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Data Based Reconstruction of Duplex Networks\ast 

Chuang Ma\dagger , Han-Shuang Chen\ddagger , Xiang Li\S , Ying-Cheng Lai\P , and Hai-Feng Zhang\| 

Abstract. It has been recognized that many complex dynamical systems in the real world require a description
in terms of multiplex networks, where a set of common, mutually connected nodes belong to distinct
network layers and play a different role in each layer. In spite of recent progress toward data based
inference of single-layer networks, to reconstruct complex systems with a multiplex structure remains
largely open. In this paper, we articulate a mean-field based maximum likelihood estimation frame-
work to address this problem. In a concrete manner, we reconstruct a class of prototypical duplex
network systems hosting two categories of spreading dynamics, and we show that the structures of
both layers can be simultaneously reconstructed from time series data. In addition to validating
the framework using empirical and synthetic duplex networks, we carry out a detailed analysis to
elucidate the impacts of network and dynamics parameters on the reconstruction accuracy and the
robustness.
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1. Introduction. In mathematical and physical sciences, it is recognized that the ``inverse
problem"" is often significantly more difficult than the ``forward problem."" In particular,
given a system with a known structure and a set of mathematical equations, the forward
problem focuses on analyzing and possibly solving the equations (analytically or numerically)
to uncover and understand the behaviors of the system. For the inverse problem, the system
structure and equations are unknown but only observational or measured data are available.
The task is to infer the intrinsic structure and dynamics of the system from the data. In
network science and engineering, to reconstruct the topology of an unknown complex network
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and to map out the dynamical process on the network based solely on measured time series or
data have been active areas of interdisciplinary research [15, 17, 34, 4, 13, 49, 3, 42, 31, 12, 33,
35, 23, 20, 36, 45, 2, 38, 40, 19, 52, 8, 43, 39, 37, 9, 44, 6, 25, 7, 30, 50]. A variety of approaches
have been devised, which include those based on collective dynamics [49, 52, 42, 43, 32, 26],
stochastic analysis [27, 25], optimal causation entropy [41], compressive sensing [46, 37, 39, 30],
etc. However, previous works focused on single-layer networks. The goal of this paper is to
address the significantly more challenging problem of data based reconstruction of multiplex
networks.

A complex system in the real world, such as modern infrastructure or a social or trans-
portation system, consists of many units connected by different types of relationship. For
example, a social network contains different types of ties among people and a transportation
system comprises multiple types of travel platforms. Such systems require a description in
terms of multiplex networks [5, 16, 11, 22, 10, 21]. Previous efforts in multiplex networks
focused on the forward problem to unearth the mathematical properties and the associated
physical phenomena [48]. The main difficulty that one has to overcome to address the inverse
problem of multiplex networked systems lies in the distinct, possibly quite diverse yet inter-
woven collective dynamics in different layers. For example, the outbreak of an epidemic in
human society induces diffusion of awareness in online social networks, leading to two types
of mutually coupled spreading dynamics [18], each in a different network layer. Another ex-
ample is that opinions can diffuse through different channels (layers) and interact with each
other.

In this paper, we develop a reconstruction framework based on mean-field maximum like-
lihood estimation (MLE) to address the problem of data based reconstruction of multiplex
networks. As the first attempt, we focus on duplex networked systems---perhaps the most ex-
tensively studied multiplex networks that are relevant to real world situations such as complex
cyberphysical systems. We assume that each layer hosts a distinct type of spreading dynamics
and the two types of processes are interwoven. In particular, one (physical) layer hosts the
susceptible-infected-susceptible (SIS) type of spreading dynamics, while the other (virtual)
layer is a social network with information spreading governed by the unaware-aware-unaware
(UAU) process [18]. Provided that binary time series data are available from both layers,
we show that our framework is capable of accurately reconstructing the full topology of each
layer for a large number of empirical and synthetic networks. We elucidate the impacts of
network structural and dynamics parameters on reconstruction accuracy, such as the average
degree, interlayer coupling, and heterogeneity in the spreading rates. The effect of noise is
also investigated. Our framework represents an effort to assess the ``internal gear"" of complex
systems with a duplex structure.

2. UAU-SIS dynamics on duplex networks. The UAU-SIS model was originally articu-
lated to study the competition between social awareness and disease spreading on double-layer
networks, where the physical contact layer supports an epidemic process and the virtual con-
tact (the case of UAU-SIR dynamics on duplex networks is studied---see Appendix E, where
R is the recovered state and the recovered nodes cannot be infected again). The two layers
share exactly the same set of nodes but their connection patterns are different.
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Spreading of awareness in the virtual layer is described by the UAU spreading model, in
which an unaware (U) node may enter an aware (A) state by two ways: (1) it is informed by
one A-state neighbor in the virtual layer with probability \lambda , or (2) the node is infected by the
epidemic in the contact layer, so it automatically enters an A-state. Meanwhile, an A-state
node can lose awareness and returns to the U-state with probability \delta .

Epidemic dynamics in the physical layer are of the SIS type, where an infected (I) node
can infect its susceptible (S) neighbors with probability \beta , and an I-state node returns to the
S-state with probability \mu . Upon considering the effect of awareness in the virtual layers, the
probabilities of being infected are different, depending on whether the S-state node is in the
A-state or the U-state. We set \beta A and \beta U , respectively, and it is reasonable to assume that
\beta U \geq \beta A. Figure 1 presents a schematic illustration of the duplex network with the described
interacting dynamical processes.

According to the description of the UAU-SIS spreading model on the duplex network, one
knows that each node has three possible states: unaware and susceptible (US) state, aware

Physical contact SIS

Virtual contact UAU

Figure 1. Schematic illustration of a duplex network hosting two kinds of spreading dynamics. The upper
layer (virtual contact) supports awareness diffusion, where each node has two possible states: unaware (U) or
aware (A). The bottom layer (physical contact) takes place epidemic spreading dynamics, where a node can be
in the susceptible (S) or infected (I) state.
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and susceptible (AS) state, and aware and infected (AI) state. The unaware and infected (UI)
state cannot appear since an infected node immediately enters an A-state.

Let \=sit and sit denote the state of node i at time t in the virtual layer and the physical
layer, respectively. \=sit = 0 (or 1) indicates that node i is in a U-state (A-state), and sit = 0 (or
1) indicates that node i is in an S-state (I-state). Moreover, the connections of node i in the
virtual and physical layers are specified by the vectors ai and bi, respectively, where aij = 1

indicates that node j is a neighbor of node i in the virtual layer and aij = 0 otherwise, and bij
is defined similarly. Therefore,

\sum 
j \not =i a

i
j\=s

j
t (or

\sum 
j \not =i b

i
js

j
t ) depicts the number of A-neighbors

(I-neighbors) of node i.
Three probabilities are needed to describe the network spreading dynamics: (1) rti , the

probability that node i is not informed by any neighbor, (2) qiU,t, the probability that U-state

node i is not infected by any neighbor, and (3) qiA,t, the probability that A-state node i is not
infected by any neighbor. In the absence of any dynamical correlation, the three probabilities
are given as

rit =
\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\=s
j
t

,

qiU,t =
\bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bijs
j
t

,

qiA,t =
\bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bijs
j
t

.

(2.1)

A tacit assumption in [18] is that diffusion of awareness in the virtual layer occurs before
epidemic spreading in the physical layer. In our work, we do not require that the two types of
spreading dynamics occur in any particular order. Figure 2 presents the transition probability
tree of the UAU-SIS coupling dynamics on the duplex networks.

Figure 2 and (2.1) indicate that the transition probabilities of node i from the US state
to the US, AS, and AI states are

PUS\rightarrow US = ritq
i
U,t,

PUS\rightarrow AS =
\bigl( 
1 - rit

\bigr) 
qiU,t,

PUS\rightarrow AI = rit

\Bigl( 
1 - qiU,t

\Bigr) 
+
\bigl( 
1 - rit

\bigr) \Bigl( 
1 - qiU,t

\Bigr) 
= 1 - qiU,t.

(2.2)

Figure 2. Transition probability tree of coupled UAU-SIS dynamics on duplex networks. AI, aware and
infected; UI, unaware and infected (redundant to the AI state); AS, aware and susceptible; and US, unaware
and susceptible.
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The transition probabilities of node i from the AS state to the US, AS, and AI states are

PAS\rightarrow US = \delta iqiA,t,

PAS\rightarrow AS =
\bigl( 
1 - \delta i

\bigr) 
qiA,t,

PAS\rightarrow AI = \delta i
\Bigl( 
1 - qiA,t

\Bigr) 
+
\bigl( 
1 - \delta i

\bigr) \Bigl( 
1 - qiA,t

\Bigr) 
= 1 - qiA,t.

(2.3)

Also, the transition probabilities of node i from the AI state to the US, AS, and AI states are

PAI\rightarrow US = \delta i\mu i,
PAI\rightarrow AS =

\bigl( 
1 - \delta i

\bigr) 
\mu i,

PAI\rightarrow AI = 1 - \mu i.
(2.4)

3. Theoretical framework of reconstruction. Say only the states \=sitm and sitm (i =
1, . . . , N) at time tm (not necessarily uniform) are recorded, where N is the network size.
Our reconstruction framework consists of three steps: (1) to establish the likelihood func-
tion of the coupled dynamics, (2) to apply the mean-field approximation to enable MLE, and
(3) to transform the MLE problem into two solvable linear systems---one for each layer with
solutions representing the neighbors of each node in the layer.

3.1. Establish the likelihood function. For node i, if we know all nodes' states in two
layers (i.e., \=sjtm and sjtm , j = 1, 2, . . . , N), its connections in the virtual and physical layers
(i.e., ai and bi ), and the parameters in the dynamics (i.e., \lambda i, \beta i

U , \beta 
i
A, \delta 

i, and \mu i), then the
joint probability (likelihood function) of node i at all the next time states is

P

\biggl( \bigl\{ 
\=sitm+1, s

i
tm+1

\bigr\} 
m=1\cdot \cdot \cdot M | 

\Bigl\{ 
\=sjtm , s

j
tm

\Bigr\} 
j=1\cdot \cdot \cdot N,m=1\cdot \cdot \cdot M

,ai,bi, \lambda i, \beta i
U , \beta 

i
A, \delta 

i, \mu i

\biggr) 

=
\prod 
m

\left\{                                 

\left[   
\Bigl( 
ritmq

i
U,tm

\Bigr) (1 - \=sitm+1)(1 - sitm+1) \Bigl( 
1 - qiU,tm

\Bigr) \=sitm+1s
i
tm+1

\times 
\Bigl( \bigl( 

1 - ritm
\bigr) 
qiU,tm

\Bigr) \=sitm+1(1 - sitm+1)

\right]   
(1 - \=sitm)(1 - sitm)

\times 

\left[   
\Bigl( 
\delta iqiA,tm

\Bigr) (1 - \=sitm+1)(1 - sitm+1)\Bigl( \bigl( 
1 - \delta i

\bigr) 
qiA,tm

\Bigr) \=sitm+1(1 - sitm+1)

\times 
\Bigl( 
1 - qiA,tm

\Bigr) \=sitm+1s
i
tm+1

\right]   
\=sitm(1 - sitm)

\times 

\Biggl[ \bigl( 
\delta i\mu i

\bigr) (1 - \=sitm+1)(1 - sitm+1)\bigl( \bigl( 1 - \delta i
\bigr) 
\mu i
\bigr) \=sitm+1(1 - sitm+1)

\times 
\bigl( 
1 - \mu i

\bigr) \=sitm+1s
i
tm+1

\Biggr] \=sitmsitm

\right\}                                 

.
(3.1)

As we know, one node will enter the A-state immediately if it is infected (i.e., sitm = 1
indicates \=sitm = 1). As a result, we have \=sitm+1s

i
tm+1 = sitm+1 and \=sitms

i
tm = sitm . Also, a

node in the U-state cannot be in the I-state, (i.e., \=sitm = 0 indicates sitm = 0), which leads to
(1 - \=sitm)(1 - sitm) = 1 - \=sitm and (1 - \=sitm+1)(1 - sitm+1) = 1 - \=sitm+1.

Even though (3.1) seems to be complicated, it can be reduced to some simple forms when
some explicit conditions are given. For example, assuming that node i at tm is in the US state
(i.e., \=sitm = 0 and sitm = 0), then only one term is retained in the product, namely,
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\biggl[ \Bigl( 
ritmq

i
U,tm

\Bigr) (1 - \=sitm+1)(1 - sitm+1)\Bigl( \bigl( 
1 - ritm

\bigr) 
qiU,tm

\Bigr) \=sitm+1(1 - sitm+1)\Bigl( 
1 - qiU,tm

\Bigr) \=sitm+1s
i
tm+1

\biggr] 
,

which can be further reduced to (1 - ritm)q
i
U,tm

if \=sitm+1 = 1 and sitm+1 = 0 (i.e., in the AS
state at the next time step tm + 1). In sum, (3.1) contains all the transition probabilities in
(2.2)--(2.4).

After implementing some algebraic operations on the logarithmic form of (3.1), one has
the following equation:

(3.2) L
\bigl( 
ai,bi, \lambda i, \beta i

U , \beta 
i
A, \delta 

i, \mu i
\bigr) 
= L0

\bigl( 
\delta i, \mu i

\bigr) 
+ L1

\bigl( 
ai, \lambda i

\bigr) 
+ L2

\bigl( 
bi, \beta i

U , \beta 
i
A

\bigr) 
,

where

L0

\bigl( 
\delta i, \mu i

\bigr) 
=
\sum 
m

\biggl[ 
\=sitm
\bigl( 
1 - \=sitm+1

\bigr) 
ln
\bigl( 
\delta i
\bigr) 
+ \=sitm\=sitm+1

\bigl( 
1 - sitm+1

\bigr) 
ln
\bigl( 
1 - \delta i

\bigr) 
+sitm

\bigl( 
1 - sitm+1

\bigr) 
ln
\bigl( 
\mu i
\bigr) 
+ sitms

i
tm+1 ln

\bigl( 
1 - \mu i

\bigr) \biggr] 
.(3.3)

The quantity that does contain the information is L1(a
i, \lambda i), which depends on the con-

nectivity of node i in the virtual layer. It can be written as

L1

\bigl( 
ai, \lambda i

\bigr) 
=
\sum 
m

\Biggl[ 
\=Xi
tm ln

\Biggl( \bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\=s
j
tm

\Biggr) 
+ \=Y i

tm ln

\Biggl( 
1 - 

\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\=s
j
tm

\Biggr) \Biggr] 
(3.4)

with \=Xi
tm = (1 - \=sitm)(1 - \=sitm+1) and

\=Y i
tm = (1 - \=sitm)(1 - sitm+1)\=s

i
tm+1.

Similarly, the quantity L2(b
i, \beta i

U , \beta 
i
A) that depends on the connectivity of node i in the

physical layer is given by

L2

\bigl( 
bi, \beta i

U , \beta 
i
A

\bigr) 

=
\sum 
m

\left\{             

\Biggl[ 
Xi

U,tm
ln

\Biggl( \bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bijs
j
tm

\Biggr) 
+ Y i

U,tm
ln

\Biggl( 
1 - 

\bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bijs
j
tm

\Biggr) \Biggr] 

+

\Biggl[ 
Xi

A,tm
ln

\Biggl( \bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bijs
j
tm

\Biggr) 
+ Y i

A,tm
ln

\Biggl( 
1 - 

\bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bijs
j
tm

\Biggr) \Biggr] 
\right\}             
,

(3.5)

where Xi
U,tm

= (1 - \=sitm)(1 - sitm+1), Y
i
U,tm

= (1 - \=sitm)s
i
tm+1, X

i
A,tm

= \=sitm(1 - sitm)

(1 - sitm+1), and Y i
A,tm

= \=sitm(1 - sitm)s
i
tm+1.

Equation (3.2) indicates that the problem of the MLE can be realized by separately maxi-
mizing the likelihood function L0, L1, and L2. However, (3.3) does not rely on any information
about the network structure. Therefore, we can separately maximize the likelihood function
L1 and L2, which can help us solve the connections of node i in the virtual layer (i.e., ai)
and in the physical layer (i.e., bi). In principle, (3.2) indicates that one can maximize L1 and
L2 with respect to aij and bij , respectively, to uncover the connectivity of node i. However,
the conventional maximization process leads to equations that cannot be solved because the
quantity aij (b

i
j) appears in the exponential term and the values of \lambda i (or \beta i

U , \beta 
i
A) are unknown.

In the following steps, we will demonstrate how to exploit the mean-field approximation to
overcome the difficulties and transform the problem of maximizing L1 and L2 into two solvable
linear systems of equations. In the main context, we mainly focus on how to reconstruct the
virtual layer, the reconstruction process of the physical layer is similar, so it is summarized in
Appendix A.
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3.2. Mean-field approximation. The maximum value of L1 cannot be obtained straight-
forwardly by setting zero as its derivative with respect to aij , because aij appears in the

exponential term and the values of \lambda i are unknown. We resort to the mean-field approxima-
tion to solve this problem. Specifically, for node i in the virtual layer, the fraction

\sum 
j \not =i \=s

j
tma

i
j

of A-neighbors is approximately equal to the fraction of A-nodes in the whole layer excluding
node i itself: \sum 

j \not =i

\=sjtma
i
j \approx 

\=ki

N  - 1
\=\theta itm ,(3.6)

where \=ki is the degree of node i in the virtual layer, and \=\theta itm =
\sum 

j \not =i \=s
j
tm is the number of

A-nodes excluding node i itself. A new unknown parameter \=ki emerges in (3.4) when we

substitute (3.6) into (3.4). To simplify the analysis, we let \=\gamma i = (1 - \lambda i)
\=ki

N - 1 , leading to

(1 - \lambda i)

\sum 
j \not =i

aij\=s
j
tm

= (1 - \lambda i)
\=ki

N - 1
\=\theta itm = (\=\gamma i)

\=\theta itm . Equation (3.4) can then be written concisely as

\^L1

\bigl( 
\=\gamma i
\bigr) 
=
\sum 
m

\Bigl[ 
\=Xi
tm ln

\Bigl( \bigl( 
\=\gamma i
\bigr) \=\theta itm\Bigr) + \=Y i

tm ln
\Bigl( 
1 - 

\bigl( 
\=\gamma i
\bigr) \=\theta itm\Bigr) \Bigr] .(3.7)

Differentiating \^L1(\=\gamma 
i) with respect to \=\gamma i and setting it to zero, we get

\sum 
m

\=Y i
tm

\=\theta itm

\bigl( 
\=\gamma i
\bigr) \=\theta itm

1 - (\=\gamma i)
\=\theta itm

=
\sum 
m

\=Xi
tm

\=\theta itm .(3.8)

From (3.8), one can numerically obtain the solution of \=\gamma i (denoted as \~\=\gamma i).

3.3. Transform the problem of MLE into two solvable linear systems of equations.
Treating ail(l = 1, . . . , i - 1, i+ 1, . . . , N) as a continuous variance, we can further differentiate
(3.4) with respect to ail and set it to zero, giving rise to

\sum 
m

\=Y i
tm\=sltm

\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\=s
j
tm

1 - (1 - \lambda i)

\sum 
j \not =i

aij\=s
j
tm

=
\sum 
m

\=Xi
tm\=sltm .(3.9)

Obtaining analytical solutions of (3.9) is not feasible due to its nonlinear and high-dimensional
nature (i.e., (N  - 1) \times (N  - 1)). We thus resort to the first-order Taylor expansion. In
particular, we expand ax/(1 - ax) in the limit x \rightarrow x0 to obtain

ax

1 - ax
\approx ax0

1 - ax0
+

ax0 ln a

(1 - ax0)2
(x - x0) =

ax0

1 - ax0
 - ax0 ln ax0

(1 - ax0)2
+

ax0 ln a

(1 - ax0)2
x.(3.10)

Set x =
\sum 

j \not =i a
i
j\=s

j
tm , a = 1 - \lambda i, and x0 =

\=ki

N - 1
\=\theta itm (here x \approx x0 according to (3.6)). Mean-

while, we have ax0 = (\~\=\gamma 
i
)
\=\theta itm since we have set \=\gamma i = (1 - \lambda i)

\=ki

N - 1 . In this case, (1 - \lambda i)

\sum 
j \not =i

aij\=s
j
tm
/

1 - (1 - \lambda i)

\sum 
j \not =i

aij\=s
j
tm

in (3.9) can be expanded as in (3.10).
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By letting

\=F i
tm =

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

1 - 
\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

 - 

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm\biggl( 

1 - 
\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

\biggr) 2
\=\theta itm ln \~\=\gamma i and \=Gi

tm =

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm\biggl( 

1 - 
\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

\biggr) 2

(note that these values can be calculated when the time series data are known), we transform
(3.9) into a solvable linear system as\sum 

m

\=Y i
tm

\=Gi
tm\=sltm ln

\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\=s
j
tm =

\sum 
m

\bigl( 
\=Xi
tm  - \=Y i

tm
\=F i
tm

\bigr) 
\=sltm .(3.11)

Further letting \=\Phi i
tm = \=Y i

tm
\=Gi
tm and \=\Gamma i

tm = \=Xi
tm  - \=Y i

tm
\=F i
tm , the linear system of equations (3.11)

can be described in a matrix form:\left[              

\sum 
m

\=\Phi i
tm
\=I1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=I1,i - 1

\sum 
m

\=\Phi i
tm
\=I1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=I1,N

...
...

...
...\sum 

m

\=\Phi i
tm
\=Ii - 1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii - 1,i - 1

\sum 
m

\=\Phi i
tm
\=Ii - 1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii - 1,N\sum 

m

\=\Phi i
tm
\=Ii+1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii+1,i - 1

\sum 
m

\=\Phi i
tm
\=Ii+1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii+1,N

...
...

...
...\sum 

m

\=\Phi i
tm
\=IN,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=IN,i - 1

\sum 
m

\=\Phi i
tm
\=IN,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=IN,N

\right]              

\times 
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ai1 ln
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1 - \lambda i

\bigr) 
...

aii - 1 ln
\bigl( 
1 - \lambda i

\bigr) 
aii+1 ln

\bigl( 
1 - \lambda i

\bigr) 
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aiN ln
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tm\sum 
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\=\Gamma i
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...\sum 
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\=\Gamma i
tm\=sNtm

\right]              
,

(3.12)

where \=Il,k = \=sltm\=sktm . The matrix on the left side (labeled as \Lambda ) and the vector (labeled as
\bfitzeta ) on the right side of (3.12) can be calculated from the time series of the nodal states. The
vector

(3.13) \bfiteta =
\bigl[ 
ai1 ln

\bigl( 
1 - \lambda i

\bigr) 
, . . . , aii - 1 ln

\bigl( 
1 - \lambda i

\bigr) 
, aii+1 ln

\bigl( 
1 - \lambda i

\bigr) 
, . . . , aiN ln

\bigl( 
1 - \lambda i

\bigr) \bigr] T
can then be solved, where T denotes transpose. Note that the quantity ln(1 - \lambda i) < 0 is a
constant even though \lambda i is not given, implying that the value of  - aij ln(1 - \lambda i) is positively

large for aij = 1 and near zero for aij = 0.

Similarly, the connectivity of node i in the physical layer (i.e., bi) can be inferred by
solving the following linear systems of equations (a detailed derivation process is summarized
in Appendix A):
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(3.14)

where Il,k = sltms
k
tm . From (3.14), the vector

\bfitxi =
\bigl[ 
bi1 ln

\bigl( 
1 - \beta i

A

\bigr) 
, . . . , bii - 1 ln

\bigl( 
1 - \beta i

A

\bigr) 
, bii+1 ln

\bigl( 
1 - \beta i

A

\bigr) 
, . . . , biN ln

\bigl( 
1 - \beta i

A

\bigr) \bigr] T
(3.15)

can then be solved. Also, ln(1 - \beta i
A) is a constant even though the value of \beta i

A is unknown.
Thus, the neighbors of node i in the physical layer can be inferred from the vector \bfitxi . As a
result, a threshold value can then be readily set to distinguish the existent from the nonexistent
links: a pair of nodes i and l are connected in the virtual (or physical) layer if the value
of  - ail ln(1 - \lambda i) ( - bil ln(1 - \beta i

A)) is larger than the threshold (the criterion to choose the
threshold is introduced in Appendix B).

4. Main results.

4.1. Reconstructing empirical duplex networks. We first validate our framework using an
empirical network of 61 employees in the Department of Computer Science at the University
of Aarhus, the so-called CS-AARHUS network [29]. The original network has five layers.
We regard the Facebook layer as the virtual layer and the other four offline layers (Leisure,
Work, Co-authorship, Lunch) as the physical layer, as illustrated in Figures 3(a) and (b),
respectively. Figures 3(c) and (d) show the values of characteristic quantities  - ail ln

\bigl( 
1 - \lambda i

\bigr) 
and  - bil ln

\bigl( 
1 - \beta i

A

\bigr) 
for the virtual and physical layers, where the blue and orange dots denote

the existent and nonexistent links, respectively. We see that the values of the characteristic
quantities are well separated by a distinct gap and can be unequivocally distinguished through
a properly chosen threshold. For the physical layer in Figure 3(d), the gap between the
blue and orange dots exhibits a decreasing trend with the nodal degree, indicating that the
neighbors of larger degree nodes are harder to be detected because of neighborhood overlapping
associated with such nodes. This result is consistent with previous findings [37, 27]. For the
virtual layer (Figure 3(c)), the blue and orange dots for node 7 are overlapped even though
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Figure 3. Reconstruction of the CS-AARHUS network. (a) Actual structure of the virtual contact layer
(Facebook). (b) The structure of the physical layer. (c), (d) The values of  - ai

l ln
\bigl( 
1 - \lambda i

\bigr) 
, i \not = l, and

 - bil ln
\bigl( 
1 - \beta i

A

\bigr) 
, i \not = l, respectively, versus the nodal degree. Each column gives the connectivity of a node,

where the blue and orange dots denote the existent and nonexistent links, respectively. The length of the time
series is M = 30000. The parameter values of the dynamical processes for all nodes are set as \lambda = 0.2,
\beta U = 0.2, \beta A = 0.5\beta U , and \mu = \delta = 0.8.

\=k7 = 6, but there is a finite gap for large degree nodes, e.g., node 52 with \=k52 = 10, node
27 with \=k27 = 12, and node 25 with \=k25 = 15. The relatively small gap of \=k7 is due to the
fact that the counterpart value in the physical layer is large: k7 = 29, indicating that the
node has been infected and is thus constantly in the A-state in the virtual layer (an infected
node becomes aware immediately). As a result, the states of the neighbors of this node in the
virtual layer have little influence on its state, making reconstruction difficult. For nodes with
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large and small degrees in the virtual and physical layers, respectively, the transition from U to
A is mainly determined by the states of the neighbors, facilitating reconstruction. In general,
the structure of the physical layer has a significant effect on the reconstruction of the virtual
layer, but the effect in the opposite direction is minimal. (In the main context, the parameter
values of the dynamical processes for all nodes are the same. Figure 9 in Appendix C is
given to validate the applicability of the reconstruction framework to spreading dynamics
with heterogeneous rates.)

To better demonstrate the applicability of our reconstruction framework for complex du-
plex networks, we consider two duplex networks reconstructed from a temporal empirical
network---a social evolution network [28]---as we were unable to reach empirical data directly
from virtual/physical contact duplex networks. The social evolution network was conducted
to study the daily life of more than 80\% of the students residing in an MIT dormitory (the
size of the network is N = 84). The data recorded different social relationships among these
students during 2008--2009. We choose the relationship networks in Facebook and CloseFriend
as the virtual and physical layers, respectively. The first duplex network corresponds to the
time period of October 2008, which is called MITSEN0810, with the average degrees of the
virtual and physical layers being 27.71 and 7.26, respectively. The second duplex network
is for the time period of April 2009, which is called MITSEN0904, with the average degrees
of the virtual and physical layers being 31.98 and 8.19, respectively. The panels in the top
and bottom rows of Figure 4 display the reconstruction accuracy in terms of the statistical
quantities of AUROC (area under the receiver operating characteristic curve), AUPR (area
under the precision recall curve), and Success rate (see Appendix D for the definitions of these
evaluation metrics) versus the length of the time series for MITSEN0810 and MITSEN0904
networks, respectively. We have observed that the longer time series results in better recon-
struction performance, and the reconstruction accuracy of the physical layer is higher than
that of the virtual layer, consistent with the results in Figure 3.

4.2. Performance analysis: Reconstructing synthetic duplex networks. To understand
the effect of interlayer coupling on reconstruction, we test a number of synthetic duplex
networks: small-world (SW-SW) [47], Erd\"os--R\'enyi (ER-ER) [14], and Barab\'asi--Albert (BA-
BA) [1] duplex systems. For comparison, we include the special case where each layer is
separately reconstructed without taking into account the other layer, which is equivalent
to reconstructing a single-layer network (labeled as single). Figures 5(a)--(i) show that the
reconstruction accuracy of the virtual layer is greatly reduced when a physical layer is in-
troduced (e.g., blue \rightarrow black). Without the physical layer, the transition of an unaware
node in the virtual layer to the aware state depends only on the states of its neighbors.
With the presence of the physical layer, an A-node can spontaneously become aware once
it is infected, ``concealing"" the information about the structure of the virtual layer. On
the contrary, the reconstruction accuracy of the physical layer can be improved slightly
(e.g., blue \rightarrow red) when the virtual layer is introduced, which reduces the ability to in-
fect A-nodes and prevents too many nodes from being in the I-state, facilitating reconstruc-
tion. Figure 5 also illustrates that the reconstruction accuracy of the SW-SW duplex net-
work is higher than that of the ER-ER duplex network and much higher than that of the
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Figure 4. Reconstruction accuracy of MITSEN0810 and MITSEN0904 networks. (a)--(c) For the
MITSEN0810 network, values of the AUROC, AUPR, and Success rate versus length M of the time series,
respectively, for the parameter setting \lambda = 0.05, \beta U = 0.2, \beta A = 0.5\beta U , and \mu = \delta = 0.8. (d)--(f) The
corresponding results for the MITSEN0904 network for the same parameter values as for (a)--(c).

BA-BA duplex network due to the difficulty in reconstructing the neighbors of large degree
nodes.

How does the average degree of each layer affect the reconstruction accuracy? Figure 6(a)
shows that an increase in the average degree \langle k\rangle of the physical layer can greatly reduce
the reconstruction accuracy of the virtual layer. An explanation is that the probability of
being infected tends to increase for a larger value of \langle k\rangle , ``hiding"" the information required for
uncovering the structure of the virtual layer. Figure 6(b) shows that, for the physical layer,
the accuracy gradually decreases with its average degree, for a fixed average degree of the
virtual layer. We also find that increasing the average degree \langle \=k\rangle of the virtual layer tends
to reduce the reconstruction accuracy of itself (Figure 6(c)) but has a negligible effect on the
reconstruction of the physical layer (Figure 6(d)).

Figure 7 shows the effect of noise on the reconstruction accuracy, where noise is imple-
mented by randomly flipping a fraction \tau of the states among the total number MN of states.
Noise has a significant effect on the reconstruction of the virtual layer, but it hardly affects
the reconstruction of the physical layer (even when the flip rate is \tau = 20\%).



136 C. MA, H.-S. CHEN, X. LI, Y.-C. LAI, AND H.-F. ZHANG

Figure 5. Effect of interlayer coupling on reconstruction accuracy. Columns 1--3: reconstruction perfor-
mance for ER-ER, SW-SW, and BA-BA duplex networks, respectively. The ``single"" case indicates the absence
of interlayer coupling: \beta U = 0 (\lambda = 0) for the virtual (physical) layer. The parameter setting is \lambda = 0.4,
\beta U = 0.4, \beta A = 0.5\beta U , and \mu = \delta = 0.8. The structures of the two layers are identical. The network
parameters are N = 100 and \langle \=k\rangle = \langle k\rangle = 6.

5. Discussion and conclusion. We have developed a mean-field based MLE framework
to solve the challenging problem of data based reconstruction of multiplex networks. The
reconstruction performance has been demonstrated using a number of real-world and synthetic
duplex networks comprising a virtual and a physical layer, where each layer hosts a distinct
type of spreading dynamics that are coupled through the duplex network structure. Extensive
tests and analysis indicate that the framework is capable of accurately reconstructing the
full topology of each layer based solely on measured time series. A thorough examination
of the dynamical coupling between the two layers gives that the reconstruction accuracy of
the physical layer is generally much higher than that of the virtual layer. In addition, the
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Figure 6. Effect of average degree on reconstruction as measured by the AUROC index. (a), (b) For a fixed
value of the average degree \langle \=k\rangle of the virtual layer, the effect of varying the average degree \langle k\rangle of the physical
layer on the reconstruction accuracy of the former and latter, respectively. (c), (d) For a fixed value of \langle k\rangle , the
effect of varying the value of \langle \=k\rangle on the reconstruction accuracy of the virtual and physical layer, respectively.
ER-ER duplex networks with N = 100 are used. The parameters are \lambda = 0.3, \beta U = 0.4, \beta A = 0.5\beta U , and
\mu = \delta = 0.8.

t t t

Figure 7. Impact of noise on reconstruction accuracy. (a)--(c) AUROC, AUPR, and Success rate versus
the fraction \tau of randomly flipped states for an ER-ER duplex system. The network parameters are N = 100,
\langle \=k\rangle = 4, and \langle k\rangle = 6. The length of the time series is M = 30000. Other parameters are the same as in
Figure 6.



138 C. MA, H.-S. CHEN, X. LI, Y.-C. LAI, AND H.-F. ZHANG

reconstruction accuracy of the virtual layer is more sensitive to external noise than that of
the physical layer.

Our framework represents a starting point toward reconstructing more general multiplex
networks hosting different types of dynamics. Appealing features are that the framework
has high accuracy, is readily implemented, and has a solid mathematical foundation. Issues
warranting further considerations include extension to continuous-time dynamical processes,
generalization to multiplex networks consisting of more than two layers, and development of
effective and practical methods to reduce the required data amount.

Appendix A. Reconstruction framework of physical layer. To infer the neighbors of node
i in the physical layer, we need to use some mathematical skills to bypass the two unknown
parameters in L2 (see (3.5)): \beta i

U and \beta i
A. According to mean-field approximation, one has\sum 

j \not =i

sjtmb
i
j \approx 

ki

N  - 1
\theta itm ,(A.1)

where ki is the degree of node i and \theta itm =
\sum 

j \not =i s
j
tm is the number of I-nodes in the physical

layer (excluding node i itself).
Then, by setting

\gamma iU =
\bigl( 
1 - \beta i

U

\bigr) ki

N - 1 ,

\gamma iA =
\bigl( 
1 - \beta i

A

\bigr) ki

N - 1 ,
(A.2)

we write (3.5) concisely as

\^L2

\bigl( 
\gamma iU , \gamma 

i
A

\bigr) 
=
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\left\{     
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U,tm
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\Bigl( 
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Taking the derivatives of \^L2 with respect to \gamma iU and \gamma iA and setting them to zero, we get\sum 
m

Y i
U,tm

\theta itm
(\gamma i

U)
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1 - (\gamma i
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(A.4)

which gives the values of \gamma iU = \~\gamma iU and \gamma iA = \~\gamma iA, respectively.
Similar to the mean-field analysis of the virtual layer, we differentiate (3.5) with respect

to bil and set it to zero:
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With the assumption in (A.2) and setting \rho =
\mathrm{l}\mathrm{n} \~\gamma i

U

\mathrm{l}\mathrm{n} \~\gamma i
A

=
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U )
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, we can further simplify

(A.5) as
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Let x =
\sum 

j \not =i b
i
js

j
tm , x0 = ki

N - 1\theta 
i
tm (x \approx x0 from the mean-field approximation in (A.1)),

and a = 1  - \beta i
U . One has ax0 = (\~\gamma iU )

\theta itm from (A.2). Using (3.10), the following equation is
obtained:
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Again, setting ax0 =
\bigl( 
\~\gamma iA
\bigr) \theta itm and using (3.10) leads to

(1 - \beta i
A)

\sum 
j \not =i

bijs
j
tm

1 - (1 - \beta i
A)

\sum 
j \not =i

bi
j
s
j
tm

= F i
A,tm

+Gi
A,tm

ln
\bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bijs
j
tm ,(A.8)

where
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With the above approximations, (A.6) can be written in the linear systems of equations:
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Equation (A.9) can be further rewritten as (3.14) by letting \Phi i
tm = \rho 2Y i
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.

Appendix B. Selection of threshold value for identification of existent links. For each
node i, the values of ail ln(1 - \lambda i) (or of bil ln(1 - \beta i

A)) can be obtained from (3.12) (or (3.14)).



140 C. MA, H.-S. CHEN, X. LI, Y.-C. LAI, AND H.-F. ZHANG

Figure 8. Reconstruction of CS-AARHUS duplex network. (a), (b) Values of  - ai
l ln

\bigl( 
1 - \lambda i

\bigr) 
, i \not = l, and

 - bil ln
\bigl( 
1 - \beta i

A

\bigr) 
, i \not = l for each node, respectively. Each column gives the connectivity of a node. The blue

and orange points denote the existent and nonexistent links, respectively. (c) Illustration of the choice of the
threshold with node 46 (highlighted by the red dashed frame in (b)). Shown is the distribution of the values of
 - b46l ln

\bigl( 
1 - \lambda i

\bigr) 
for l \not = 46. The peak centered about zero corresponds to nonexistent links, while the other peak

corresponds to existent links. A threshold can be set within the gap between the two peaks. (d) The threshold is
illustrated to distinguish the actual from the nonexistent links. The length of time series is M = 30000. Other
parameters are \lambda = 0.2, \beta U = 0.2, \beta A = 0.5\beta U , and \mu = \delta = 0.8.

From Figures 8(a), (b), we have that the values of  - ail ln(1 - \lambda i) (or  - bil ln(1 - \beta i
A)) are un-

equivocally above zero for the existent links, while their values are close to zero for nonexistent
links, with a gap between the two sets of values. Representing the values listed in each column
as a histogram, we have that the peak centered about zero corresponds to nonexistent links
and the other corresponds to existent links. A threshold value can be placed between the two
peaks [37], as shown in Figure 8(c). A pair of nodes i and l are connected if the correspond-
ing value of  - ail ln(1 - \lambda i) [ - bil ln(1 - \beta i

A)] is larger than the threshold. Take node 46 as an
example. We wish to infer its neighbors in the physical layer (highlighted by the red dashed
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Figure 9. Applicability of reconstruction framework to spreading dynamics with heterogeneous rates. Recon-
struction accuracy versus the length M of the time series for ER-ER (left column), SW-SW (central column),
and BA-BA (right column) duplex networks with heterogeneous transmission and recovery rates. The network
parameters are N = 100 and \langle \=k\rangle = 4, \langle k\rangle = 6.

frame in Figure 8(b)). Figure 8(d) shows that the values larger than the threshold correspond
to the existent links.

Appendix C. Reconstruction of duplex networks with heterogeneous rates of spreading
dynamics. Figure 9 demonstrates that our framework can reconstruct duplex networks with
heterogeneous rates of spreading dynamics. In particular, transmission rates \lambda i and \beta i

U are
randomly chosen from the ranges (0.2, 0.4) and (0.3, 0.5), respectively. The recovery rates \delta i

and \mu i are randomly picked up from the ranges (0.6, 1) and (0.6, 1), respectively. Note that
\beta i
A = 0.5\beta i

U .
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Appendix D. Evaluation metrics. We use three metrics [24] to characterize the perfor-
mance of our reconstruction framework: the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve (AUPR), and the Success rate.

To define AUROC and AUPR, it is necessary to calculate three basic quantities: TPR
(true positive rate), FPR (false positive rate), and Recall [24]. In particular, TPR is defined
as

TPR(l) =
TP(l)

T
,(D.1)

where l is the cut-off index in the list of the predicted links, TP(l) is the number of true
positives in the top l predictions in the link list, and T is the number of positives.

FPR is defined as

FPR(l) =
FP(l)

Q
,(D.2)

where FP(l) is the number of false positives in the top l entries in the predicted link list, and
Q is the number of negatives by the golden standard.

Recall and Precision are defined as

Recall(l) = TPR(l) =
TP(l)

T
(D.3)

and

Precision(l) =
TP(l)

TP(l) + FP(l)
=

TP(l)

l
,(D.4)

respectively. Varying the value of l from 0 to N , we plot two sequences of points: [FPR(l),
TPR(l)] and [Recall(l),Precision(l)]. The area under the two curves corresponds to the values
of AUROC and AUPR, respectively. For perfect reconstruction, we have AUROC=1 and
AUPR=1. In the worst case (completely random), we have AUROC=0.5 and AUPR=T/2N .

Let n1 and n2 be the numbers of the existent and nonexistent links in the network,
respectively, and n3 and n4 be the numbers of the predicted existent and nonexistent links.
The Success rates for existent links (SREL) and nonexistent links (SRNL) are defined as n3/n1

and n4/n2, respectively. The normalized Success rate is
\surd 
SREL\times SRNL [37].

Appendix E. Reconstruction of duplex networks with UAU-SIR dynamics.

E.1. UAU-SIR dynamics on duplex networks. Different from the UAU-SIS model, epi-
demic dynamics in the physical layer are of the SIR type [51]. An infected (I) node can infect
its susceptible (S) neighbors with probability \beta and meanwhile can be recovered with prob-
ability \mu . The recovered (R) nodes cannot be infected again. Henceforth, each node within
the UAU-SIR model has five potential states: aware and susceptible (AS), aware and infec-
tive (AI), aware and recovered (AR), unaware and susceptible (US), unaware and recovered
(UR).

Let \=sit and sit denote the state of node i at time t in the virtual layer and the physical
layer, respectively. \=sit = 0 (or 1) indicates that node i is in a U-state (A-state), and sit = 0
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(1 or 2) indicates that node i is in an S-state (I-state or R-state). Therefore,
\sum 

j \not =i a
i
jI(\=s

j
t , 1) (or\sum 

j \not =i b
i
jI(s

j
t , 1)) depicts the number of A-neighbors (I-neighbors) of node i, where I (x, y) = 1

when x = y, and otherwise I (x, y) = 0.
Similar to the UAU-SIS model, the three probabilities describing the UAU-SIR spreading

dynamics are given as

rit =
\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\mathrm{I}(\=s
j
t ,1)

,

qiU,t =
\bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
t ,1)

,

qiA,t =
\bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
t ,1)

.

(E.1)

Figure 10 presents the transition probability tree of the UAU-SIR coupling dynamics on
the duplex networks.

Figure 10 and (E.1) imply that the transition probabilities of node i from the US state to
the US, AS, and AI states are

PUS\rightarrow US = ritq
i
U,t,

PUS\rightarrow AS =
\bigl( 
1 - rit

\bigr) 
qiU,t,

PUS\rightarrow AI = rit

\Bigl( 
1 - qiU,t

\Bigr) 
+
\bigl( 
1 - rit

\bigr) \Bigl( 
1 - qiU,t

\Bigr) 
= 1 - qiU,t.

(E.2)

Figure 10. Transition probability tree of coupled UAU-SIR dynamics on duplex networks. AI, aware and
infected; UI, unaware and infected (redundant to the AI state); AS, aware and susceptible; AR, aware and
recovered; US, unaware and susceptible; and UR, unaware and recovered.
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The transition probabilities of node i from the AS state to the US, AS, and AI states are

PAS\rightarrow US = \delta iqiA,t,

PAS\rightarrow AS =
\bigl( 
1 - \delta i

\bigr) 
qiA,t,

PAS\rightarrow AI = \delta i
\Bigl( 
1 - qiA,t

\Bigr) 
+
\bigl( 
1 - \delta i

\bigr) \Bigl( 
1 - qiA,t

\Bigr) 
= 1 - qiA,t.

(E.3)

The transition probabilities of node i from the AI state to the UR, AR, and AI states are

PAI\rightarrow UR = \delta i\mu i,
PAI\rightarrow AR =

\bigl( 
1 - \delta i

\bigr) 
\mu i,

PAI\rightarrow AI = 1 - \mu i.
(E.4)

The transition probabilities of node i from the UR state to the UR and AR states are

PUR\rightarrow UR = rit,
PUR\rightarrow AR = 1 - rit.

(E.5)

Also, the transition probabilities of node i from the AR state to the UR and AR states are

PAR\rightarrow UR = \delta i,
PAR\rightarrow AR = 1 - \delta i.

(E.6)

E.2. Establish the likelihood function. For node i, if we know all nodes' states in two
layers, its connections in the virtual and physical layers, and the parameters in the dynamics,
then the joint probability (likelihood function) of node i at the all next time states is

P

\biggl( \bigl\{ 
\=sitm+1, s

i
tm+1

\bigr\} 
m=1\cdot \cdot \cdot M | 

\Bigl\{ 
\=sjtm , s

j
tm

\Bigr\} 
j=1\cdot \cdot \cdot N,m=1\cdot \cdot \cdot M

,a\bfi ,b\bfi , \lambda i, \beta i
U , \beta 

i
A, \delta 

i, \mu i

\biggr) 

=
\prod 
m

\left\{                                                 

\left[   
\Bigl( 
ritmq

i
U,tm

\Bigr) \mathrm{I}(\=sitm+1,0)\mathrm{I}(sitm+1,0)\Bigl( 
1 - qiU,tm

\Bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,1)

\times 
\Bigl( \bigl( 

1 - ritm
\bigr) 
qiU,tm

\Bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,0)

\right]   
\mathrm{I}(\=sitm ,0)\mathrm{I}(sitm ,0)

\times 

\left[   
\Bigl( 
\delta iqiA,tm

\Bigr) \mathrm{I}(\=sitm+1,0)\mathrm{I}(sitm+1,0)\Bigl( 
1 - qiA,tm

\Bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,1)

\times 
\Bigl( \bigl( 

1 - \delta i
\bigr) 
qiA,tm

\Bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,0)

\right]   
\mathrm{I}(\=sitm ,1)\mathrm{I}(sitm ,0)

\times 

\Biggl[ \bigl( 
\delta i\mu i

\bigr) \mathrm{I}(\=sitm+1,0)\mathrm{I}(sitm+1,2)\bigl( 1 - \mu i
\bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,1)

\times 
\bigl( \bigl( 
1 - \delta i

\bigr) 
\mu i
\bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,2)

\Biggr] \mathrm{I}(\=sitm ,1)\mathrm{I}(sitm ,1)

\times 
\Bigl[ \bigl( 
ritm
\bigr) \mathrm{I}(\=sitm+1,0)\mathrm{I}(sitm+1,2)\bigl( 1 - ritm

\bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,2)
\Bigr] \mathrm{I}(\=sitm ,0)\mathrm{I}(sitm ,2)

\times 
\Bigl[ \bigl( 
\delta i
\bigr) \mathrm{I}(\=sitm+1,0)\mathrm{I}(sitm+1,2)\bigl( 1 - \delta i

\bigr) \mathrm{I}(\=sitm+1,1)\mathrm{I}(sitm+1,2)
\Bigr] \mathrm{I}(\=sitm ,1)\mathrm{I}(sitm ,2)

\right\}                                                 

.(E.7)
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The quantity L1(a
i, \lambda i) that depends on the connectivity of node i in the virtual layer is

given by

L1

\Bigl( 
a\bfi , \lambda i

\Bigr) 
=
\sum 
m

\left[       
\=Xi
tm ln

\Biggl( \bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\mathrm{I}(\=s
j
tm

,1)
\Biggr) 

+\=Y i
tm ln

\Biggl( 
1 - 

\bigl( 
1 - \lambda i

\bigr) \sum 
j \not =i

aij\mathrm{I}(\=s
j
tm

,1)
\Biggr) 
\right]       ,(E.8)

where

\=Xi
tm=I

\bigl( 
\=sitm+1, 0

\bigr) 
I
\bigl( 
\=sitm , 0

\bigr) \bigl[ 
I
\bigl( 
sitm+1, 0

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
+I
\bigl( 
sitm+1, 2

\bigr) 
I
\bigl( 
sitm , 2

\bigr) \bigr] 
,

\=Y i
tm=I

\bigl( 
\=sitm+1, 1

\bigr) 
I
\bigl( 
\=sitm , 0

\bigr) \bigl[ 
I
\bigl( 
sitm+1, 0

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
+I
\bigl( 
sitm+1, 2

\bigr) 
I
\bigl( 
sitm , 2

\bigr) \bigr] 
.

(E.9)

Similarly, the quantity L2(b
i, \beta i

U , \beta 
i
A) that depends on the connectivity of node i in the physical

layer is given by

L2

\Bigl( 
b\bfi , \beta i

U , \beta 
i
A

\Bigr) 
=
\sum 
m

\left\{                               

\left[      
Xi

U,tm
ln

\Biggl( \bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
tm

,1)
\Biggr) 

+Y i
U,tm

ln

\Biggl( 
1 - 

\bigl( 
1 - \beta i

U

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
tm

,1)
\Biggr) 
\right]      

+

\left[      
Xi

A,tm
ln

\Biggl( \bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
tm

,1)
\Biggr) 

+Y i
A,tm

ln

\Biggl( 
1 - 

\bigl( 
1 - \beta i

A

\bigr) \sum 
j \not =i

bij\mathrm{I}(s
j
tm

,1)
\Biggr) 
\right]      

\right\}                               

,(E.10)

where

Xi
U,tm = I

\bigl( 
\=sitm , 0

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
I
\bigl( 
sitm+1, 0

\bigr) 
,

Y i
U,tm = I

\bigl( 
\=sitm , 0

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
I
\bigl( 
\=sitm+1, 1

\bigr) 
I
\bigl( 
sitm+1, 1

\bigr) 
,

Xi
A,tm = I

\bigl( 
\=sitm , 1

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
I
\bigl( 
sitm+1, 0

\bigr) 
,

Y i
A,tm = I

\bigl( 
\=sitm , 1

\bigr) 
I
\bigl( 
sitm , 0

\bigr) 
I
\bigl( 
\=sitm+1, 1

\bigr) 
I
\bigl( 
sitm+1, 1

\bigr) 
.

(E.11)

E.3. Reconstruction framework of virtual layer. To infer the neighbors of node i in the
virtual layer, we need to use some mathematical skills to bypass the unknown parameter in
L1 (see (E.8)): \lambda i. According to mean-field approximation, one has\sum 

j \not =i

I
\Bigl( 
\=sjtm , 1

\Bigr) 
aij \approx 

\=ki

N  - 1
\=\theta itm ,(E.12)

where \=ki is the degree of node i and \=\theta itm =
\sum 

j \not =i I(\=s
j
tm , 1) is the number of A-nodes in the

virtual layer (excluding node i itself).
Then, by setting

\=\gamma i =
\bigl( 
1 - \lambda i

\bigr) \=ki

N - 1 ,(E.13)
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and similar to (3.7) and (3.8), we get\sum 
m

\=Y i
tm

\=\theta itm

\bigl( 
\=\gamma i
\bigr) \=\theta itm

1 - (\=\gamma i)
\=\theta itm

=
\sum 
m

\=Xi
tm

\=\theta itm .(E.14)

From (E.14), one can numerically obtain the solution of \=\gamma i (denoted as \~\=\gamma i).
Similarly, the connectivity of node i in the virtual layer (i.e., ai) can be inferred by solving

the following linear systems of equations:\left[              

\sum 
m

\=\Phi i
tm
\=I1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=I1,i - 1

\sum 
m

\=\Phi i
tm
\=I1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=I1,N

...
...

...
...\sum 

m

\=\Phi i
tm
\=Ii - 1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii - 1,i - 1

\sum 
m

\=\Phi i
tm
\=Ii - 1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii - 1,N\sum 

m

\=\Phi i
tm
\=Ii+1,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii+1,i - 1

\sum 
m

\=\Phi i
tm
\=Ii+1,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=Ii+1,N

...
...

...
...\sum 

m

\=\Phi i
tm
\=IN,1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=IN,i - 1

\sum 
m

\=\Phi i
tm
\=IN,i+1 \cdot \cdot \cdot 

\sum 
m

\=\Phi i
tm
\=IN,N

\right]              

\times 

\left[          

ai1 ln
\bigl( 
1 - \lambda i

\bigr) 
...

aii - 1 ln
\bigl( 
1 - \lambda i

\bigr) 
aii+1 ln

\bigl( 
1 - \lambda i

\bigr) 
...

aiN ln
\bigl( 
1 - \lambda i

\bigr) 

\right]          
=

\left[              

\sum 
m

\=\Gamma i
tmI
\bigl( 
\=s1tm , 1

\bigr) 
...\sum 

m

\=\Gamma i
tmI
\bigl( 
\=si - 1
tm , 1

\bigr) 
\sum 
m

\=\Gamma i
tmI
\bigl( 
\=si+1
tm , 1

\bigr) 
...\sum 

m

\=\Gamma i
tmI
\bigl( 
\=sNtm , 1

\bigr) 

\right]              
,

(E.15)

where \=Il,k = I(\=sltm , 1)I(\=s
k
tm , 1),

\=\Phi i
tm = \=Y i

tm
\=Gi
tm ,

\=\Gamma i
tm = \=Xi

tm  - \=Y i
tm

\=F i
tm ,

\=F i
tm =

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

1 - 
\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

 - 

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm\biggl( 

1 - 
\Bigl( 
\~\=\gamma 

i
\Bigr) \=\theta itm

\biggr) 2
\=\theta itm ln \~\=\gamma i and \=Gi

tm =

\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm\biggl( 

1 - 
\Bigl( 
\~\=\gamma 
i
\Bigr) \=\theta itm

\biggr) 2 .

E.4. Reconstruction framework of physical layer. To infer the neighbors of node i in the
physical layer, we need to use some mathematical skills to bypass the two unknown parameters
in L2 (see (E.10)): \beta i

U and \beta i
A. According to mean-field approximation, one has\sum 

j \not =i

I
\Bigl( 
sjtm , 1

\Bigr) 
bij \approx 

ki

N  - 1
\theta itm ,(E.16)

where ki is the degree of node i and \theta itm =
\sum 

j \not =i I(s
j
tm , 1) is the number of I-nodes in the

physical layer (excluding node i itself). Then, by setting

\gamma iU =
\bigl( 
1 - \beta i

U

\bigr) ki

N - 1 ,

\gamma iA =
\bigl( 
1 - \beta i

A

\bigr) ki

N - 1 ,
(E.17)
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and similar to (A.3) and (A.4), one has

\sum 
m

Y i
U,tm

\theta itm
(\gamma i

U)
\theta itm

1 - (\gamma i
U)

\theta itm

=
\sum 
m

Xi
U,tm

\theta itm ,\sum 
m

Y i
A,tm

\theta itm
(\gamma i

A)
\theta itm

1 - (\gamma i
A)

\theta itm

=
\sum 
m

Xi
A,tm

\theta itm ,

(E.18)

which gives the values of \gamma iU = \~\gamma iU and \gamma iA = \~\gamma iA, respectively.
Similarly, the connectivity of node i in the physical layer (i.e., bi) can be inferred by

solving the following linear systems of equations:\left[              

\sum 
m

\Phi i
tmI1,1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmI1,i - 1

\sum 
m

\Phi i
tmI1,i+1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmI1,N

...
...

...
...\sum 

m
\Phi i
tmIi - 1,1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIi - 1,i - 1

\sum 
m

\Phi i
tmIi - 1,i+1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIi - 1,N\sum 

m
\Phi i
tmIi+1,1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIi+1,i - 1

\sum 
m

\Phi i
tmIi+1,i+1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIi+1,N

...
...

...
...\sum 

m
\Phi i
tmIN,1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIN,i - 1

\sum 
m

\Phi i
tmIN,i+1 \cdot \cdot \cdot 

\sum 
m

\Phi i
tmIN,N

\right]              

\times 

\left[          

bi1 ln
\bigl( 
1 - \beta i

A

\bigr) 
...

bii - 1 ln
\bigl( 
1 - \beta i

A

\bigr) 
bii+1 ln

\bigl( 
1 - \beta i

A

\bigr) 
...

biN ln
\bigl( 
1 - \beta i

A

\bigr) 

\right]          
=

\left[              

\sum 
m

\Gamma i
tmI
\bigl( 
s1tm , 1

\bigr) 
...\sum 

m
\Gamma i
tmI
\bigl( 
si - 1
tm , 1

\bigr) 
\sum 
m

\Gamma i
tmI
\bigl( 
si+1
tm , 1

\bigr) 
...\sum 

m
\Gamma i
tmI
\bigl( 
sNtm , 1

\bigr) 

\right]              
,

(E.19)

where Il,k = I(sltm , 1)I(s
k
tm , 1), \Phi 

i
tm = \rho 2Y i

U,tm
Gi

U,tm
+ Y i

A,tm
Gi

A,tm
, \Gamma i

tm = \rho Xi
U,tm

+ Xi
A,tm

 - 

\rho Y i
U,tm

F i
U,tm

 - Y i
A,tm

F i
A,tm

, \rho =
\mathrm{l}\mathrm{n} \~\gamma i

U

\mathrm{l}\mathrm{n} \~\gamma i
A
=

\mathrm{l}\mathrm{n}(1 - \beta i
U )

\mathrm{l}\mathrm{n}(1 - \beta i
A)
,

F i
U,tm =

\bigl( 
\~\gamma iU
\bigr) \theta itm

1 - 
\bigl( 
\~\gamma iU
\bigr) \theta itm  - 

\bigl( 
\~\gamma iU
\bigr) \theta itm\Bigl( 

1 - 
\bigl( 
\~\gamma iU
\bigr) \theta itm\Bigr) 2 \theta itm ln \~\gamma iU , Gi

U,tm =

\bigl( 
\~\gamma iU
\bigr) \theta itm\Bigl( 

1 - 
\bigl( 
\~\gamma iU
\bigr) \theta itm\Bigr) 2 ,

F i
A,tm =

\bigl( 
\~\gamma iA
\bigr) \theta itm

1 - 
\bigl( 
\~\gamma iA
\bigr) \theta itm  - 

\bigl( 
\~\gamma iA
\bigr) \theta itm\Bigl( 

1 - 
\bigl( 
\~\gamma iA
\bigr) \theta itm\Bigr) 2 \theta itm ln \~\gamma iA, and Gi

A,tm =

\bigl( 
\~\gamma iA
\bigr) \theta itm\Bigl( 

1 - 
\bigl( 
\~\gamma iA
\bigr) \theta itm\Bigr) 2 .

E.5. Reconstructing synthetic duplex networks. Figure 11 indicates that our framework
can reconstruct duplex networks with UAU-SIR spreading dynamics too. Because the SIR
epidemic model can cause the nodal states to converge into a stable state, we randomly
initialize the states of all nodes whenever there are no I-nodes in the physical layer.
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Figure 11. Reconstruction accuracy of synthetic duplex networks with UAU-SIR spreading dynamics. Col-
umns 1--3: reconstruction performance for ER-ER, SW-SW, and BA-BA duplex networks, respectively. The
parameter setting is \lambda = 0.3, \beta U = 0.4, \beta A = 0.5\beta U , \delta = 0.8, and \mu = 0.6. The structures of the two layers are
identical. The network parameters are N = 100 and \langle \=k\rangle = \langle k\rangle = 6.
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