn t{1ð Þ~z

XN{2

kn tð Þ~1
P z, kn tð Þ,wn t{1ð Þð Þ

h i
. Consider any one of the

boundaries of the square domain, as shown in Fig. 2a. For the focal node located at b,

Z~
Xm

i~1
zi packets will be delivered to it from its m neighbors located in the bar-

shaped region of width Dbn R 0 at bn. The PDF of Z associated with bn is the
convolution of the m PDFs, taking into account all possible values of m:

Pbn Zð Þ~
XN{1

m~0
P z1ð Þ � P z2ð Þ � . . . � P zmð Þ½ �:P mð Þ, where P(m) is the probability

for m nodes to exist in the bar region:

P mð Þ~
N{1

m

� �
Sbar

L2

� �m

1{
Sbar

L2

� � N{1{mð Þ
ð6Þ

with area given by Sbar~2Dbn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{ bn{bð Þ2

q
for small Dbn. The flow w(t) of the

node at time t is the sum of the incoming packets from nodes in all the bar-shaped

regions within its communication circle: w tð Þ~
XM

j~1
Zj , where the contribution

from each region can be treated independently and

M~ min
L
2

, bza

� �
{ b{að Þ

� �

Dbn. The PDF of w(t) can then be expressed as the

convolution of all Pbnj Zj
� �0

s for bnj g [b 2 a, min(L/2, b 1 a)], as
Yb w tð Þð Þ~Pbn1 Z1ð Þ � Pbn2 Z2ð Þ � � � � � PbnM ZMð Þ.

For a static node located at b0, the PDF of its flow is Yb0 w tð Þð Þ. For any moving
node (v . 0) initially at b0, the PDF of its flow is contributed by the Yb(w) fields at all
the locations it has visited, i.e., the circular region centered at b0 with estimated radius
R(v). The PDF of this node’s flow thus contains the contributions from all Yb(w(t))’s
for b g [b0 2 R(v), min(b0 1 R(v), L/2)]. The random walk radius R(v) increases with
v, and R(v) R 0 for v R 0 and reaches L/2 (the upper bound of b) for v R ‘. Since R(v)
and g(v) both increase monotonically with v, we have, approximately,
R vð Þ^g vð Þ= 2W=NLð Þ. Consequently, the flow PDF of a node initially at location b
moving with velocity v can be obtained as a function of b:

Y w tð Þð Þ~

ðmin bzR vð Þ,L=2½ �

max 0,b{R vð Þ½ �
Yb w tð Þð Þ: 8b

L2
db

ðmin bzR vð Þ,L=2½ �

max 0,b{R vð Þ½ �

8b
L2

db

, ð7Þ

where 8b db/L2 is the probability that a node is in the region about the location b via
random walk, and the denominator on the right side is a normalization factor. The
quantity Y w tð Þð Þ determines the threshold q ~ w tð Þh i z4dw over which

extreme events take place, where w tð Þh i ~
XW

w tð Þ~0
w tð Þ:Y w tð Þð Þ and

dw ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXW

w tð Þ~0
w tð Þ{ w tð Þh i
� �2

r
. Finally, we obtain the number of extreme

events occurred within T time steps as

nex~NT
ðL=2

0

XW
w tð Þ~q z1

Y w tð Þð Þ

2
4

3
5: 8b

L2
db, ð8Þ

which is a function of g(v).
In the derivation of Eq. (2), the degrees of the neighboring nodes are treated

independently in Eq. (5) and the expression of P(wn(t 2 1)), which is an approxi-
mation because nodes that are spatially close tend to be degree-correlated. The spatial
degree correlation represents the main discrepancy between our moving random-
network model and a mobile network in the real physical space (see the following for a

detailed discussion about the effect of spatial correlation). Notwithstanding, the
degree correlation has no dependence on the velocity and, hence, there is little effect
on extreme-event generation in the system for different values of the velocity.

The average flow Æw(t)æb at location b can be obtained via Yb(w(t)) as well as the
mean-field theory:

w tð Þh ib~
ðmin L

2,bzað Þ
L
2{a

wn t{1ð Þh i
kn tð Þh i

:
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{ b{bnð Þ2

q
L2

dbn

zN
pa2 1{ b

p

 �
za L

2 {a{b
� �

sin b

L2
: wn t{1ð Þh i

kn tð Þh i

ð9Þ

where b 5 arccos[(L/2 2 a 2 b)/a], Æwn(t 2 1)æ 5 j(v) ? Ækn(t)æ 1 g(v), and

kn tð Þh i~
XN{2

kn tð Þ~1
kn tð Þ:Pk kn tð Þð Þ. The first term on the right side is the contri-

bution from the neighboring nodes with their communication circles partially cutting
off by the boundary, while the second term represents the contribution from neigh-
bors with complete communication circles.

Self-consistent equation to estimate the number of extreme events in ER random
networks. For high value of PR in the ER random network, the number of extreme
events, nex, can be solved analytically via the approach of self-consistent equation.
Regarding PR as corresponding to some kind of ‘‘velocity’’ v, we have that the number
of extreme events nex for v 5 0 is given by

nex~NT
XN{1

k~0

XW
w~qz1

W

w

� �
k

2E

� �w

1{
k

2E

� �W{w
" #

Pk kð Þ, ð10Þ

where q is the threshold by which extreme events are defined, and the degree
distribution P(k) of the network can be written in a binomial form:

Pk kð Þ~
N{1

k

� �
pk 1{pð ÞN{1{k: ð11Þ

To map the ER random network into a two-dimensional mobile network, we set the
link probability to be p 5 pa2/L2. Eq. (10)yields nex^125, which matches the
simulation result for v 5 0 well.

For high velocity, the PDF of flow P(w) becomes independent of k and identical for
all nodes, which can be solved analytically by the self-consistent equation method. In
particular, the number z of packets delivered to a node of degree k from one of its
neighbors of degree kn has the following PDF

P zð Þ~
XN{2

kn~1

XW
w~z

P wð Þ:
W

z

� �
1

kn

� �z

1{
1

kn

� �w{z
" #

Pk knð Þ, ð12Þ

where Pk(kn) is the degree distribution of the neighboring node given by Eq. (11), and
P(w) can be obtained via the weighted sum of the convolution of P(z):

P wð Þ~
XN{1

k~0

P z1ð Þ � P z2ð Þ � � � � � P zkð Þ½ �:Pk kð Þ: ð13Þ

By substituting any form of P(w) that satisfies
XW

w~0
w:P wð Þ~W=N into Eq. (13),

we obtain an updated form of P(w) via Eq. (12). The solution of P(w) can be obtained
by iterating the self-consistent equation until the root-mean-square deviation
between P(w) and its updated version falls below a small threshold (e.g., ~10{4).
Figure 8a shows a good agreement between P(w) from direct simulation and from the
self-consistent approach. The number of extreme events can then be estimated,

yielding nex~NT
XW

w~qz1
P wð Þ^238, which agrees quite well with the value from

direct simulation.

Effect of degree-degree correlation. The probability pD that a given node i and one of
its neighbors j share a neighbor in the ER-random network of link probability p is p2.
For a mobile network in a two-dimensional domain, this probability is given by

pD~

ða

0

Sij rð Þ
pa2

: 2pr
L2

dr, ð14Þ

where r denotes the distance between node i and its neighboring node j, and Sij (r) is
the overlapping area of i and j’s communication circles, which is given by

Sij rð Þ~a2arccos
r

2a

 �
{r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2{

r2

4

r
, ð15Þ

Numerical calculation reveals that pD?p2, indicating that a node’s degree is much
more likely to have a value similar to that of its neighbor, giving rise to a strong
correlation between the degrees of neighboring nodes, or the phenomenon of degree-
degree correlation. Namely, node i’s degree k is correlated with its neighbor’s degree
kn, the so-called k-kn correlation. In addition, the degrees of the neighboring nodes of i
are also correlated, leading to the so-called kn-kn correlation. Since the effect of cutoff
of the communication circle by a boundary makes the analysis on spatial degree
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correlation extraordinarily complicated, here we neglect the effect of the boundary or,
equivalently, we focus on mobile networks with periodic boundary conditions.

For convenience, we classify the neighbors of node j into two classes with respect to
the focal node i: nj1 neighbors in the overlapping area Sij(r) (i.e., the regions shared by
these nodes and i) and the remaining nj2 5 kj 2 nj1 neighbors in the non-overlapping
area. The PDF of nj1 is

P nj1
� �

~
ki tð Þ{1

nj1

� �
p

nj1

1 1{p1ð Þki tð Þ{1{nj1 , ð16Þ

where p1 5 Sij (r)/(pa2). The number nj2 of neighbors in the non-overlapping area has
the PDF as

P nj2
� �

~
N{ki tð Þ{2

nj2

� �
p

nj2

2 1{p2ð ÞN{ki tð Þ{2{nj2 , ð17Þ

where p2 5 (pa2 2 Sij(r))/L2. The degree distribution of node j is given by

Pk kj
� �

~

ða

0

X
nj1znj2~kn

P nj1
� �:P nj2

� �: 2pr
pa2

dr ð18Þ

where kj 5 nj1 1 nj2. In the high-velocity regime, the self-consistent equation method
can be adopted to solving P(w) by substituting Pk(kn) from Eq. (12) into Eq. (18),
while the quantity Pk(k) in Eq. (13) can still be determined by Eq. (11). Figure 8b
shows the flow distribution P(w) obtained from direct simulation and from self-
consistent theory with or without the k-kn correlation. We observe a better agreement
between simulation and theory when the k-kn correlation is taken into account.

It is mathematically difficult to consider both the k-kn and kn-kn correlations.
Nonetheless, since the spatial degree correlation depends solely on the spatial dis-
tribution of the nodes, which is completely random regardless of the velocity, the
combined effect of the two kinds of correlations on nex has little dependence on the
actual value of the velocity. Consequently, the non-monotonous behavior of extreme
events caused by the boundary effect should persist even in realistic situations where
both types of degree-degree correlations are present, and we expect the theory of
mobility-based control developed in the main text to be generally valid.
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Figure 8 | PDF of flow P(w) in simulation and in different theory assumptions. (a), For the classic ER random networks with rewiring probability PR 5

1, PDF of flow P(w) obtained from direct simulation (red squares) and self-consistent equation (solid blue line). (b), PDF of flow P(w) from direct

simulation (red squares), from theory without taking into account spatial degree correlation (black circles), and from theory with degree-degree

correlation (solid blue line).
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