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Abstract 

We review the major ideas involved in the control of chaos. We present the Ott-Grebogi-Yorke (OGY) method of 
controlling chaos, which is a particular case of the pole placement technique, but which is the one leading to the shortest 
time to achieve the control of chaotic systems. Implementation using only measured time series in experimental settings is 
also described. © 199'7 Elsevier Science B.V. 
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1. Introduction 

Besides the occurrence of chaos in a large variety 
of natural processes, chaos may also occur because 
one may wish to design a physical, biological or 
chemical experiment, or to project an industrial 
plant to behave in a chaotic manner. We argue 
herewith that chaos may indeed be desirable since it 
can be controlled by using small perturbation to 
some accessible parameter  [-17, 18] or to some dy- 
namical variable of the system [9]. 

The major key ingredient for the control of chaos 
[17, 18] is the observation that a chaotic set, on 
which the trajectory of the chaotic process lives, has 
embedded within i~: a large number of unstable 
low-period periodic orbits. In addition, because of 
ergodicity, the trajectory visits or accesses the 
neighborhood of each one of these periodic orbits. 
Some of these periodic orbits may correspond to 
a desired system's performance according to some 
criterion. The second ingredient is the realization 
that chaos, while signifying sensitive dependence on 
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small changes to the current state and henceforth 
rendering unpredictable the system state in the long 
time, also implies that the system's behavior can be 
altered by using small perturbations [17, 18]. Then, 
the accessibility of a chaotic system to many differ- 
ent periodic orbits combined with its sensitivity to 
small perturbations, allows for the control and the 
manipulation of the chaotic process. Specifically, 
the O t t -Grebog i -Yorke  (OGY) approach is then 
as follows. One first determines some of the unsta- 
ble low-period periodic orbits that are embedded in 
the chaotic set. One then examines the location and 
the stability of these orbits and chooses one which 
yields the desired system performance. Finally, one 
applies small control to stabilize this desired peri- 
odic orbit. However, all this can be done from data 
[17, 18] by using nonlinear time-series analysis for 
the observation, understanding and control of the 
system. This is particularly important  since chaotic 
systems can be rather complicated and a detailed 
knowledge of the equations of the process is often 
unknown. 

In this paper, we review the fundaments of the 
O G Y  ideas and present a method derived from it 
which can in principle be applied to high-dimen- 
sional chaotic systems [19]. The implementation of 
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the method utilizes the "pole placement technique" 
[16] developed in the field of engineering control. 
We also argue how the method can be applied to 
most experimental situations where the system's 
equations are not known. 

2. Control of  chaos 

We consider the following discrete-time dynam- 
ical system, 

X,+l = r ( x , , p , ) ,  (1) 

where x, e RN, F is a smooth vector function, p, is 
an accessible parameter that can be externally per- 
turbed. Continuous dynamical systems can be re- 
garded as discrete maps on the Poincar6 surface of 
section. Periodically driven dynamical systems 
have a natural Poincar~ surface of section at the 
period of the driver. However, for autonomous 
dynamical systems such a section may not exist, or 
it may be singular if some of the trajectories take 
arbitrarily long time to return to it. One might need 
then, in order to discretize the dynamical process, 
to select some other kind of section whose choice 
typically depends on the particular system. We 
conceive using only small controls, so we restrict 
p to lie in some small interval, 

IP, -/51 < 6, (2) 

where i5 is a nominal parameter value. If p, is 
outside this interval, we set p, = 15. Assuming that 
the dynamical system F ( x , , / 5 )  possesses a chaotic 
attractor, our goal is to vary the parameter p, with- 
in the range (t5 - 6,/5 + 6) in such a way that for 
almost all initial conditions in the basin of the 
chaotic attractor, the dynamics of the system con- 
verges onto a desired time periodic orbit contained 
in the attractor. To do this we consider a small 
neighborhood of size comparable to 6 of the desired 
periodic orbit. In this neighborhood, the dynamics 
is approximately linear. Since linear systems are 
stabilizable if the controllability assumption is 
obeyed, it is reasonable to assume that the chosen 
periodic orbit can be stabilized by feedback control. 
The ergodic nature of the chaotic dynamics 
guarantees that the state trajectory enters the 
neighborhood. Once inside, we apply the stabiliz- 
ing feedback control law to keep the trajectory in 
the neighborhood of the desired orbit. 

For simplicity we describe the method as applied 
to the case where the desired orbit is a fixed point of 
the map F. Consideration of periodic orbits of 
period larger than one is straightforward [19]. Let 
x,(/5) be an unstable fixed point on the attractor. 
For  values of Pn close to/5 and in the neighborhood 
of the fixed point x,(/5), the map can be approxim- 
ated by the linear map 

xn+ l - x , ( / 5 )  = A [ x ,  - x,(/5)] + B ( p ,  - /5), (3) 

where A is the N x N Jacobian matrix and B is an 
N-dimensional column vector, 

A = O x F ( x ,  p),  
(4) 

B = D p F i x ,  p). 

The partial derivatives in A and B are evaluated at 
x = x ,  and p = 15. To calculate the time-dependent 
parameter perturbation (p, - ~), we assume that it 
is a linear function of x, 

p .  - / 5  = - K T [ x .  - -  x,(/5)], (5) 

where the 1 x n matrix K v is to be determined so 
that the fixed point x ,  becomes stable. Substituting 
Eq. (5) into Eq. (3), we obtain, 

x , +  l - x , ( / 5 )  = (A - B K T ) [ x ,  - x,(/5)], (6) 

which shows that the fixed point will be stable if the 
matrix (14 - B K  T) is asymptotically stable; that is, 
all its eigenvalues have modulus smaller than unity. 

The solution to the problem of determining K T, 
such that the eigenvalues of the matrix (A - B K  T) 

have specified values, is known from control sys- 
tems theory as the "pole placement technique" 
[16]. In this context, the eigenvalues of the matrix 
( A -  B K  v) are called the "regulator poles". The 
following results give a necessary and sufficient 
condition for a unique solution of the pole place- 
ment problem to exist, and also a method for ob- 
taining it (Ackermann's method) [16]: (1) The pole 
placement problem has a unique solution if and 
only if the N x N matrix 

C = ( B i A B i A 2 B i  .. .  :A.-1B), 

is of rank N, where C is the controllability matrix; 
and (2) the solution of the pole placement problem 
is given by 

KT = (~u --  a u  . . . . .  ~1 --  a l )  T - l ,  
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where T = C W  and, 

t laN2 al!l a N - 2  aN 3 "'" 1 

W ~  . . . . 

al 1 ... 0 

1 0 ... 0 

Here {a  I . . . . .  aN} are the coefficients of the charac- 
teristic polynominal of A, 

I s I - -A I  = s N + a l  S ~ -  1 ~_ . . .  ~_ aN , 

and {~1, . . . ,  ~u} are the coefficients of the desired 
characteristic polynomial (A -- BKT). 

The condition for the matrix C to be of rank N is 
too strong as far as stabilizability of a closed-loop 
system is concerned. In fact, the pole placement 
technique only requires a set of N points, placed 
symmetrically with respect to the real axis in the 
complex plane. Then there exists a feedback matrix 
K T such that the poles of the closed-loop system are 
the above set of peints. It should be pointed out 
that there is a large class of control systems, in 
particular those arising in physical situations, 
which do not have a controllable linearization as 
indicated in Eq. (6). One has then to choose another 
control that obeys the controllability assumption if 
one wishes to use linear control. In particular, 
special care should be exercised when dealing with 
pole placement technique for nonautonomous sys- 
tems. It should be noted that the control Eq. (5) is 
based on the linearized Eq. (3) and, therefore, it is 
only valid in the neighborhood of the desired fixed 
point x.(/5). The size of this valid neighborhood is 
determined by the limitation in the size of the 
parameter perturba1:ion 3. Combining Eqs. (2) and 
(5), we obtain 

] K T E X n  - -  X , (10 ) ]  ] < (~. (7) 

This defines an invariant slab of width 2c~/[KTI in 
~N. We choose to activate the control according to 
Eq. (7) only when the trajectory falls into the slab, 
and we leave the control parameter at its nominal 
value/5 when the trajectory is outside this slab. It 
should also be noted that the matrix K x can be 
chosen in many different ways. In principle, 
a choice of regulator poles inside the unit circle, 
which do not violate the controllability condition, 
works [19]. The OGY method consists of setting 
the unstable poles equal to zero while leaving the 
stable ones as they are. With the OGY choice of 

regulator poles, the trajectory approaches the fixed 
point geometrically along the stable manifold after 
the control is turned on. 

Since the control is turned on only when the 
trajectory enters the thin slab about the desired 
fixed point, one has to wait for some time for this to 
occur if the trajectory starts from a randomly 
chosen initial condition. Even then, because of non- 
linearity not included in the linearized Eq. (3), the 
control may not be able to keep the trajectory in 
the vicinity of the fixed point. In this case the 
trajectory will leave the slab and continue to wan- 
der chaotically as if there was no control. Since 

a chaotic trajectory on the uncontrolled chaotic at- 

tractor is ergodic, at some time it will eventually 

reenter the slab and also be sufficiently close to the 

f ixed point so that control is achieved. As a result, we 
create a stable orbit, which, for a typical initial 
condition, is preceded by a chaotic transient [8, 7] 
in which the orbit is similar to orbits on the uncon- 
trolled chaotic attractor. Of course, there is a prob- 
ability zero Cantor-like set of initial conditions 
which never enters the slab. The length r of such 
a chaotic transient, or the time to achieve control, 

depends sensitively on the initial condition. For 
initial conditions randomly chosen in the basin of 
attraction, the probability distribution of the chaotic 
transient lengths is exponential [8] for large r. The 
average transient length <r> is thus the average time 
to achieve control. It can be shown [17, 18] that 
<r) scales with 6 algebraically: < r ) ~  6 ~', where 
7 > 0 is the scaling exponent that is determined by 
the stable and unstable eigenvalues of the desired 
fixed point x,(/5). For a two-dimensional dif- 
feomorphism [18], the scaling exponent is given by 

1 In I;.ul 
7 = 1 4  

2 ln(1/I2~[)' 

where ,~s and 2u are the stable and unstable eigen- 
values of the periodic orbit being controlled. In Ref. 
[19], it is shown that the OGY choice for the 
regulator poles yields the shortest chaotic transient 
or, equivalently, the shortest average time to 
achieve control. 

3. Use of delay coordinates 

In most experimental situations a detailed know- 
ledge of the system's equations is not known. One 
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usually measures a time series of a single scalar 
state variable, say u(t) ,  and then utilizes delay coor- 
dinates [1,2, 22] to represent the system state. 
A delay-coordinate vector in the m-dimensional 
embedding space can be formed as follows: 

x ( t )  = (u(t),  u(t  - t~), u( t  - 2tD), 

. . . ,  / / ( t  - -  ( m  - -  l ) t D ) ) ,  

where t is the continuous time variable, and tD is 
some conveniently chosen delay time. The embed- 
ding theorem [22] guarantees that for m ~> 2N, 
where N is the phase-space dimension of the sys- 
tem, the vector x is generically a global one-to-one 
representation of the system state. Since we only 
require x to be one-to-one in the small region near 
the fixed point, the requirement for the embedding 
dimension is actually m = N - 1 [17]. To obtain 
a map, one can take a Poincar6 surface of section. 
For the often encountered case of periodically 
driven systems, one can define a "stroboscopic sur- 
face of section" by sampling the state at discrete 
time t, = n T  + to, where T is the driving period. In 
this case the discrete state variable is x,  = x ( t , ) .  

As pointed out in Ref. [5], in the presence of 
parameter  variation, delay coordinates lead to 
a map of a different form than Eq. (1). For example, 
in the periodically forced case, since the compo- 
nents of x, are u(t  - itD) for i = 0, 1, ... , ( m - -  1), 
the vector x,+~ must depend not only on p,, but 
also on all previous values of the parameter  that are 
in effect during the time interval (t, - ( m  - 1)tD) 
~< t ~< t,. In particular, let r be the smallest integer 

such that mtD < r T .  Then the relevant map is in 
general of the form, 

x , +  l = G ( x , ,  p , ,  p , _  l, . . .  , P , - r ) .  (8) 

We now discuss how the OGY method can be 
applied to the case of delay coordinates. For  simpli- 
city we consider r = 1. In this case, we have, 

x , +  l = G ( x , ,  p , ,  p , -  a). (9) 

Linearizing as in Eq. (3) and again restricting our 
attention to the case of a fixed point, we have, 

x n + l  - x . ( f i )  = n i x ,  - x.(/~)] + B ~ ( p ,  -- fi) 

+ B b ( p , -  ~ -- ~), (10) 

where A = D x G ( x ,  p, p'), Ba = D p G ( x ,  p, p'), Bb = 

D c G ( x ,  p, p'), and all partial derivatives in A, B,, 
and Bb are evaluated at x = x.(/~) and p =/~ = p'. 

One can now define a new state variable with one 
extra component  by, 

= (xn+l~ ,  (11) 
x ,+ l  \ P, / 

and introduce the linear control law, 

p , - ~  = - K T [ x , - x . ( ~ ) ] - k ( p , _ l - p ) .  (12) 

Combining Eqs. (10) and (12), we obtain 

i . + ~  - ~ , ( p )  - -  (A - B g ~ ) [ ~  - i , ( p ) ] .  (13) 

where 

Since Eq. (13) is now of the same form as Eq. (6), the 
method of Section 2 can be applied. A similar result 
holds for any r > 1. Although the explicit form for 
the function G ( x , ,  p , ,  p , _  l)  is not known, the 
quantities required for computing the parameter  
perturbations in Eq. (13) can usually be extracted 
directly from the measurement [6]. The location of 
the periodic orbit is obtained by looking at recur- 
rences in the embedded space [3, 14]. The matrix 
A in Eq. (10) and the corresponding eigenvalues 
and eigenvectors are obtained by looking at the 
same recurrences about  the desired periodic orbit 
and fitting an affine transformation x ,+l  : 
A x ,  + b, since the dynamics is approximately linear 
close to the periodic orbit. The vectors B, and Bh in 
Eq. (10) are obtained by perturbing the control 
parameter  of the system [5, 4, 17]. 

4. Discussions 

An important  issue is the effect of noise. Noise 
can, in general, kick the controlled trajectory out of 
the neighborhood of the chosen periodic orbit 
where the control is activated. When this occurs, 
the trajectory wanders chaotically over the attrac- 
tor until it falls in the controlled region again. Thus 
there are epochs where the orbit is kept near the 
desired orbit interspersed with epochs wherein the 
orbit wanders chaotically far from the desired orbit. 



c. Grebogi, Y.-C. Lai / Systems & Control Letters 31 (1997) 307 312 311 

If the latter are, on average, relatively much shorter  
than the former, then one might  still regard the 
control  as being effective. 

The transient phase where the orbit  wanders 
chaotically before !iocking into a controlled orbit 
can be greatly shortened by applying a "targeting" 
technique [ '11,23] so that  a trajectory can be 
rapidly brought  to a target region on the at t ractor  
by using small control  perturbations.  The idea is 
that, since chaotic ,;ystems are exponentially sensi- 
tive to perturbations,  careful choice of even small 
control  per turbat ions  can, after some time, have 
a large effect on the trajectory location and can be 
used to guide it. Thus, the time to achieve control  
can, in principle, be greatly reduced by properly 
applying small controls  when the orbit  is far from 
the ne ighborhood  of  the desired periodic orbit. 

In this paper, we have considered the case where 
there is only a sintgle control  parameter  available 
for adjustment.  While generically a single 
parameter  is sufficient for stabilization of a desired 
periodic orbit, there may  be some advantage  to 
utilizing several control  variables. Therefore, the 
single control  parameter  p becomes a vector. In 
particular, the added freedom in having several 
control  parameters  might  allow better means of 
choosing the control  so as to minimize the time to 
achieve control,  as well as the effects of noise. 

We emphasize that a full knowledge of the sys- 
tem dynamics is not  necessary in order  to apply the 
O G Y  idea [17, 18]. In particular, we only require 
the location of the desired periodic orbit, the lin- 
earized dynamics  about  the periodic orbit, and the 
dependence of the location of the periodic orbit  on 
small variat ion of the control  parameter.  Delay- 
coordinate  embedding has been successfully 
utilized in experiraental studies to extract such 
information purely from observations of experi- 
mental  chaotic  orbits on the at t ractor  without  any 
a priori knowledge of the equations of  the system, 
and such information has been utilized to control  
periodic orbits [-6] 

Finally, we ment ioned that  the O G Y  idea of 
controll ing chaos gives flexibility. By switching the 
small control ,  one can switch the time asymptot ic  
behavior  f rom one periodic orbit to another.  In 
some situations, where the flexibility offered by the 
ability to do such switching is desirable, it may  be 
advantageous  to design the system so that  it is 
chaotic. In other  situations, where one is presented 
with a chaotic  system, the method  may allow one to 

eliminate chaos and achieve greatly improved be- 
havior  at relatively low cost. The O G Y  idea can 
also be used to stabilize a desired chaotic trajectory, 
which has potential  applications to problems such 
as synchronizat ion of  chaotic systems [-12], conver- 
sion of transient chaos into sustained chaos El3], 
communica t ion  with chaos [9, 10, 20], and selec- 
tion of a desired chaotic  phase [15, 21]. 
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