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SUPPLEMENTARY NOTE 1: CHARACTERIZING COLLECTIVE HUMAN-INTEREST ACTIVITY

We investigate the collective human interest dynamics by averaging the patterns of many individuals. To provide direct
evidence for non-Markovian type of activity patterns, we extract the size l of the consecutive interest length of users in the three
systems explored, as shown in Figs. S1(a-c). We see that the distributions of l can all be well described by a power-law, which is
consistent with the interest-activity pattern exhibited by any typical individual. This result suggests the algebraic, heavy-tailed
type of distribution of the time interval that one maintains the same interest as a universal phenomenon. The distributions of the
return time τ at the collective level also exhibit power-law scaling, as shown in Figs. S1(d-f). The collective rank distributions
are demonstrated in Figs. S1(g-i), where the r-th interest means the average value of the r-th most browsed interest of all
individuals. We also calculate the probability density function p(̄i, j̄) of the users for the three systems where, for each system,

p(̄i, j̄) ≡
Nu∑
n=1

p(i, j)/Nu, and Nu is the number of users in the system. If an individual has not demonstrated more than i (or j)

distinct interests, we set p(i, j) = 0. From Figs. S1(j-l), we observe that, at the collective level, the interest-transition patterns
exhibit the same features as those at the individual level.

SUPPLEMENTARY NOTE 2: CLICK DWELLING TIME VERSUS REAL DWELLING TIME

In our work, the three datasets record the click events of users, and our analysis of human-interest dynamics is thus based
on the click behaviors. The dwelling time in one given interest is measured by the length of continuous-click events, which
we named click-dwelling time. However, it is also interesting to know the dwelling behavior of user in real time. To compare
the click-dwelling time with the real dwelling time, we plot the relation between the real dwelling time t (in seconds) and the
corresponding average click-dwelling time ⟨l⟩ for Douban and Taobao, as shown in Figs. S2(a-b), respectively. Take the data of
Douban in Fig. S2(a) as an example. We observe a positive correlation between ⟨l⟩ and t (with saturation) before 3000 seconds,
indicating that, in this case, the individual’s continuous clicks focused on one interest has the upper limit of approximately one
hour. Similar behaviors have been observed for majority of the individuals. Due to the positive correlation between ⟨l⟩ and t on
average, the conclusions from our work based on the click-dwelling time would be qualitatively the same as those based on the
real time.

Nonetheless, for time longer than this upper limit, deviation from the behavior in Figs. S2(a-b) can occur. For example, the
subgraphs in Figs. S2(a-b) show the click-dwelling time versus the actual time on a logarithmic plot for a time span longer than
one hour, where the abnormal decrease in ⟨l⟩ can be attributed to the pseudo-continuous clicks in data introduced by the two
identical clicks before and after a long resting time (sack time). In this case, the dwelling time is overestimated while the number
of clicks l is small. Majority of the cases in data with dwelling time over the circadian human behavior (24h or 8 ∗ 104s) are
found to be related to the pseudo-continuous clicks. As the fraction of pseudo-continuous clicks increases with the real dwelling
time, the average value ⟨l⟩ decreases. Thus the abnormal decrease of ⟨l⟩ toward the tail part (merely caused by data splitting) is
not evidence against the positive correlation. between t and l.

To provide further support for the equivalence between the click-dwelling time and the actual time, we compare their probabil-
ity distributions, as shown in Figs. S3(a,b) for Douban and Taobao, respectively. In the real-time representation, the power-law
scaling of human-interest dynamics can also be observed in the marked region (light green), with deviation at both ends. In
general, we find that the statistics based on the click time are more robust. (For the MPR data, due to the intrinsic low-time
resolution, it is not feasible to study the statistics based on the real time.)

SUPPLEMENTARY NOTE 3: CONSISTENCY OF SCALING EXPONENTS ACROSS INDIVIDUALS

To examine the consistency of human-interest activities across different individuals, we calculate the ranges of the scaling
exponents α, β, and γ. As shown in Figs. S4(a-c), we obtain α = 2.20 ± 0.46, 2.57 ± 0.55 and 2.92 ± 0.39 for all users
in Douban, Taobao and MPR, respectively. The robustness of the power-law fit can be assessed by the standard Kolmogorov-
Smirnov test [1]. Figures S4(d-f) show the distributions of D, the quantifier of the Kolmogorov-Smirnov test, for the three online
systems in Figs. S4(a-c), respectively. We observe that in all three cases, the values of D are narrowly distributed, indicating
the robustness and consistency of the power-law fitting for P (l) across vast majority of the individuals in these systems. The
corresponding behaviors for the scaling exponents β and γ are shown in Figs. S5 and S6, respectively.



3

SUPPLEMENTARY NOTE 4: NECESSITY OF BOTH PREFERENTIAL RETURN AND INERTIA IN MODELING
HUMAN-INTEREST DYNAMICS

In the main text, we state that the basic dynamical ingredients of human-interest dynamics are (1) preferential return associate
with the hopping processes among different interests, (2) inertia characterizing the tendency to dwell in the same interest, and
(3) exploration of new interest. We can establish the necessity of preferential return and inertia by comparing the outcomes of
our model with those from two modified models: one without inertia (denoted as NI) and another without preferential return
(denoted as NPR). In the NI model, the distribution of the consecutive interest interval is no longer a power law, as shown
in Fig. S7. In the NPR model, individuals select their interests with equal probability. In this case, the distribution of the
consecutive interest intervals continues to exhibit the power-law feature, as shown in Fig. S7. The corresponding patterns of
the transition probability are shown in Figs. S8(a-d), where Fig. S8(a) is for the NI model, and Figs. S8(b-d) are for the NPR
model. We see that for the NI model, the diagonal elements of the transition probability no longer dominate as compared with
off-diagonal elements [Fig. S8(a)]. For the NPR model, the off-diagonal elements of the transition probability are essentially
uniform [Figs. S8(b-d)]. These behaviors are contradictory to those exhibited by real data, implying that both preferential return
and inertia are necessary ingredients in any quantitative description and modeling of the human-interest dynamics.

SUPPLEMENTARY NOTE 5: THEORETICAL ANALYSIS OF SCALING LAWS ASSOCIATED WITH HUMAN-INTEREST
DYNAMICS

Our extensive analysis of real data establishes inertia, preferential return, and exploration of new interest as the basic ingre-
dients in modeling human-interest dynamics. Mathematically, inertia characterizes the tendency to dwell in the same interest,
which can be assessed from the click-event series of browsing data and described by an excited random-walk process [2]. Pref-
erential return among visited interests, and exploration of new interests can be modeled by the hopping-event series, which is
reduced from the click-event series by merging a cluster of clicks on an identical interest. In the hopping-event series, interests
are denoted by the rank in the order of the hopping, i.e., the first-passage hopping number.

For the exploration state, our empirical analysis indicates that the exploration of new interest is algebraically related to the
number of hopping n, as shown in Fig. S9. In particular, the number of interests already visited by a given user, denoted by
S, increases by one at the n-th hopping with exploring probability pnew = ρn−λ, where λ ≈ 0.5 and the parameter ρ can be
obtained from Fig. S9 through fitting. The form of pnew implies that the growth rate of S is reduced as the number of hopping
n increases. Under the continuous approximation, we have

dS

dn
= pnew = ρn−λ, (S1)

from which we get the dependence of S on the number of hopping n as

S ∼ n−λ+1. (S2)

As shown in Fig. S9, the dependence of S on n calculated from real data exhibits precisely this dependence with the scaling
exponent −λ+ 1 ≃ 0.5.

For preferential return, which is the complementary event to “exploration” at the hopping-event level occurring with proba-
bility 1− pnew, we notice that users revisit one particular interest according to the prior visiting probability:

pi =
ωi

S∑
j=1

ωj

≡ Π(ωi), (S3)

where ωi is the frequency of visiting interest i, i.e., the accumulated dwelling time (total number of click-events) at interest i.
In the following, we provide a detailed theoretical analysis of our model of human-interest dynamics in terms of A) the

distribution P (l) of consecutive interest, B) the distribution of the interest-return interval P (τ), and C) the rank distribution of
frequencies of visiting different interest categories.

Probability distribution of interest interval l

We can see from the click-event series of browsing data that the phenomenon of dwelling in the same interest is quite common.
As described in the main text [Figs. 1(a-c)], the length of the dwelling time l, the consecutive interest interval, obeys a power-law
scaling distribution. For simplicity, we assume that the dwelling processes in different interests are similar, i.e., interests share
the same distribution P (l). This approximation holds for majority of the interests, although data reveals that the hub interests
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tend to have larger values of l. Here we provide a theoretical derivation of this power-law scaling relation. The basic idea is that,
dwelling in any particular interest can be treated as an excited random-walk (ERW) process [2], which ends when the walker
returns to the origin. The distribution P (l) can then be obtained as P (l) ∼ l−2+ζ , where ζ is the biased probability for the
walker to move.

Here we adopt the detailed analysis of ERW in Ref. [2], in which the walker at a site that contains cookies eats one cookie and
then hops to the right with probability ζ and to the left with probability 1− ζ. If the walker hops onto an empty site, there is no
bias. To gain insights, we examine an unbiased random walk in a finite interval [0, x] with absorbing boundaries. The Laplace
transforms of the first-passage probabilities for a random walk that starts at x0 to exit at the left and the right edges of interval
[0, x], in the continuum limit, are [2], respectively,

ℓx(x0, s) =
sinh

√
2s(x− x0)

sinh
√
2sx

, rx(x0, s) =
sinh

√
2sx0

sinh
√
2sx

, (S4)

with s the complex variable in the Laplace domain.
Consider the case where the walk arrives at site x for the first time at time t0. Let Lx(t) be the probability of arriving at site 0

for the first time at time t0 + t without visiting x+ 1, and Rx(t) be the probability of arriving at x+ 1 for the first time at time
t0 + t, without visiting the site 0. In the Laplace domain, the two first-passage probabilities are

Lx = (1− ζ)(1− s)ℓx+1(x− 1, s), and
Rx = ζ(1− s) + (1− ζ)(1− s)rx+1(x− 1, s).

(S5)

For Lx, the site x+1 is not visited, so the first step must be to the left, hence the factor (1− ζ)(1− s). The factor ℓx+1(x−1, s)
is then the first-passage probability to the origin from x− 1, without visiting x+ 1. Similarly, for Rx, the term (1− ζ)(1− s)
accounts for the transition x → x+ 1 in a single step. The factor (1− ζ)(1− s) in the second term accounts for a single step to
the left after which the walk is at x − 1 while the last cookie is at x + 1. Then the factor rx+1(x − 1, s) gives the first-passage
probability to x+ 1 without visiting the origin, starting from the site x− 1.

The Laplace transform of the first-passage probability to the origin can be obtained, which begins at x0 = 1 with the system
initially full of cookies, by summing over all paths that contain 0, 1, 2, ... first passages to the last cookie before the origin is
reached. This gives

F (s) = L1 +R1(L2 +R2(L3 +R3(L4 + · · · = L1 +R1L2 +R1R2L3 +R1R2R3L4 + · · · . (S6)

In the limit s = 0, this Laplace transform is the integral of the first-passage probability over all time or, equivalently, the
probability of eventual return to the origin. It can be verified that this return probability equals one. In particular, the auxiliary
probabilities Rx and Lx are

Rx = ζ + (1− ζ)
x− 1

x+ 1
= 1− 2(1− ζ)

x+ 1
and Lx =

2(1− ζ)

x+ 1
= 1−Rx. (S7)

We then have

F (w = 0) = 1−R1 +R1(1−R2) +R1R2(1−R3) +R1R2R3(1−R4) + · · · . (S8)

This expression is equal to one for all ζ < 1, while for the extreme case of ζ = 1, one gets F (s = 0) = 0.
The sum of the first m terms in Eq. (S6) can be expressed as

Fm(s) =

m∑
x=1

Lx

x−1∏
j=1

Rj . (S9)

In the limit s → 0, according to Eq. (S7), we have,

Fm(s = 0) =
2(1− ζ)

Γ[2− 2(1− ζ)]

m∑
x=1

Γ[x+ 1− 2(1− ζ)]

Γ(x+ 2)
, (S10)

which approaches unity as m → ∞ [3]. The s = 0 forms Rx and Lx from Eq. (S7) remain applicable for m on the order of
1/
√
s or less. The main contribution in Eq. (S9) to F (s) thus is assumed to come from terms with m < 1/

√
s [2]. That is,

F (s) ≈ 2(1− ζ)

Γ[2− 2(1− ζ)]

1/
√
s∑

x=1

Γ[x+ 1− 2(1− ζ)]

Γ(x+ 2)
. (S11)
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This finite sum can be written as the difference between the infinite sum (which equals 1) and the sum from 1/
√
s to ∞. In the

latter sum, we have x ≫ 1 for all terms as s → ∞. We can thus replace the ratio of the gamma functions by x−2(1−ζ)−1 and
the sum by an integral. These approximations lead to

1− F (s) ∼
∫ ∞

1/
√
s

dxx−2(1−ζ)−1 ∼ s(1−ζ). (S12)

This result for F (s) implies that for large times the first-passage probability to the origin indeed exhibits a power-law behavior
as F (t) ∼ t−2+ζ . Thus the dwelling time l of user in one given interest, which is determined by the ERW process as analyzed
above, obeys the distribution P (l) ∼ l−2+ζ .

Probability distribution of return interval τ

Our analysis of the real data indicates that a typical user tends to revisit frequently the interests they have explored before,
implying some kind of memory effect in user’s online activities. The scaling behavior of the return time is thus an important
quantity to characterize the human-interest dynamics. Here, we provide a framework to analyze the distribution of the return
time interval τ , in terms of the distribution P (l) of the interest interval we have discussed.

We consider the case where a user returns to one given interest Ii after τ click events since the last click, where the click events
is composed of m inertial processes in interests (other than Ii) introduced by m hopping events. The probability for interest Ii
to be revisited after τ clicks can be expressed as

Pi(τ) =
τ∑

m=1

Fii(m)Pm(τ), (S13)

where Fii(m) stands for the probability at the hopping-event level that the user returns to interest Ii for the first time after m
hops among other interests. The function Fii(m) is nothing but the i-th diagonal element of the matrix F = (TI′)m−1T, where
I′ is the identity matrix but with the i-th diagonal element being zero, as the i-th interest is set to be the sink in the first-return
process. The matrix T is the transition probability matrix among interests at the hopping-event level, with every row summing
to 1. The quantity Pm(τ) in Eq. (S13) is the probability for user to perform τ clicks in these m hopping events, which is defined
as the following m-fold convolution of the function P (l):

Pm(τ) =
∑

l1,l2···lm−1

P (l1) · P (l2) · · ·P (τ −
m−1∑
j=1

lj). (S14)

Equation (S13) shows the probability for the first return click-step to be τ for a given interest. Then, regarding all the interests
as a whole, the probability for the first return click-step to be τ is given by

P(τ) =
∑
i

piPi(τ), (S15)

where pi is the probability for the i-th interest to be selected in the preferential return processes defined in Eq. (S3). It appears
not feasible to obtain analytic formulas for the probabilities Pi(τ) and P(τ). It may be possible to calculate these probabilities
numerically, provided that the distribution P (l) at the click-event level and the transition-probability matrix T at the hopping-
event level are available.

Frequency-based rank of interests

As discussed, the rank distribution of interests based on the visiting frequency ωi obeys power-law scaling [Figs. S1(g-i)].
Here we analyze this scaling from the asymptotic behavior in the frequency evolution.

For convenience, we denote the hopping number n to be ni if at that hopping the interest Ii is explored. The frequency ωi of
interest Ii at its first exploration, which occurs at the n-th hopping of user, is the corresponding dwelling time denoted by lni ,
where lni obeys the distribution P (l) and is the initial value of ωi. Subsequently, the frequency ωi increases as soon as interest
Ii is selected again through preferential return that occurs with the probability 1− pnew at the hopping-event level, in which Ii
is selected with probability pi. Then, in general, the evolution of the frequency ωi is governed by

dωi

dn
= (1− pnew)piln, (S16)
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with ln being the dwelling time at the n-th hopping. We see from Eq. (S1) that, for λ > 0, pnew → 0 as n increases. It is thus
useful to consider the following asymptotic equation:

dωi

dn
= piln, (S17)

with initial condition ωi(ni) = lni .
From the definition of pi in Eq. (S3) and the approximation that P (l) assumes the same form for different interests, we get

the expected value of piln as

piln =
mil

S∑
j=1

mj l

l
.
=

ωi

n
, (S18)

where mi denotes the total number of hopping towards the i-th interest, with
∑S

i=1 mi = n. Then the growth rate of frequency
ωi in the long run is

dωi

dn

.
=

ωi

n
, (S19)

and we have the approximate relation ωi
.
= Cin. Using the initial condition ωi(ni) = lni , we get the parameter Ci = lni/ni,

and finally obtain

ωi
.
=

lni

ni
n, (S20)

indicating that the earlier an interest is explored (smaller ni), the higher visiting frequency ωi it will have (namely, ωi ∼ ni
−1).

Consequently, the frequency-based ranking of interests I , denoted by r(I), is nothing but the rank in the order of first exploring
time, i.e., r(Ii) = i. Also, the number S of visited interests at the ni-th hopping (when the i-th interest has just been explored)
is S(ni) = i. Then we get r(Ii) = S(ni). From the function S(n) in Eq. (S2), we find

ni ∼ r(Ii)
1/(1−λ) (S21)

Finally, from Eq. (S20), we get the approximate relation between the frequency ωi and the frequency-based rank r as

ωi ∼ n−1
i ∼ r−1/(1−λ). (S22)

This theoretical result shows that the scaling exponent of the frequency rank denoted by −γ in Fig. S1(g-i) is related to the
scaling exponent −λ associated with the exploration phase [Eq. (S1)] as γ = 1/(1− λ). The values of exponents γ (in Fig. S1)
and λ (in Fig. S9) calculated from real data validate our theory.

In each preferential return hopping, the frequency of the selected interest ranked at i will increase by approximately ∆ωi =
l/(nl). For the case that ∆ωi is larger than the frequency difference of the (i − 1)-th and the i-th interests (denoted by δωi ≡
ωi−1 − ωi), the rank is altered. Thus, the stability of frequency rank requires l < δωinl. This means that, when a user has a
large dwelling time l by chance, or hops to an interest at the tail of the rank (where the frequency difference δωi is small), or the
hopping number n is small (implying somewhat immature browsing experience of the user), the rank is less stable.

SUPPLEMENTARY NOTE 6: FINITE SIZE EFFECT OF S

To demonstrate the finite-size effect, we calculate fr with different S values for both real data [Fig. S10(a)] and model
[Fig. S10(b)]. We observe that both show the curve at the bottom of the distribution. The range in the real data is from 10 to 40,
and in model it is between 30 and 1000.

SUPPLEMENTARY NOTE 7: ENTROPY AND PREDICTABILITY

Entropy is the most fundamental quantity characterizing the degree of predictability from time series [4, 5]. A lower value of
the entropy implies higher predictability, and vice versa. Here we discuss how to measure the actual interest sequence entropy
of individuals over their past history. For this purpose we use the estimator based on the Lempel-Ziv data compression [6, 7],
which is known to rapidly converge to the real entropy. Given an interest series with Na actions, the entropy can be estimated by

E ≈ (
1

Na

∑
j

Λj)
−1 lnNa. (S23)
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where Λj is the length of the shortest substring starting at position j, which does not previously appear from position 1 to j − 1.
Kontoyianis [7] et al. proved that E converges to the actual entropy as Na approaches infinity. For Douban, Taobao and MPR,
the distributions of entropy values are shown in Figs. S11(a-c), respectively.

To predict an individual’s future interests, we measure the probability Π subject to Fano’s [4, 5, 8] inequality. That is, if an
individual with entropy E moves between S interests, his/her predictability Πmax(E,S) is determined by

E = −[Πmaxlog2Π
max + (1−Πmax)log2(1−Πmax)] + (1−Πmax)log2(S − 1). (S24)

We calculate Πmax separately for each user in all three online systems. We find the behavior that P (Π) has large values, peaking
about Π = 0.93, 0.84 and 0.83 for Douban, Taobao and MPR, as shown in Figs. S11(d-f), respectively. These highly localized
distributions indicate that the individual’s interest trajectory is not totally random, and in fact has an unexpectedly high degree
of potential predictability.
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SUPPLEMENTARY FIGURES
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Supplementary Figure S1: Patterns of collective human-interest dynamics. (a-c) Distributions of consecutive interest duration l for users in
Douban, Taobao and MPR, respectively, where the parameters are Nu = 21, 148 and Na ≥ 300 for (a), Nu = 34, 330 and Na ≥ 100 for
(b), and Nu = 19, 067 and Na ≥ 100 for (c) (Na is the number of individual click actions). The distributions of l in all three systems can
be well fitted by P (l) = l−α, with exponents α = 2.55 ± 0.02, α = 3.00 ± 0.02, and α = 3.20 ± 0.05, respectively. (d-f) For the data
sets in (a-c), respectively, power-law distributions (τ−β) of the time τ taken to revisit the same interest. The values of the fitted exponent
β are approximately 2.78 ± 0.04, 2.55 ± 0.02, and 2.78 ± 0.05 for Douban, Taobao and MPR, respectively. (g-i) For the systems (a-c),
respectively, the probability fr for individuals to visit the r-th most browsed interests. This interest rank distribution follows a power-law
scaling: fr ∝ r−γ , where the values of the exponent are γ = 2.18 ± 0.08 for Taobao and γ = 1.80 ± 0.04 for MPR. (The dash line in
Fig. S1(g) is for eye guidance.) (j-l) For the systems in (a-c), respectively, collective mean probability density functions p(̄i, j̄) characterizing
the interest transitions, where a color represents a certain magnitude of p(̄i, j̄) on a logarithmic scale.
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(a) (b)

Supplementary Figure S2: Mean click-dwelling time ⟨l⟩ (vertical axis) averaged over given real dwelling time (horizontal axis) t from Douban
(a) and Taobao (b). Insets are plots on a logarithmic scale in an extended time span.

(a) (b)

Supplementary Figure S3: Probability distributions of real dwelling time of Douban (a) and Taobao (b).
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Supplementary Figure S4: (a-c) Distributions of the scaling exponent α for users in Douban, Taobao and MPR, respectively; (d-f) respective
distributions of the quantifier D of the Kolmogorov-Smirnov test.

Supplementary Figure S5: (a-c) Distributions of the scaling exponent β for users in Douban, Taobao and MPR, respectively; (d-f) respective
distributions of the quantifier D of the Kolmogorov-Smirnov test.
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Supplementary Figure S6: (a-b) Distributions of the scaling exponent γ for users in Taobao and MPR, respectively; (c-d) respective distribu-
tions of the quantifier D of the Kolmogorov-Smirnov test.
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Supplementary Figure S7: Distributions of the consecutive interest interval in the NI and NPR models for different parameters.
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Supplementary Figure S8: Transition probability density for (a) the NI model and (b-d) the NPR model for ζ = 0.2, 0.5 and 0.8, respectively.
The parameter Na is 106.
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(a) (b)

(c) (d)

Supplementary Figure S9: For Taobao and MPR, (a) the average increment of the number of visited interests, ∆S, at the n-th hopping
[Eq. (S1)]. We have ∆S ∼ n−λ, where λ ≈ 0.5, (b) relation between the average number of distinct interests ⟨S⟩ and number of hops n;
(c-d) Probability density functions P (ρ) for the Taobao and MPR user groups, where ρ is a model parameter [Fig. 4(a) in the main text]. The
mean values of ρ are approximately 0.58 and 0.55 for Taobao and MPR, respectively. (For Douban, the number of interests is too small for
∆S to be meaningful.)
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Supplementary Figure S10: (a) Frequency of the r-th interest from the data set MPR (which has relatively larger maximum value of S = 82
than these in the other data sets). We chose individuals with S values of at least 10, 20 and 40, respectively. (b) Frequency of the r-th interest
from our model with values of S at 30, 100 and 1000. The number of users in the model is 1000.

Supplementary Figure S11: For the three data sets Douban, Taobao and MPR, distributions of (a-c) the entropy values and (d-f) the values of
the predictability measure Πmax across all users, respectively.


