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Abstract

In this report, we review the results of our joint experimental and theoretical studies of electron-
interference, and interaction, phenomena in open electron cavities known as quantum dots.
The transport through these structures is shown to be heavily influenced by the remnants of their
discrete density of states, elements of which remain resolved in spite of the strong coupling
that exists between the cavity and its reservoirs. The experimental signatures of this density
of states are discussed at length in this report, and are shown to be related to characteristic
wavefunction scarring, involving a small number of classical orbits. A semiclassical analysis
of this behaviour shows it to be related to the effect of dynamical tunnelling, in which electrons
are injected into the dot tunnel through classically forbidden regions of phase space, to access
isolated regular orbits. The dynamical tunnelling gives rise to the formation of long-lived
quasi-bound states in the open dots, and the many-body implications associated with electron
charging at these resonances are also explored in this report.
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Nomenclature

2DEG two-dimensional electron gas
Ad quantum-dot area
B magnetic field
Bc correlation magnetic field
cn wavefunction expansion coefficient
c+
kσ /ckσ creation/annihilation operators

� average level spacing
E energy
EF Fermi energy
E0 resonance energy
f (E) Fermi–Dirac distribution function
G quantum-dot conductance
γ logarithmic conductance prefactor
� energy width of interaction resonance
k electron wavenumber
l transport mean free path
L effective dot size
λ Maslov index
λF Fermi wavelength
m∗ electron effective mass
µ two-dimensional electron gas mobility
µk electrochemical potential of mode with wavenumber k

N number of one-dimensional sub-bands
n quantum-dot eigenstate number
nb number of coherent skipping-orbit bounces
ns two-dimensional electron gas carrier density
T0 activation temperature
φn closed-dot eigenfunctions
rc cyclotron radius
S classical-orbit action
Seff effective action
σ spin index
ψ quantum-dot wavefunction
T temperature
T ∗ effective electron temperature
T0 activation temperature
τφ phase-breaking time
U , U ex Hartree, exchange potentials
Vg gate voltage
ω orbit stability angle
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1. Introduction

In the field of research known as mesoscopic physics, interest lies in studying the manner in
which the electronic properties of materials are modified by confining their charge carriers on
distances comparable to the fundamental length scales for transport (for a number of excellent
reviews in this area, see [1–4]). One of the simplest low-dimensional electron systems is the
high-mobility two-dimensional electron gas (2DEG) that forms at the interface between two
lattice-matched semiconductors (such as GaAs and AlGaAs), when they are grown on top
of each other by molecular-beam epitaxy (see figure 1). The strong interfacial confinement
that arises in these systems quantizes the energy for motion transverse to the heterointerface,
modifying the nature of the carrier interactions, and the form of the density of states. As a
result, the electrical properties of 2DEG systems are found to be quite distinct from those of
bulk materials. Further confining the electron motion in one additional direction, it is possible
to realize a quasi-one-dimensional quantum wire, in which electrons may move freely along
the wire axis, while their transverse motion is quantized into a small number of sub-bands, or
channels. In the absence of scattering within the wire, and in the limit of small applied source-
drain bias, an equipartition of current among the occupied sub-bands causes the conductance

n-GaAs: 5 nm

n-AlGaAs: 45 nm
Al %: 28

Si-doping: 2x1018 cm-3

AlGaAs: 15 nm
Al %: 28

GaAs: 800 nm
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Figure 1. The upper part of the figure shows a cross section of the typical components of
a GaAs/AlGaAs heterojunction, along with an SEM image of the associated heterointerface.
The lower panel shows the influence of a gate voltage on the conduction-band profile of the
heterojunction.
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of such quantum point-contacts to be quantized according to [5]:

G = 2e2

h
N, (1)

where N is the number of occupied channels and simply corresponds to the number of sub-
bands whose threshold energies lie below the Fermi energy. In addition to the conductance
quantization defined in equation (1), and dependent on the ratio of the wire dimensions to
the characteristic transport length scales, other phenomena that may occur in quantum wires
include universal conductance fluctuations, quenching of the Hall effect, and Luttinger-liquid
behaviour, all of which have been widely studied in recent years (for a thorough review of
many of these topics, see [5]).

Quantum dots may be viewed as the ultimate limit of bandstructure engineering and are
realized when electron motion is confined in all three directions, on length scales comparable
to the coherence length. An important result of this strong confinement is that the energy
spectrum of the electrons is quantized into a discrete set of levels, that may be modified by the
application of a magnetic field, or some appropriate gate voltage. The electrical properties of
these artificial atoms are strongly influenced by the discrete form of their density of states [6,7]
and there is much interest in their potential for application in a range of future technologies.
Quantum dots have been proposed, for example, for use as qubits in quantum computing [8,9],
and have been used to provide demonstrations of quantum-cellular automata [10] and single-
photon detectors [11]. In these applications, a quantitative understanding of the details of
electron transport in the dots is required, and it is this need that serves as the motivation for
this report, where we review our recent work in this particular problem.

When discussing transport through quantum dots, it is possible to identify two distinct
regimes of behaviour, dependent on the strength of the coupling between the dot and its current
reservoirs. In weakly coupled quantum dots, current flow involves a process in which electrons
tunnel through the dot, and, at sufficiently low temperatures, the charging energy associated
with the addition of a single electron to the dot can be very much larger than the thermal energy.
In this so-called Coulomb-blockade regime, current flow occurs by the process of single-
electron tunnelling, which is comprehensively reviewed in [3,6,7]. Of interest here, however,
is the problem of transport in open quantum dots, in which the coupling between the dot and its
reservoirs is provided by means of quantum-point-contact leads, each of which supports at least
one propagating mode. The Coulomb-blockade effect is washed out in such structures [12,13],
in which the transport instead is strongly influenced by the interference of electrons confined
within the dots. In this sense, these dots may be viewed as the quantum analog of classical wave-
scattering systems, such as microwave cavities [14,15], fluid systems [16], and semiconductor
lasers [17]. At the same time, the analysis of transport through these structures is particularly
amenable to semiclassical methods, in which path integrals over classical trajectories are used
to calculate their conductance (for a recent review, see [18]).

In this review, we consider the development of quantum-mechanical and semiclassical
descriptions of transport in open quantum dots, whose predictions are consistent with each
other, and with the results of experimental studies. A crucial feature of these dots is found to
be a non-uniform broadening of their eigenstates, which arises when the dot is opened to its
reservoirs. Certain eigenstates of the initially-closed-dot are found to develop only a very small
broadening as a result of this coupling, and therefore persist to give rise to measurable transport
results. These states correspond to the eigenfunctions of the original system which are scarred
by the signature of periodic orbits, and which exhibit a weak overlap with the dot leads. If a
magnetic field is applied perpendicular to the plane of the quantum dot, or its potential profile
is modified by means of a suitable gate voltage, the discrete states may be swept past the Fermi
level, giving rise to reproducible oscillations in the conductance that may be observed at low
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temperatures. An important feature of the wavefunction scars is that they recur periodically
as the magnetic field, or the gate voltage, is varied, and our analysis shows that this behaviour
gives rise to very specific frequency components in the associated conductance oscillations.
A semiclassical analysis of this behaviour indicates that the scars are associated with the
dynamical tunnelling of electrons through classically forbidden regions of phase space, onto
isolated periodic orbits. Quantization of the action associated with these orbits is shown to
give rise to a series of resonance conditions, which account for the observed periodicity of
the conductance oscillations seen in experiment. While it has been common in the literature
thus far to assume that the transport is dominated by chaotic trajectories, classically accessible
to electrons injected into the dot, our analysis demonstrates that the dominant mechanism is
instead very different.

In addition to considering the connection of the semiclassical and quantum-mechanical
descriptions of transport in these structures, we also explore the importance of many-body
effects for transport. Experimental studies of the temperature-dependent transport in these
dots reveal evidence for behaviour, analogous to a metal–insulator transition, the characteristic
signature of which is a logarithmic variation of the conductance at low temperatures. Similar
logarithmic variations are a well-known signature of the Kondo effect, and we suggest that
similar physics may even be at play here. The point to note is that a general requirement
for the observation of the Kondo effect is the realization of some localized region of charge,
which can interact with a continuum of states. In the open dots that we study, such localized
charge should be realized by the isolated KAM islands which represent classically inaccessible
orbits. To explore the many-body consequences of this tunnelling, we therefore develop a
theoretical model which is based upon the assumption that the electron-interaction strength
in the dots can be peaked at certain energies, corresponding to the resonant conditions for
the dynamical tunnelling. This model reveals the presence of low-temperature, interaction-
induced, corrections to the conductance of the open dots.

The organization of this review is as follows. In the next section, we describe the fabrication
of the quantum-dot devices, and describe the basic electrical characteristics. In section 3,
we discuss the details of transport at very-low temperatures, where the influence of thermal
smearing and decoherence is minimal, and where the conductance can be viewed as providing
a spectroscopy of the density of states of the open dot. It is here that we explore the quantum-
mechanical and semiclassical interpretations of transport in these structures, emphasizing the
role of non-uniform level broadening, introduced by the environmental coupling to the dots, and
considering its connection to the issue of dynamical tunnelling. In section 4, we discuss how
quantum effects in the transport are modified at higher temperatures, and present evidence for
a metal–insulator transition that is seen in the conductance below a degree kelvin. We suggest
that this behaviour is associated with the increased importance of electron-interactions in these
strongly confined structures, and present a many-body based transport model to account for
our observations. Our conclusions are then discussed in section 5.

2. Device fabrication and basic characteristics

2.1. Device fabrication

For the transport studies that we discuss, the split-gate technique [19] is the approach of choice
for the fabrication of quantum dots, and the basic principles of this method are shown in figure 2.
In this approach, metal gates with a fine-line pattern defined by electron-beam lithography are
formed on the surface of a GaAs/AlGaAs heterojunction (figure 2, top). The application of a
negative bias to the gates depletes the regions of electron gas underneath them, by raising the
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Figure 2. Top panel: scanning electron micrograph of a split-gate quantum dot with a 1 µm cavity.
Lower panels: calculated potential profiles at two gate voltages. The gate voltage is more negative
in the lowest panel.

local conduction-band edge above the Fermi level (see figure 1), thereby forming a quantum
dot whose leads are defined by means of quantum-point-contacts (figure 2, top). The use
of electron-beam lithography to define the gate pattern allows the realization of sub-micron
sized dots, whose size is therefore comparable to the spatial extent of the short range potential
fluctuations in the underlying 2DEG [20]. The fluctuations are associated with the statistical
distribution of donors in the AlGaAs layer, and numerical studies suggest that minimum-
energy considerations may cause the ionization of these donors to order into a quasi-lattice
structure [21]. In the presence of the resulting weak disorder, electronic motion within the dots
should therefore be predominantly ballistic in nature, with large-angle scattering events being
restricted to their confining walls. At least to first order, the dot geometry is determined by the
lithographic pattern of the gates, and the great advantage of this technique is the in situ control
of the dot profile that can be achieved, simply by varying the gate voltage (Vg). These concepts
are illustrated in figure 2, where we show a pair of self-consistently computed [22] potential
profiles for a split-gate dot. The two different profiles are computed for different values of the
gate voltage, and from a comparison of these plots we see that the effect of making the gate
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Table 1. Some key parameters for the different quantum-dots studied here.

ns µ l L EF λF �/kB

(1015 m−2) (m2 Vs−1) (µm) (µm) (meV) (nm) (K) Nd

4.0–5.5 36–78 4–9 0.2–1.8 14–20 35–40 0.03–1 160–1800

ns: two-dimensional-electron-gas carrier density.
µ: two-dimensional-electron-gas mobility.
l: two-dimensional mean free path.
L: effective dot size inferred from periodicity of Aharonov–Bohm oscillations in the edge state
regime.
EF: two-dimensional-electron-gas Fermi energy.
λF: two-dimensional-electron-gas Fermi wavelength.
�/kB: quantum-dot average level spacing. � ≡ 2πh̄2/m∗Ad, where Ad = L2 is the dot area.
Nd: electron number in the dot. Nd ≡ nsL

2.

voltage more negative is to narrow the width of the point-contact leads, and to reduce the size
of the central dot itself. This is basically a consequence of the increased fringing fields, which
develop around the gate edges as Vg is made more negative. Note from these plots how the
split-gate approach gives rise to dots with soft walls.

In table 1, we summarize the material characteristics, and the device dimensions, of the
various quantum-dot structures that we consider in this review. At the low temperatures that
we consider here, the high mobility of the 2DEG sample ensures that the transport mean free
path is significantly larger than the size of the dots, indicating that transport within them should
be close to the ballistic limit. Another important feature to note is that the Fermi wavelength
of the electrons is typically of order 40 nm, and so can approach within an order of magnitude
of the dot size. We will see further below that this also has important consequences for the
transport behaviour exhibited by these structures. As can be seen in table 1, the electron
number in these dots ranges from several thousand in the largest structures, to a few hundred
in the smallest. Further below (section 4.2), we will consider the potential implications of the
many-body interactions that arise between these electrons for the analysis of transport through
open dots. Also shown in table 1 are typical values for the average level spacing (�), which
may be thought of as a rough measure of the characteristic level spacing in the dots.

2.2. Basic experimental observations

In figure 3, we show the results of measurements of the magneto–resistance of an open quantum
dot, at a series of different gate voltages. (These measurements were performed with the sample
mounted in a dilution refrigerator, and with the magnetic field applied perpendicular to the
plane of the 2DEG.) The average dot resistance is less than 26 k� in each of the curves,
indicating that its leads support at least one propagating mode, and that it may be considered
to be open over the entire range of gate voltage shown. As expected, the average resistance of
the dot increases as the gate voltage is made more negative, a trend which is accompanied by
a dramatic evolution of the structure in the magneto–resistance. Dense fluctuations emerge at
low magnetic fields (<2 T), while isolated resonances develop at higher fields. This behaviour
can be seen more clearly in figure 4, in which we show a single magneto–resistance curve,
measured at a fixed gate voltage. The insets to this figure serve to illustrate that the noise-like
structure in the magneto–resistance is, in fact, quite reproducible. In the high-field inset, the
resistance clearly oscillates periodically with magnetic field, and the origin of this behaviour is
well understood [5]. At such high magnetic fields, the cyclotron radius of the electrons is very
much smaller than the dot size and current is carried by a fixed number of edge states [23].



Interference and interactions in open quantum dots 591

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

R
E

S
IS

TA
N

C
E

 (
kO

H
M

S
)

MAGNETIC FIELD (TESLA)

Figure 3. Magneto–resistance of a 1 µm split-gate quantum dot, at a series of different gate
voltages. The gate voltage becomes more negative from front to back. The cryostat temperature
is 0.01 K.
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Figure 4. Magneto–resistance of a 1 µm split-gate quantum dot, at a fixed gate voltage, showing
the detailed evolution of its structure with magnetic field.
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These may be viewed as the quantum-mechanical analogue of classical skipping-orbits, and
the various features observed in the magneto–resistance in this regime can be ascribed to dot-
induced interference of the edge states [24]. The periodic oscillations at high magnetic fields
(>3 T) are understood to result from an Aharonov–Bohm effect, involving edge states trapped
within the dot, and allow a reasonable estimate of the dot size to be obtained. This behaviour
has been discussed in detail in [25, 26], and will not be further considered here. Rather, we
focus on the behaviour observed at lower fields (<1 T), where the magnetic field provides
only a perturbation to the intrinsic electron dynamics in the dot. As can be seen in figure 4,
the magneto–resistance in this regime shows dense fluctuations, which are dominated by a
small number of frequency components (see the low-field inset). While the detailed origin of
these fluctuations will be discussed below, they may basically be understood to result from the
interference of electron partial waves that are generated when the electron is multiply scattered
from the walls of the dot. Typical of most interference effects (for a recent review, see [27]),
the fluctuations are washed out when the temperature is increased above a few degrees kelvin,
as we illustrate in figure 5.

Fluctuations in the resistance may also be generated by varying the voltage applied to the
split gates of the dot, as we illustrate in figure 6. This shows the gate-voltage characteristic of
a typical dot, at two different temperatures and in the absence of any applied magnetic field.
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Figure 5. Temperature dependence of the magneto–resistance of a 1 µm split-gate quantum dot.
Successive curves are shifted upwards from each other.
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Figure 6. Gate-voltage-dependent variation of the resistance of a 1-µm split-gate quantum dot, at
two different temperatures.

At 1.6 K, the resistance varies almost monotonically with gate voltage, and shows evidence
for plateau features related to conductance quantization in the point-contact leads. At 0.01 K,
however, the resistance develops an oscillatory behaviour, and in the inset to figure 6 we show
the conductance fluctuations obtained by subtracting the background variation from the raw
data. Once again, there is clearly a dominant periodicity to these fluctuations, and in the
sections that follow we provide a detailed interpretation of the origin of this behaviour.

3. Transmission as a probe of the density of states

In isolated quantum dots, containing just a few electrons, it is well known that the transport can
be strongly influenced by the discrete energy spectrum that is induced by confining electrons
in the dot [6, 28–30]. When the dot is opened to its external reservoirs, however, it is often
(wrongly) assumed that all details of this level spectrum are washed out completely. In this
section of our review, we demonstrate that the reproducible conductance fluctuations discussed
above provide a direct signature of those dot states that remain resolvable, even when the dot
is very strongly coupled to its external reservoirs. Since this behaviour may seem surprising
to some, we also provide several examples to show that the persistence of eigenstates in these
dots can basically be viewed as a quantum-mechanical manifestation of the generic classical
phenomenon of wave trapping.
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3.1. The persistence of eigenstates in open quantum dots

To clarify the statements made immediately above, we perform numerical studies of different
closed-dot systems, and compare their resulting eigenfunctions with the wavefunction of their
open counterparts [31]. The open system that we study is a hard-walled, stadium-shaped, dot,
whose leads are positioned at opposite ends of the stadium (figures 7(e)–(h)). (The choice of
this particular geometry is not critical to our conclusions. We have also performed calculations
using self-consistently obtained dot profiles [32].) To study the connection of transport through
the open dot to the eigenstates of its equivalent closed system, we calculate the eigenstates and
eigenfunctions of the two closed dot shown in figures 7(a) and (b). The shape of the latter dot is
perturbed by including a portion of the connecting leads in its geometry, and in the following,
we make use of the ratio of the lead width (w) to the stadium height (h). In figures 7(c)
and (d), we show eigenstates 128–136, and 134–142, of the standard, and perturbed, stadium,
respectively. The energy range is roughly the same in these figures and the eigenstates were
computed by solving a two-dimensional finite-difference Schrödinger equation with Dirichlet
boundary conditions. In figures 7(e)–(h), we show the results of calculations of the open dot
under a number of different conditions (the calculations are for the case of zero temperature, and

Figure 7. (a) Unperturbed stadium. (b) Perturbed stadium. (c) |�(x, y)|2 vs x and y for eigenstates
128 (top-left) through 136 (bottom-right) of the unperturbed stadium. (d) |�(x, y)|2 vs x and y for
eigenstates 134 (top-left) through 142 (bottom-right) of the perturbed stadium. (e) |�(x, y)|2 for
an open stadium with two modes passing through the leads at the energy of the 128th unperturbed-
stadium eigenstate. ( f ) As in (e), but now the energy is set to that of the 136th eigenstate. (g) As
in (e), but with leads supporting 6 modes. (h) As in ( f ), but with 6 modes. Figure reproduced with
permission from [31]. Copyright, American Institute of Physics (2002).
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were obtained from a numerically stabilized variant of the scattering-matrix approach [33]).
In figure 7(e), the dot leads support two sub-bands and the energy has been chosen to be equal
to that of the 128th eigenstate of the unperturbed stadium. In this case, the wavefunction of the
open dot corresponds almost exactly to the isolated-dot eigenfunction (the latter of which is
shown at top-left corner of figure 7(c)). Figure 7(g) is obtained at the same energy as figure 7(e),
except that now the leads have been opened further to support six modes. In this case, it is
clear that any correspondence between the wavefunctions of the open and closed systems has
been lost completely. In marked contrast with this behaviour, figures 7( f ) and (h) show that
the 136th state of the unperturbed stadium (figure 7(c), bottom-right corner) survives, even
when the dot leads are opened to support six sub-bands. From these results, it is therefore
clear that the different eigenstates of the initially isolated dot develop a highly non-uniform
(i.e. state-dependent) broadening when the dot is opened to the reservoirs.

In figure 8(a), we show the variation of the open-dot conductance (G) with energy
(E, normalized to the average level spacing of the dot, � = 2πh̄2/m∗Ad, where Ad is the
dot area). The squares in the figure indicate the position of the eigenstates of the unperturbed

Figure 8. (a) G(E) vs E/� for the six-mode open stadium (w/h = 0.6). Squares and triangles
represent the energies of the eigenstates of the unperturbed and perturbed stadium, respectively.
(b) The normalized decomposition of the open-dot wavefunctions into the unperturbed-stadium
eigenstates. (c) As in (b), but using the perturbed-stadium eigenstates. Figure reproduced with
permission from [31]. Copyright, American Institute of Physics (2002).
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stadium and we see that eleven such eigenvalues lie in the plotted energy range. In contrast,
the conductance shows just three resonances, and the asymmetric lineshape of these features is
typical of Fano resonances [34, 35]. Since the closed-dot eigenstates form an orthogonal
basis set, the open-dot wavefunction can be expressed as a linear combination of these
states:

ψ =
∑

n

cnφ
closed
n , cn = 〈ψ |φclosed

n 〉. (2)

In figure 8(b), the decomposition of the open-dot wavefunctions is plotted as a function of
the unperturbed-stadium eigenstate number (n), and E/�. The greyscale corresponds to
|cn|2/|cn|2max, so that the peak value of each decomposition is normalized to unity. While for
much of the range shown, the open-dot wavefunctions involve a mixture of states, at the
energies where resonances (i) and (iii) occur the decompositions are dominated by just a
single eigenstate (n = 129 and 136, respectively). In contrast, the conductance resonance
labelled (ii) corresponds to a mixture of at least two states. Moreover, none of the unperturbed-
stadium eigenvalues appear to line up with the position of this resonance. However, a logical
assumption is that the leads provide a perturbation to the stadium. We have therefore also
computed the eigenstates of the perturbed stadium, which are represented by triangles in
figure 8(a). It is clear from this figure that the 138th level of this structure coincides with
the position of resonance (ii). The decomposition in terms of the perturbed-stadium basis set
is shown in figure 8(c), where we see that all three conductance resonances are dominated
by the contribution of single eigenstates. Referring back to figures 7(c) and (d), we see that
states 134 and 142 of the perturbed stadium bear a strong resemblance to states 129 and 136
of the unperturbed stadium, and occur at similar energies. State 138 of the perturbed stadium,
which coincides with resonance (ii) and which closely resembles the open-dot wavefunction
at this energy, has no ideal-stadium analogue in the energy range we have considered,
however.

In figure 9, we show the decomposition in terms of the perturbed stadium, this time
without normalization, however. The positions of the three resonant states are indicated, and
it is evident that these states dominate the contribution, relative to all other states. On the
eigenvalue axis, we have plotted the eigenenergies of the perturbed stadium relative to �, so
that the spacing of successive levels is indicated on this axis. Significantly, we see that the
width of the 134th state, as inferred from the breadth of the decomposition peak, is larger than
the spacing between the 134th and 135th levels, and similar observations may be made for the
other resonant states. Nonetheless, the decompositions remain dominated by the contribution
of single eigenstates, indicating that the mere proximity of other levels in energy need not be an
obstacle to resolving individual states. In fact, as shown in figure 10(a), even after performing
the summation

∑
n |cn|2 over a total of 175 states, the contributions from states 134, 138 and

142 still dominate, being a factor of three above the background from all other states. This
summation essentially represents the density of states of the open dot. To demonstrate the
stability of these states, in figure 10(b), we plot

∑
n |cn|2 vs E/� and w/h. As indicated by

the shading, the peaks persist over a wide range of lead opening. Also apparent in this plot are
peak contours that survive over only a much shorter range of w, before shifting dramatically
to lower energy and disappearing.

A critical conclusion that can be drawn from the discussion above is that a highly non-
uniform broadening of the eigenstates arises when a dot is opened to its reservoirs. While
for the majority of eigenstates the magnitude of this broadening exceeds the average level
spacing, a smaller subset of states are only weakly perturbed by the coupling. In the section
that follows, we consider the measurable transport results associated with this non-uniform
broadening.
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134

138 142

Figure 9. The perturbed-stadium decomposition coefficients |cn|2 vs E/� and En/�. Figure
reproduced with permission from [31]. Copyright, American Institute of Physics (2002).

Figure 10. (a)
∑

n |cn|2 vs E/� (——, left scale) and G(E) vs E/� (- - - -, right scale) for the
six-mode open stadium. (b)

∑
n |cn|2 indicated by the shading as a function of E/� and fractional

lead width, w/h. Figure reproduced with permission from [31]. Copyright, American Institute of
Physics (2002).
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3.2. Experimental signatures of the open-dot spectrum

While we have thus far considered the case where an energy variation is used to probe the
density of states of open quantum dots, in experiment it is more typical to investigate how
their conductance varies with magnetic field or gate voltage (figures 3–6). In this section,
however, we demonstrate that the effect of these variations is essentially equivalent to sweeping
energy, since either the magnetic field or the gate voltage may be used to drive the density of
states past the Fermi level, thereby modulating the conductance. To illustrate this point, in
figure 11(a), we show the computed energy spectrum of a hard-walled, square dot [36]. In
figure 11(b), we show the numerically calculated magneto-conductance contour for the dot,
in the case where current flow through it can occur by means of tunnel barriers that extend
uniformly across its width. The greyscale in this figure shows the computed variation of dot
conductance with magnetic field and energy [37], and, as one would expect in a resonant-
tunnelling problem such as this, we see a clear correlation between points of high conductance
in figure 11(b) and the discrete states in figure 11(a). There is a non-uniform amplitude
variation among the different tunnelling resonances, indicating that, even with the coupling
provided by uniform tunnel barriers, the influence of this coupling is different for different dot
states. In figure 11(c), we show the conductance contour obtained in the case where the dot
leads have been opened to support four sub-bands. Instead of the simple conductance peaks
observed for the tunnelling case (figure 11(b)), the resonances found with the leads present
tend to exhibit a Fano-lineshape [34, 35], in which resonant transmission peaks are closely
paired with resonant minima (not shown). Furthermore, while the conductance of the isolated
dot is strongly suppressed in situations where resonant tunnelling is not possible, the open dot
exhibits more complicated behaviour. To illustrate this, in figure 11, we have drawn dotted
lines at two strategically chosen values of the Fermi energy. The upper line coincides with an
energy for which the level spectrum is highly degenerate at zero field. In correspondence with
this, the tunnelling transport shows a resonant conductance peak. In figure 11(c), however, the
zero-field conductance actually shows a minimum at this energy. The second dashed line in
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Figure 11. (a) The computed energy levels of a 0.3 µm hard-walled quantum dot of square
geometry. (b) The tunnelling spectrum for the same dot. (c) The conductance contour for the dot
when its leads are opened to support four propagating modes. In figures 1(b)–(d), conductance is
plotted on a logarithmic scale and brighter regions correspond to points of higher conductance. All
calculations were performed assuming a temperature of absolute zero.
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figure 11 is positioned at an energy for which no states exist at zero magnetic field, consistent
with which tunnelling through the isolated dot is strongly suppressed. In the open dot, however,
these maxima are seen to be broadened out sufficiently so that a region of high conductance is
actually obtained (figure 11(c)).

While the results of figure 11 were computed under the assumption of zero temperature,
real experiments are performed at non-zero temperature, where energy averaging arises from
thermal smearing of reservoir states and electron dephasing in the dot (the latter of which
effects will be discussed in further detail in section 4). To simulate the effect of this averaging
on the transport measurements, we adopt the following approach. We first account for
thermal smearing and dephasing by introducing an effective temperature (T ∗), whose choice
is determined empirically by comparison with experiment. The energy-averaged magneto-
conductance may then be computed from a simple convolution of the zero-temperature
conductance with the derivative of the Fermi function:

Gav(B, EF, T ) =
∫

G(B, E)

[
−df (E − EF, T )

dE

]
dE, (3)

where EF is the Fermi energy. For a demonstration of these concepts, in figure 12 we show the
evolution of the magneto–resistance of another quantum dot with gate voltage. To realistically
model the transport through this dot, we calculate its profile self-consistently, and compute
its energy-averaged magneto-conductance at several different values of EF. A comparison of
the calculations with selected experimental curves is provided in figure 13, where we have
assumed that T ∗ = 0.3 K, which appears to provide the best agreement with the results of
experiment. It is clear from these figures that our simulations are successful in reproducing
the main features of experiment. The discrepancy between the value of T ∗, and the cryostat
temperature of 0.01 K, cannot be attributed to an inability to cool the electrons in the dot
below 0.3 K. Later on in this review, we will discuss the observation of temperature-dependent
resistance variations in these dots, which exhibit a consistent change at temperatures well below
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Figure 12. The measured variation of the low temperature (0.01 K) magneto–resistance of the
0.4 µm quantum dot with gate voltage. These magneto–resistance measurements were taken at
twenty two unequally spaced gate voltages ranging from −0.3610 to −0.4335 V. Figure reproduced
with permission from [36]. Copyright, American Physical Society (1999).
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Figure 13. Selected magneto–resistance curves from figure 12 (——) are compared with the
results of simulations (- - - -). Upper left (experiment): Vg = −0.4295 V. Upper left (simulation):
Vg = −1.05 V, EF = 15.75 meV. Upper right (experiment): Vg = −0.4260 V. Upper right
(simulation): Vg = −1.05 V, EF = 16.1 meV. Lower left (experiment): Vg = −0.4000 V. Lower
left (simulation): Vg = −0.922 V, EF = 15.1 meV. Lower right (experiment): Vg = −0.3885 V.
Lower right (simulation): Vg = −0.922 V, EF = 15.5 meV. Figure reproduced with permission
from [36]. Copyright, American Physical Society (1999).

0.05 K [38–40]. Another contribution to T ∗ is from decoherence-induced broadening of the
dot levels, and the magnitude of this effect is determined by the value of the phase-breaking
time (τφ). Essentially, this can be thought of as the average time over which the electron is able
to propagate within the dot, before its wave coherence is destroyed by scattering events [27].
With a conservative estimate of 100 ps for this timescale (see section 4), however, we infer a
corresponding level broadening (h̄/kBτφ) of roughly 0.1 K. It therefore seems that an additional
source (or sources) of broadening contributes to the determination of T ∗. The source of this
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additional broadening remains unclear, although it may be associated with the influence of
disorder-induced electron scattering in the dot [41].

While the discussion above serves to demonstrate the ability of realistic modelling to
capture the key details of quantum-dot transport, we have not yet made clear the nature of
the connection between the conductance curves in figures 3–6 and the density of states of the
open dot. As we have mentioned, the basic idea is that the magnetic field or gate voltage
may be used to sweep discrete dot states past the Fermi level, giving rise to an associated
modulation of the conductance. The number of discrete dot states that contribute to the
conductance at any magnetic field is therefore determined by the details of the density of
states, and the width of the energy window over which energy averaging is effective. At the
low temperatures of interest here, the size of this window is relatively narrow and the magneto–
resistance can exhibit features associated with the movement of specific dot eigenstates past
the Fermi level. To illustrate these notions, we show in figure 14 the conductance contours that
were used to calculate the magneto–resistance curves in figure 13. The contours were obtained
by convolving the magneto-conductance with the derivative of the Fermi function at a number
of different energies. Bright regions in the contours correspond to high conductance and, at the
low temperatures of interest here, only a narrow window contributes effectively to the energy
average. An important feature of the contours is the series of bright and dark lines that pass
through the Fermi level at different magnetic fields. In figure 11, we saw that these lines trace
the evolution of the density of states as magnetic field and Fermi energy are varied. It is the
presence of these lines that sets the position and widths of the major magneto–resistance peaks
seen in experiment and theory. The width of the central peak found in the lower left panel
of figure 13 (marked A), for example, is set by a pair of resonance lines that bound the local
conductance minimum in the centre of the lower left panel of figure 14. Examining the other
panels in figure 14, it is evident that similar features limit the width of the central peak in
all other cases depicted in figure 13. Similarly, the side-peaks seen in the upper two plots of
figure 13 result from the presence of a low conductance region that is bounded by resonances
which cross the Fermi level near ±0.3 T (figure 14, upper two panels). Interestingly, the
side-peaks are seen to be strongest in situations where the dot leads are configured to support
just a few modes, a property that is apparent in both experiment and theory. The side-peaks
might be mistaken as arising from a classical magneto-focusing effect, in which the curvature
of electron motion induced by the magnetic field focuses electrons into the input or output
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leads, at magnetic fields where the cyclotron radius is commensurate with the size of the dot.
Such an effect can be ruled out here, however. First, we note that the magnetic field values at
which the peaks occur do not correspond to any obvious commensurability condition in the
dot. Second, the peaks wash out rapidly with increasing temperature (not shown here), while
focusing-related features are known to persist to very much higher temperatures [42–45].

The influence on the conductance of the eigenstates of the open dot, as they cross the
Fermi level as the magnetic field is varied, is shown more clearly in figure 15. The upper
panel of this figure shows the computed conductance contour of an open dot and, in the middle
panel of figure 15, this contour is convoluted with the derivative of the Fermi function, to show
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Figure 15. Top: computed conductance contour of a 0.4 µm dot. Middle: the contour obtained
after convolving the conductance with the derivative of the Fermi function, assuming an effective
temperature of T ∗ = 0.3 K. Bottom: the energy-averaged magneto-conductance of the dot,
computed assuming an effective temperature of T ∗ = 0.3 K. Figure reproduced with permission
from [36]. Copyright, American Physical Society (1999).
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0.4 µm. Lower plot: computed variation conductance with gate voltage and energy for the same
dot. The greyscale varies from 0 to 2e2/h and the dashed line shows the Fermi energy. Figure
reproduced with permission from [32]. Copyright, American Physical Society (1999).

the range of energies that effectively contribute to the conductance. Here, we focus on the
dark striation that passes through the Fermi level over the magnetic field range between 0.3
and 0.35 T. This striation represents the passage of a broad resonance past the Fermi level and
it is easily seen that the magnetic field range over which the crossing occurs determines the
effective width of the resulting resistance peak.

While the discussion above focuses on the use of a magnetic field to probe the density of
states of the open dots, we have also mentioned that a gate-voltage variation may be used to
achieve essentially the same effect [32]. This idea is illustrated in figure 16, in the upper panel of
which we show the computed variation of the energy levels of an isolated dot with gate voltage.
In these calculations, the variation of the quantum-dot profile with gate voltage is computed
self-consistently, and the energy levels of the closed system are obtained by artificially closing
the leads at their narrowest points (see figure 16). As the gate voltage is made progressively
negative, the levels shift upwards in energy, which is a direct consequence of the gate-voltage
induced decrease in the size of the dot (see figure 2). In the lower panel of figure 16, we show
the contour plot obtained by computing the variation of the conductance of the equivalent
open dot with gate voltage. Similar to our discussion of the magneto-conductance contours
(figure 11), distinct lines can be seen running through this plot, and which clearly follow
the motion of certain closed-dot states. Not all states give rise to a marked modulation of
the conductance, however, and this is nothing more than a consequence of the non-uniform
level broadening that we have shown to arise in the quantum-dot spectrum when the leads
are opened to the reservoirs. In experiment, of course, the variation of conductance with gate
voltage is measured at fixed Fermi energy, as indicated by the dotted line in the lower panel.
As the gate voltage is used to drive successive dot states past this reference energy, oscillations
are observed in the conductance (figure 6). Similar to our discussion of figures 14 and 15,
the lineshape of these oscillations is determined by the coupling-induced broadening of the
original dot states, and the range over which energy averaging is effective (i.e. temperature
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and dephasing). In this sense, we see that the conductance fluctuations observed in figure 6
may be viewed as arising from essentially the same phenomenon as those in figures 3–5.

3.3. Wavefunction scarring in open quantum dots

The central result of sections 3.1 and 3.2 is that the discrete states of an isolated dot are
broadened non-uniformly when its leads are opened to the reservoirs. For certain states, this
broadening can be much smaller than the average level spacing, allowing them to give rise to
directly measurable transport results. While we have provided detailed numerical calculations,
and experimental data, to support these arguments, we have not yet considered explicitly the
origin of the non-uniform broadening. This is easy to understand, however, if we consider the
behaviour shown in figures 7 and 9. Close inspection of these figures reveals that the strongest
correspondence between the closed- and open-dot wavefunction arises when the latter show a
large buildup of probability density in regions located away from the leads. In other words,
the robust states of these systems are those that couple only weakly to the leads, a result which
seems quite intuitive.

An interesting feature of those states that remain resolved in the open dot is that their
wavefunctions tend to be scarred [46, 14] by the remnants of a small number of semiclassical
orbits. The characteristic signature of the scarring is a buildup of probability density in the
dot, which is organized along the path of particular classical orbits. This property can be seen
in the wavefunctions of figures 7( f ) and (h), which show the signature of a trapped orbit that
bounces back and forth between the parallel faces of the dot. Since this mode couples only
weakly to the leads, it is able to remain resolved in the open dot, even when its leads are
opened to support many occupied sub-bands (figure 7(h)). An important feature of the scars,
and one which we have demonstrated to have measurable transport results, is that they regularly
recur as the magnetic field or gate voltage is varied [32,47–50]. This property is illustrated in
figure 17, which shows the results of calculations of the wavefunction of a realistic quantum
dot, at a series of different gate voltages. These plots were obtained by first of all calculating
self-consistently the potential profile of the dot, at each of the fifty gate voltages shown in
figure 17 [51,52]. Using these profiles, the probability density in the dot was then determined
at each gate voltage. In most of the cases shown in figure 17, the probability density exhibits
an essentially random form, which rapidly evolves as the gate voltage is varied. In certain
cases, however, the wavefunction is scarred by what appear to be whispering-gallery (W) and
bouncing-ball orbits (B). When the gate voltage is varied over a much wider range than shown
in figure 17, the scars recur periodically as we illustrate in figure 18. The upper two rows of
this figure show the set of whispering-gallery scars, which recur at a frequency of 38 V−1 for
this dot, while the bottom two rows show variants of bouncing-ball scars. Both sets of these
scars recur at a frequency of 15 V−1, but are phase-shifted from each other by a fixed increment
of 20 mV.

In figure 19, we show the computed magneto–resistance of a square dot at 0 K [48]. As
the magnetic field is varied, the resistance exhibits many resonances and, at the magnetic
fields indicated by the dotted lines, these are seen to be related to the presence of a diamond-
like wavefunction scar. The scar recurs with an almost constant magnetic-field period of
0.11 T, and the resonances in the conductance provide a measurable transport result associated
with this recurrence. Of course, the calculations in figure 19 are performed for the case
of zero temperature, and it is not immediately obvious that the transport signatures of the
wavefunction scars should remain observable under typical experimental conditions. For this
reason, in figure 20, we show a more realistic manifestation of the scarring behaviour. The
dot studied here is the same as that considered in figures 17 and 18, in which the gate voltage
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Figure 17. The calculated variation of the probability density as a function of gate voltage, for
the dot considered in figure 16. From top-left to bottom-right the gate voltage is stepped in 1 mV
increments between −0.900 and −0.851 V. Lighter regions correspond to higher probability density.

is varied to induce a modulation of the scarring patterns. In the upper inset to figure 20, we
show the measured conductance oscillations for the gate-voltage variation. The oscillations
were obtained by subtracting a slowly varying background (see, e.g. figure 6) from the overall
conductance variation induced by the gate voltage [32]. Also shown in the same inset, are
the numerically computed conductance oscillations. The calculations are performed for a
gate voltage-dependent, self-consistent, dot profile, and properly account for the influence of
finite temperature and dephasing [37, 48]. From a comparison of the two curves in the inset,
it is clear the frequency content of the experimental oscillations is well reproduced by the
calculations. This is confirmed in the main panel of figure 20, where we plot the Fourier
spectra of both sets of oscillations. The spectra exhibit a number of well-defined peaks, the
largest of which occurs at a frequency of 15 V−1. As we have discussed, this corresponds
closely to the frequency with which the two types of bouncing-ball scars (denoted by ‘1’
and ‘2’ in figure 20) recur with gate voltage. We have mentioned already that these two
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Figure 18. Recurring scars in the dot geometry of figure 16. Top two rows are whispering-
gallery scars. For each of the three scar types, moving from left to right corresponds to moving to
less-negative gate voltage.
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Figure 19. Recurring wavefunction scars and the magneto–resistance of a square-shaped quantum
dot. The calculations are performed for a temperature of 0 K, using the method described in [48].

scars are shifted from each other by a fixed increment of 20 mV, and this appears to account
for the common peak at 50 V−1 in both spectra. The other major peak in this figure occurs
at 38 V−1, in good agreement with the recurrence properties of the whispering-gallery scar,
shown in the upper two rows of figure 18. Based on these observations (figures 18–20), we
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Figure 20. The upper curve in the inset shows the conductance oscillations generated in a dot
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from the overall conductance oscillation), while the lower curve shows the results of numerical
calculations. (The upper curve is offset by +0.6e2/h.) The main panel shows the Fourier spectra
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conclude that measurable transport results associated with the scars can indeed be observed in
experiment.

To summarize the main results of this section, we have seen that the robust states of open
dots, that survive in the presence of strong coupling to the environment, correspond to those
eigenstates of the closed system that are scarred by periodic orbits, which buildup probability
density away from the leads. The scars recur periodically as the magnetic field or gate voltage
is varied, and appear to give rise to associated transport results [32, 49, 50] (figures 4, 6 and
20). In the following section, we consider how the scars may be accounted for within a
semiclassical perspective. This discussion will show that the scars are consistent with the
process of dynamical tunnelling, in which electrons tunnel through isolated regions of phase
space, into classically inaccessible orbits.

3.4. Dynamical tunnelling and the semiclassical description of open quantum dots

In a semiclassical description of transport in the dots, the objective is to describe their electrical
characteristics by considering the interference of electron partial waves that propagate through



608 J P Bird et al

0.2 0.4 0.6

x (MICRONS)

v x
/v

F

h

0

0.8
0.4

x (µm)

0.1

-0.1

0

Figure 21. Poincaré section of motion calculated for the open quantum dot of figure 20. The
section is taken along the dotted line in the upper inset. The lower inset shows an area of phase
space comparable in size to h̄.

the dot along different classical paths [53]. The starting point for such an analysis is the
classical phase space for electron motion in the dot, and in many studies in the literature it is
often typically assumed that this dynamics is fully hyperbolic (fully chaotic). In this situation,
all orbits are unstable and all initial conditions escape from the dot in a finite time (except for a
set of null measure). The Poincaré section of motion in this case should therefore correspond to
a dense set of points, with no evidence for any stable orbits. As we show in figure 21, however,
the actual section of motion of these dots typically exhibits a mixed nature, with clear evidence
for the presence of Kolmogorov–Arnold–Moser (KAM) islands [54]. The nonhyperbolic
nature of the dynamics appears to be a quite generic property of these dots [55–58]. The KAM
island in figure 21 is centred on a period-one orbit that bounces back and forth at the centre
of the dot, just as we saw earlier in our discussion of wavefunction scarring in this structure
(figures 17, 18 and 20). A crucial point to note, however, is that orbits such as this, within the
KAM island, are classically inaccessible to electrons injected into the dot by its connecting
leads.

The standard approach for relating the conductance of quantum dots to their classical
dynamics, involves expressing the quantum-mechanical transmission probability of the dot
in terms of a uniform sum over all trajectories that connect the input and output leads [53].
This approach therefore neglects any contribution to transport from isolated orbits, contained
within KAM islands. In systems whose size is comparable to the de-Broglie wavelength (λF),
however, it is now understood that the process of dynamical tunnelling can occur, in which
the particle involved tunnels through the classically forbidden regions of phase space to access
isolated orbits [59–62]. While experimental demonstrations of this effect have recently been
provided in microwave cavities [63], and in cold-atom systems [64,65], its role in transport in
mesoscopic structures has not been widely considered. For dots with a typical size of a micron
or less, we have seen that λF is typically within an order of magnitude of the dot size, and we
have therefore argued that the tunnelling effect cannot be neglected in such structures [54].

Since KAM separatrices are classically impenetrable, the classical dynamics within them
may be viewed as that of a closed system. Because of the dynamical tunnelling, however, there
is a probability that an incoming electron may tunnel onto the KAM island, when its energy
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and the system parameters are such that the semiclassical quantization condition is satisfied
for a low-period stable orbit within the island. For a closed system, it is well known from
the expansion of the Gutzwiller trace formula that each stable orbit generates a series of delta
functions in the density of states, corresponding to energies for which the following resonance
condition holds [66]:

Seff = S +
ω

2π

[
m +

1

2

]
+

λ

4π
, m, n = 0, 1, 2, . . . . (4)

In this expression, Seff is the effective action of the orbit, ω is its stability angle, and λ is the
Maslov index. S is the action along the classical orbit in units of the Planck constant:

S =
∫

1

h
p dq. (5)

For a closed system, and for each energy that satisfies equation (4), there is a delta function in
the density of states, corresponding to a discrete energy level. Our system is open, however,
and just as an incoming electron may tunnel in, an electron within the island may also tunnel
out, causing the associated energy level to develop a finite width. If the effective trapping
time within the orbit is much longer that required for the electron to undergo one period of
motion, however, this broadening may be much smaller than the characteristic energy spacing
between the different levels. In this situation, the dynamical tunnelling can be expected to
cause a strong modulation of the conductance through the dot.

While it is our opinion that the dynamical tunnelling effect should be quite generic to
mesoscopic structures, to provide a clear demonstration of its importance we consider its
role in giving rise to the wavefunction scarring, found in figure 20. Consider first the case
where m = 0. n may be viewed as a longitudinal quantum number, which counts the number of
wavefunction nodes along the orbit. For the KAM island shown in figure 21 there are infinitely
many periodic orbits, but only the lowest period ones are expected to remain resolved, since the
others should give rise to energy levels that are too closely spaced to be resolved. Clearly, the
most important orbit in the island is the period-one bouncing-ball orbit, which corresponds to
the fixed point at the centre of the KAM island. We calculate Seff in equation (4) numerically,
as a function of the gate voltage for this island, and compare to the experimental results [54].
The result is plotted in figure 22, where we see that the points fall on reasonably straight lines,
which corresponds to a periodic recurrence of the resonance, and a periodic oscillation in the
conductance. Since a conductance resonance should occur each time Seff changes by one,
the (absolute value of) the slope of the resulting straight line directly gives the semiclassical
prediction for the frequency of the associated conductance oscillations. We find this frequency
to be 16.4 V−1, in remarkably good agreement with the measured value of 15 V−1 for the
bouncing-ball scar in figure 20. That is, the component of the conductance oscillations at this
frequency appears to be related to recurring tunnelling resonances of the bouncing-ball orbit.

Now consider the general case, when m is any positive integer. The second term on
the right-hand side of equation (4) represents the quantization of the component of the motion
transverse to the periodic orbit. That is, for each value of n, there is actually a set of resonances
labelled by m, similar to the vibrational band of a molecule. In figure 16, we saw that the
energy levels of the dot shift linearly with gate voltage, at least over the range considered here,
and it is this property that gives rise to the linear variation of Seff in figure 22. Assuming
such a variation of Seff , we can estimate the gate-voltage separation of two resonances with
consecutive transverse quantum numbers:

�Vg = ω

2π

∣∣∣∣dSeff

dVg

∣∣∣∣
−1

, (6)
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Figure 22. Effective action vs the gate voltage, for the stable (•) and the unstable ( ) orbits. The
lower inset shows a pair of closely spaced concentrated wavefunctions corresponding to the stable
bouncing-ball orbit. The upper inset shows a scar due to the unstable orbit. Figure reproduced
with permission from [54]. Copyright, American Physical Society (1999).

where we have assumed that the value of ω does not change much between resonances. This is
actually quite reasonable, since, although ω does depend on n, its values are found numerically
to lie within the range between 1 and 2 rad. Using the value of dSeff/dVg determined from
figure 22, equation (6) yields a value of �Vg between 10 and 20 mV. Just as n counts the
number of nodes along the orbit, m counts the number of nodes across it, so we expect that for
each value of n (corresponding to a fixed number of longitudinal nodes in the eigenfunction),
there should be a set of scars having 0, 1, 2, . . . transversal nodes, separated by a gate-voltage
interval of 10–20 mV. Such behaviour is seen clearly in experiment, where two variants of the
bouncing ball occur (labelled ‘1’ and ‘2’ in figure 20), and are shifted from each other by a fixed
increment of 20 mV. We stress that this phenomenon cannot be accounted for without invoking
the influence of dynamical tunnelling, since it requires that the electrons have access to the
stable orbit, which is classically, and also semiclassically, forbidden. Scars corresponding
to higher values of m are not observed in the quantum-mechanical calculations, presumably
because they have a short life-time. As can be seen in figure 20, the m = 1 wavefunction (‘2’)
has a wide lateral extent, which should increase even more as m is increased. For values of
m > 1, we therefore expect that the wavefunction will have a large overlap with regions of
phase space outside of the KAM island, and that the associated resonances will be very short
lived.

Although we have thus focused on the signatures of dynamical tunnelling due to stable
orbits, unstable orbits are present in the system and may also contribute to the density
of states. The resonance condition for unstable periodic orbits is given by equation (4),
without the ω term [66], so that these orbits do not give rise to the sub-band of resonances
associated with different values of m. The scar corresponding to the main unstable orbit
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is the whispering-gallery scar, labelled ‘3’ in figure 20, and which recurs with a frequency
of approximately 38 V−1. In figure 22, we plot the variation of Seff with Vg for this orbit,
and obtain a recurrence frequency of 36 V−1, in very good agreement with the experimental
observation.

The main conclusion to be drawn from the discussion above is that usual semiclassical
approaches to the description of transport, which consider only the contribution from classically
accessible trajectories, are insufficient to explain the observed characteristics of quantum dots.
Instead, the quantum-mechanical tunnelling of electrons through KAM islands has to be taken
into account. The tunnelling may be mediated by stable, or unstable, periodic orbits, and
gives rise to conductance oscillations whose characteristics agree well with the results of
experiment. While we have focused on a specific experimental system, to demonstrate the
key principles of the tunnelling effect, our results are believed to be of general applicability to
mesoscopic systems. Indeed, periodic conductance oscillations, with characteristics similar
to those discussed here, have been observed in a number of different experimental studies of
open dots [32, 49, 50].

3.5. Open quantum-dot molecules

In the preceding sections, we have focused on the development of consistent quantum-
mechanical, and semiclassical, interpretations of the transport properties of open quantum
dots. Another interesting question that arises, however, concerns the modifications to the
transport properties that arise, when several dots are coupled coherently to each other. It is this
problem that we explore in this section, where we investigate the details of electron interference
in coupled quantum dots.

In figure 23, we show the magneto–resistance of a split-gate quantum-dot array, at several
different values of its gate voltage [67]. The array consists of three identical, series-connected,
dots (see the inset to figure 23), and its magneto–resistance is, in many ways, reminiscent of
that exhibited by the single dots that we have discussed thus far. In figure 24, we show examples
of the magneto-conductance fluctuations exhibited by the array. The measurements shown in
the left-hand panel were obtained at six, closely-spaced, values of the gate voltage for which
the average conductance of the array was close to 7e2/h. In contrast, the right-hand panel
was obtained with the conductance close to 3e2/h, and a comparison of the two plots reveals
a striking difference in the frequency content of their fluctuations. In particular, reducing the
average conductance of the array causes a suppression of the high-frequency components of
the fluctuations. This evolution can be seen in more quantitative fashion in figure 25, where
we use contours to plot the gate-voltage-dependent evolution of the fluctuation Fourier spectra
in two different arrays. (These plots were constructed from measurements performed at fifty,
equally spaced, gate voltages in each array.) As the gate voltage is made more negative, a
damping of the high-frequency features in the contours occurs, consistent with the evolution
shown earlier in figure 24.

Since an important effect of the gate-voltage variation is to change the strength of the
inter-dot coupling in the arrays, we have argued that the change in the frequency content of
the fluctuations, shown in figures 24 and 25, is associated with this change in the coupling
strength [67]. We recall here that our investigations of open dots have revealed an intrinsic
connection between their conductance and their density of states. Given this connection, the
behaviour exhibited in figures 24 and 25 appears to indicate that the level spectrum of
the arrays develops a finer structure as the inter-dot coupling is increased, and we believe
that this effect results from a coupling-induced hybridization of the density of states in the
arrays. Such hybridization behaviour has, in fact, been predicted numerically [68], as we
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Figure 23. The gate-voltage dependent evolution of the magneto–resistance of a three-dot quantum-
dot array with dot dimensions of 0.6 × 1.0 µm2. The inset shows a scanning electron micrograph
of an array with a similar geometry to that studied here. Figure adapted from [67]. Copyright,
American Physical Society (2001).

illustrate in figure 26. From left to right in this figure, we compare the computed magneto-
conductance contour of a single dot, to the contours obtained in calculations for quantum-
dot arrays, consisting of four, and ten, identical dots, respectively. Darker regions in these
contours correspond to low conductance, and magnetic field and energy are plotted on the
horizontal, and vertical, axes, respectively. As the number of dots in the array is increased,
we see from the contours that their features develop increasing fine structure, which directly
reflects the formation of superlattice states in the coupled systems [68]. The indication of the
experimental work here is that the extent of this hybridization can be sensitively controlled, by
using a gate voltage to vary the inter-dot coupling in the arrays. Support for this conclusion
has recently been provided by independent experimental work, in which the transport
through a system of coupled dots with independently tunable inter-dot coupling strength was
investigated [69].
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3.6. Comparison with other studies

3.6.1. Other work on quantum dots. In the preceding sections, we have developed a
description of transport in the open dots that may be understood consistently, using either
semiclassical or quantum-mechanical concepts. The ability of this description to accurately
account for the behaviour observed in experiment may be traced to the fact, that it is founded
on a proper treatment of the device-specific aspects of the transport. This should be contrasted
with a large number of studies in the literature, which assume a mathematically-convenient,
yet physically-artificial, model for the transport. A typical assumption, in particular, is that
the classical dynamics in the dots is fully chaotic, and therefore characterized by a single
escape rate. The advantage of such an assumption is that it allows the semiclassical expression
for the dot conductance to be reduced to a simple analytic form [53]. It also allows one to
establish an analytic connection between the properties of the conductance fluctuations and the
electron phase-breaking time (τφ) [70,71]. An important consequence of the single escape rate,
associated with the chaotic dynamics, is that one expects the discrete levels of the dot to develop
a uniform broadening due to its coupling to the reservoirs [70,71]. Moreover, for the open dots
of interest here, the magnitude of this broadening should always be larger than the average
level spacing, so that sharp features due to specific eigenstates are not expected to be resolved
in the transport. Although mathematically appealing, the problem with these arguments is that
they are physically incorrect. As we have seen, opening the dot to its reservoirs gives rise to
a highly non-uniform level broadening, allowing certain states of the closed system to remain
resolved, and so to give rise to associated features in the conductance. From a semiclassical
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Figure 25. Upper panel: Fourier contour plot constructed from the results of fifty magneto–
resistance measurements of the array with dot dimensions of 0.4 × 0.7 µm2. The gate voltage
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Figure 26. Computed conductance contours for open arrays of one (left), four (middle) and
ten (right) quantum dots, respectively. Darker regions correspond to lower conductance, while
magnetic field and Fermi energy are plotted on the horizontal and vertical axes, respectively. The
magnetic field range is −0.1 to 0.1 T, while the Fermi energy range is 12 to 15 meV.
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perspective, this behaviour may be attributed to the fact that the generic phase space for motion
in these dots is mixed, rather than fully chaotic [55]. As we have been able to demonstrate,
the eigenstates that remain resolved when the dot is open are associated with isolated periodic
orbits, which can only be accessed by (classically forbidden) dynamical tunnelling. Transport
through these orbits essentially involves a resonant-tunnelling process, which is exactly why
such a large modulation of the conductance is found to arise from the contribution of individual
orbits. Recall that in a double-barrier system, resonant tunnelling is most pronounced when
the transmission probability of this individual barriers is small. This allows the tunnelling
particle to be efficiently trapped within the well, and to build up interference between its
multiply scattered partial waves. In the problem of interest here, the probability to tunnel
onto (or off) orbits within the KAM island should be small, since these orbits are classically
inaccessible. At resonant energies that satisfy equation (4), an electron that tunnels onto the
orbit will therefore undergo many traversals, before eventually escaping after a time, much
longer than that required to transit directly across the ends of the dot. That is, the dynamical
tunnelling effectively enhances the trapping time within the dot, allowing the energy levels
associated with the tunnelling orbits to remain resolved. (A similar picture has recently been
discussed by Takagaki and Ploog [72], although these authors did not account for the influence
of tunnelling into classically inaccessible orbits.)

The connection between the density of states and the conductance of open dots has also
been appreciated by other authors. Persson et al [73] investigated the transport properties
of circular dots, in both the open- and tunnelling-regimes, and related their observations to
the results of calculations of the eigenstates of the circular billiard. As such, they failed
to appreciate the non-uniform nature of the level broadening, introduced by the coupling
in the open regime. In later theoretical work, however, Zozoulenko and Berggren [74, 75]
decomposed the wavefunction of an open square billiard and found this to be dominated by the
contribution from a small number of closed-dot states, consistent with the behaviour discussed
here. It is worth pointing out here that the closed-dot basis set of eigenstates used by these
authors was that of a perfect square, and so did not account for the perturbing influence of
the leads on the dot geometry, and it is for this reason that their wavefunction decomposition
always contained contributions from at least a number of states. As we saw in our discussion
of figures 8 and 9, it is only when the influence of the leads is properly accounted for that the
single-eigenstate nature of transport in the open dots is fully appreciated. In later experimental
work, Zozoulenko et al [76] studied the magneto-transport in an open dot, and showed that this
could be analysed in terms of conductance contours, similar to our discussion of figures 11–15.

One of the key findings of our work is that the transport through open quantum dots appears
to be dominated by the contribution from a small number of semiclassical orbits, which are
thought to be accessed by dynamical tunnelling [32, 47–50, 54]. Transport results due to
isolated orbits have also been reported by other authors. Some of the earliest observations of
periodic magneto-conductance oscillations were reported in [77,78], although neither of these
studies considered the origin of the observed behaviour in any detail. Christensson et al [79]
observed evidence for periodic magneto-conductance oscillations, arising from a magnetically
focused orbit, in their investigations of the transport in open triangular dots. In another study
of a triangular billiard, periodic conductance fluctuations were observed and were argued to be
associated with the contribution of a classically inaccessible orbit [80]. These results support
our assertion that the semiclassical description of transport in these systems is considerably
more complicated than conventional approaches would suggest.

While our discussion thus far has focused exclusively on the nature of transport in
open quantum dots, there is nonetheless a strong connection of our results to the issue of
transport in tunnel-coupled dots. As was mentioned in the introduction, current flow through
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these structures is dominated by the effect of single-electron tunnelling. In semiconductor
quantum dots, the separation between successive dot levels may be comparable to the Coulomb
charging energy, and a strong variation of the tunnelling current is observed as the occupation
number of the dot is varied [3, 6, 7]. Stopa [81], and more recently Silvestrov and Imry
[82], have related this behaviour to strongly scarred wavefunction states of the dots that
modulate the tunnel conductance, due to the very different overlap they exhibit with the lead
regions.

3.6.2. Generic wave properties of open quantum dots. While our discussion thus far has
focused on the semiclassical interpretation of transport in the open dots, there are many
aspects of this behaviour that may equivalently be viewed as manifestations of quite generic
wave phenomena. A clear demonstration of the wave-mechanical character of transport
in the dots is provided by analogue studies of the transmission properties of microwave
cavities [15, 83]. The basis for such studies is provided by the exact correspondence between
the Schrödinger equation for a freely moving electron in a two-dimensional billiard, and the
Helmholtz equations for a microwave resonator [14, 84]. According to this correspondence,
the electric field within the classical resonator may be viewed as analogous to the wavefunction
of the quantum-mechanical system, while the Landauer–Büttiker formalism provides a direct
connection between the transmission properties of the resonator and the conductance of the dot.
In a recent study by Kim et al [15], the behaviour of an open cavity resonator was compared
directly to the results of measurements of an open quantum dot. The results of their study
are shown in figure 27, where the frequency dependence of the transmission coefficient of the
microwave cavity and the magneto–resistance of the quantum dot are plotted. For the purpose
of comparison, the abscissa axes of the two plots have been converted onto the so-called
Weyl axis, on which energy is normalized to the average level spacing (�) [15]. With this
normalization, it is clear that the two plots of figure 27 exhibit strikingly similar behaviour,
providing a clear demonstration of the fact that transmission through open quantum dots may
be viewed as a wave-mechanical process. Rastering an antenna over the area of the cavity,
and measuring the resulting variation of the electrostatic potential, it is actually possible to
map out the wavefunction of the cavity [14, 85]. The results of the study of Kim et al are
shown in figure 28, where we see clear evidence for wavefunction scarring, reminiscent of
the behaviour found in the open dots (figures 17–20). Similar to behaviour exhibited by the
dots, the scars were found to recur as the frequency was varied, in correspondence with the
presence of specific frequency components in the associated transmission fluctuations [15].
Electromagnetic cavity resonators are also realized in vertical-cavity surface-emitting lasers
(VCSELs), and Chen et al [17] have used such structures to explore field distributions near
the lasing threshold. They find the presence of optical modes with strongly scarred field
distributions, which they associate with the interference of a small number of eigenstates of a
perfectly square cavity. The presumption here is that inevitable imperfections in the VCSEL
geometry cause its eigenstates to correspond to a mixture of a small number of states of the
pure square, just as we have discussed in the context of figures 7–9. In their report, Chen et al
provide support for this argument by constructing wavefunctions that are scarred by single
orbits, using superpositions of small numbers of basis states of the square.

In figure 10, we saw that, while increasing the width of the dot leads gave rise to strong
broadening of many of the dot eigenstates, a small group of states remained almost unaffected
by this process. Such behaviour is also observed in studies of microwave cavities, where it is
referred to as the phenomenon of resonance trapping (for a review see [86], [87]) (figure 29).
Similar to the behaviour that we have discussed, it is found that opening the cavity gives rise to
a non-uniform broadening of its eigenstates. In particular, as the width of the cavity opening
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Figure 27. Shown top-left are the dimensions of the microwave cavity resonator that is used to
model the quantum dot, whose lithographic dimensions are shown in the top-right figure. The
dotted lines indicate schematically the shape of the actual quantum dot that is formed in the 2DEG.
The bottom-left figure shows the variation of microwave transmission with frequency, while the
bottom-right figure shows the measured magneto–resistance of the quantum dot. Figure reproduced
with permission from [15]. Copyright, American Physical Society (2002).

is increased, the lifetime broadening of certain eigenstates actually found to decrease. This is
the effect of resonance trapping, and evidence for this can even be seen in the lower panel of
figure 10, in which the state at E/� ≈ 139 appears to become more clearly resolved as the
width of the leads is increased.

While the quantum dots that we study are open systems, the scarred states that arise in
these structures may be viewed as analogous to standing-wave modes. The manner in which
such modes may be excited by an incoming wave is illustrated in figure 29, which essentially
shows a set of snapshots of the wavefunction, taken at a series of different times subsequent
to injection into the dot [41]. In the case considered here, the Fermi velocity of the electrons
is such that the transit time across the dot is only of order a few picoseconds. As can be seen
from figure 29, however, the scar is only built up when the electron remains trapped within the
dot for sufficient time to be multiply scattered from its potential boundaries. This figure also
provides a clue as to the origin of the dynamical tunnelling that we have discussed. While the
final scar appears to be decoupled from either of the leads, it is clear from this figure that the
initial diffraction of the electron, as it is injected into the dot, sets up the interference conditions
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Figure 28. Examples of scars in the microwave cavity resonator. Figure adapted with permission
from [15]. Copyright, American Physical Society (2002).

Figure 29. Calculated probability density in a 0.3 µm quantum dot at a magnetic field of 0.28 T.
Lighter regions correspond to enhanced probability density and calculations are performed for
different values of the phase-breaking time. From top-left to bottom-right, τφ = ∞, 500 ps, 100 ps,
50 ps, 10 ps, and 1 ps, respectively. Viewed in reverse sequence, this figure may be considered as
illustrating the time-dependent growth of the wavefunction scar within the quantum dot. Figure
reproduced from [41].

that give rise to the formation of the scar. Such behaviour is well known from the study of the
wave modes that arise in fluid systems containing arrays of cylinders [16], and is important in
the design of mechanical structures such as oil rigs, where one seeks to minimize the influence
of resonances due to such standing modes.
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Another interesting connection of this work has been noted by Kun et al [88] in their
studies of hyperdeformed nuclear systems. In investigations of this type, the decay of nuclei
from some excited state is studied, as a function of the initial excitation energy. While it is
typical to expect a Wigner-like distribution of intermediate states, experiment actually reveals
the existence of highly stable modes of motion in the intermediate system, which are excited
at quite specific energies. Clearly, there is a strong analogy here to the behaviour exhibited by
the open dots that we study, which exhibit long-lived quasi-bound states at certain values of
the Fermi energy.

4. Decoherence and interactions in open quantum dots

In section 3, we explored the details of transport in open dots at low temperatures,
where the discreteness of the level spectrum can be experimentally resolved. With increasing
temperature, however, we expect that electron phase-coherence will be suppressed, and that
thermal smearing of the energy levels will ultimately render them unobservable. Indeed, we
have already seen that the conductance fluctuations, associated with the discrete density of
states, are typically washed out as the temperature is increased above a few degrees kelvin
(figure 5). In this section of our review, we consider the factors that contribute to this thermal
averaging, and discuss how the temperature-dependent details of transport may be used to
infer important information on the behaviour of a key transport parameter, namely the electron
phase-breaking time.

4.1. Dephasing in open dots

One of the key parameters for the discussion of transport in mesoscopic systems is the electron
phase-breaking time (τφ), which may be thought of as the average time over which the electron
is able to propagate as a coherent wave, before its phase evolution is disrupted though its
interaction with its environment [27]. Among the possible sources of dephasing in condensed-
matter systems include electron–electron, electron–phonon, and electron–photon, scattering,
each of which mechanisms is expected to have a quite distinct dependence on energy. At the
low temperatures of interest here, it is usually assumed that the electron–electron interaction
is the dominant source of decoherence, although the role of the electron–photon interaction
has recently attracted increasing attention [89]. Studies of the temperature dependence of the
phase-breaking time provide a valuable means to investigate the relative importance of these
mechanisms, and to investigate how phase-coherence is modified by confining electrons in
mesoscopic structures, such as quantum dots.

Among the experimental methods that have been employed to determine the value of τφ in
quantum dots, Marcus and co-workers [70,71,90,91] have developed a number of approaches
that are based on an assumption of fully chaotic electron scattering in the dots. As we have
seen, however, the typical classical phase space in these dots is mixed, rather than fully chaotic,
which is known to give rise to very different escape dynamics than that characteristic of chaotic
scattering [55]. For this reason, we have used a different approach to determine the value of
the phase-breaking time, which is based on the evolution of the magneto-conductance in the
high-field, edge-state, regime [92–95]. The key observation in this regime is that the basic
field scale of the conductance fluctuations increases once the magnetic field is raised such that
the cyclotron-orbit size fits within the dot (figure 30). At such magnetic fields, the fluctuations
in the conductance may be thought of as arising from the interference of different skipping-
orbits, associated with the populated Landau levels of the sample. To compute the characteristic
magnetic flux enclosed by these skipping orbits, consider the area that a single orbit encloses
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Figure 30. Conductance fluctuations in a 1 µm quantum dot at two distinct temperatures (the higher
temperature trace has been shifted upwards by 0.75e2/h for clarity). Figure reproduced with
permission from [92]. Copyright, American Physical Society (1995).

as it skips coherently along the walls of the dot [96]:

Aϕ = nb
πr2

c

2
= vFτϕrc, (7)

where nb is the number of bounces the electron makes before losing phase-coherence,
rc = h̄kF/eB is the cyclotron radius, and vF is the Fermi velocity. From this definition, it is
possible to obtain a simple expression, relating the average period of the magneto-conductance
fluctuations to the magnetic field:

Bc(B) = φo

Aϕ

= h

eAϕ

= 8π2m∗

hk2
Fτϕ

B. (8)

The field scale here (Bc) is more rigorously defined as the correlation field of the conductance
fluctuations, and may be obtained directly from their correlation function:

F(�B) = 〈δg(B)δg(B + �B)〉, F (Bc) ≡ 1
2F(0). (9)

According to equation (8), when the phase-breaking time is independent of magnetic field, Bc

is expected to increase linearly with the magnetic field. Such behaviour is indeed found in
experiment (figure 30), and, from the slope of the resulting straight line fit (figure 31, inset), it
is possible to use equation (8) obtain an estimate for the phase-breaking time.

In figure 31, we show the measured temperature dependence of the phase-breaking time,
obtained in studies of two different quantum dots using the approach of equation (8). There
are several features of this figure that are worthy of comment. The first is that, at temperatures
around a degree kelvin, the phase-breaking time increases with decreasing temperature, with
a power-law form close to τφ ∝ T −1. As other authors have noted [71, 90], this variation is
reminiscent of that predicted [97] for dephasing by electron–electron scattering with small-
energy transfer in two-dimensional disordered systems. Whether this mechanism is responsible
for the variation of τφ observed in the dots remains to be determined, however, although
Huibers et al [90] have noted that the magnitude of τφ in these structures is inconsistent
with the predictions of this theory. As the temperature is lowered below a degree kelvin, it
can be seen in figure 31 that the variation of τφ deviates from a simple power-law form, and
ultimately saturates at the lowest temperatures. The origin of this saturation remains the source
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Figure 31. Main panel: measured variation of the phase-breaking time with temperature in a 1 µm
(◦) and a 0.6 µm (•) split-gate quantum dot. The inset shows the variation of Bc with magnetic
field in a 0.4 µm dot at two different gate voltages.

of considerable debate in the literature, although in a recent study we were able to show that
the details of the saturation are sensitive to the total electron number in the dot [94]. The other
feature of figure 31 that is worth emphasizing is that the value of the phase-breaking time
in the saturated regime is several orders of magnitude larger than the typical time required
to ballistically traverse the length of the dot. As can be seen from figure 29, such long-term
coherence is crucial to the observation of effects associated with the wavefunction scarring.

4.2. Temperature-dependent transport and the signatures of interactions in open dots

The picture of transport that we have presented thus far is essentially based on a single-particle
description, which neglects the effects of complicated many-body interactions. While this
certainly appears to provide a good description of transport in the open dots, we nonetheless
note that the dynamical-tunnelling behaviour that we have discussed implies the existence of
certain resonant energies, at which electrons remain quasi-bound in the dot for very long times.
For this reason, it might be expected that corrections to the single-particle transport should
arise, due to charging of the dot associated with the formation of these resonant states. In this
section, we explore this possibility by discussing the results of studies of the temperature-
dependent transport characteristics of the open dots, and present evidence for an enhanced
electron–electron interaction at low temperatures that is induced by the confining potential of
the dots.

4.2.1. Experimental observations. To explore possible signatures of electron interactions in
transport, we have investigated the temperature dependence of the conductance in open-dot
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Figure 32. Main panel: gate-voltage characteristic of a three-dot quantum-dot array. The smooth
curve was obtained at 3 K, while the fluctuating one was measured at 0.01 K. The left inset shows
an SEM micrograph of a similar array. The right inset shows the variation of resistance with
temperature, measured at the two gate voltages indicated by arrows in the main panel. Figure
reproduced with permission from [38]. Copyright, American Physical Society (2001).

systems [38–40, 98, 99]. The key observation in these studies is illustrated in figure 32, in the
main panel of which we show the gate-voltage dependent variation of the resistance, measured
in a split-gate quantum-dot array at two different temperatures. As we have discussed already,
the oscillations in the low temperature curve result as the gate-voltage variation sweeps the
discrete energy states of the open structure past the Fermi level. In the inset to figure 32, we show
the temperature-dependent variation of the resistance, obtained by setting the gate voltage to
correspond to a local maximum or minimum in the low-temperature data (as indicated by the
arrows in the main panel). The data sets in this inset show two distinct regimes of temperature-
dependent behaviour, which have been found to be quite generic to all local maxima and minima
in the low-temperature conductance. First, we note that both data sets show an initial increase
in resistance, as the temperature is lowered to around a degree kelvin. At lower temperatures
than this, however, a crossover to a logarithmic variation occurs, the sign of which is opposite
for the local resistance minimum and maximum. In this sense, the data of figure 32 appear
to show evidence for a metal–insulator transition, which occurs at temperatures where the
discrete level spectrum of the dot should be resolved.

Based on studies of the temperature-dependent behaviour in several different devices, we
have suggested that the initial increase of the dot resistance with decreasing temperature is
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Figure 33. Measured variation of resistance with temperature in a split-gate quantum-dot array.
The dashed lines are fits to the form of equation (10) while the dotted line area fits to equation (10)
with an additional log term added. Figure adapted with permission from [40]. Copyright, American
Institute of Physics (2002).

fitted by the following form [99]:

G ∝ �G exp

[
−

(
T0

T

)p]
. (10)

In figure 33, fits to the form of equation (10) have been performed for a set of metallic
and insulating points (see the dashed lines). At least in the temperature range of a few
degrees kelvin, the observed variation of the resistance is well described by equation (10).
Exponential variations of the form of equation (10) are well known from studies of the metal–
insulator transition in two-dimensional systems (for a recent review, see [100]), in which
they are usually associated with a transport process that involves the excitation of carriers
across some characteristic energy gap (kBT0). One feature of the exponential dependence
that should be noted here, is that it occurs over the same range of temperature for which the
conductance fluctuations become observable in the magneto–resistance (see, e.g. figure 5).
Since the fluctuations themselves represent a signature of the discrete density of states of
the dots, we have previously suggested that the exponential resistance variation of equation
(10) is associated with a transition from thermally broadened, to energetically resolved, dot
levels [39]. The suggestion is that, as the temperature is lowered and these levels become
resolved, transport requires the excitation of carriers across an associated energy gap. At least
consistent with this, typical values for the activation temperature T0 are found to be of order a
few degrees kelvin, which seems quite reasonable given the typical level splitting expected in
these dots [99].

As the temperature is lowered below a degree kelvin, an additional contribution to the
resistance emerges, which, as we show in figures 32 and 33, varies logarithmically with
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temperature. For a quantitative analysis of this dependence, we write the variation of the
conductance at low-temperatures as G ∝ γ ln(T ). From studies of the temperature dependence
of the resistance of numerous metallic and insulating states, we have found the magnitude ofγ to
be essentially the same in both the metallic and the insulating regimes (see the inset of figure 34),
and to be relatively insensitive to the average conductance (i.e. the gate voltage). We have found
evidence for a well-defined scaling of γ with dot size, however, which we illustrate in figure 34.
In this figure, we plot the average values of γ , obtained from measurements made at more
than fifty different gate voltages in three different structures, as a function of inverse dot size.
The additional point, at the origin of this figure, was obtained from measurements performed
on a structure with its gates held grounded, in which case the relevant electron system is the
heterojunction 2DEG. This situation essentially corresponds to the limit of infinite dot size,
and in this case we find no evidence for a logarithmic variation [38, 99]. For the range of dot
sizes considered here, the scaling in figure 34 appears to correspond to an inverse dependence
on dot size.

A clue as to the origin of the logarithmic term is provided by its insensitivity to the
application of moderate magnetic fields. This property is apparent in figure 34, where we
use the open and filled square symbols to represent the average values of γ , determined
from temperature-dependent studies in the presence of a static magnetic field of 0.1 T. The
magnetic field was applied perpendicular to the plane of the 2DEG, and should be sufficiently
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large to break electron time-reversal symmetry. In spite of this, however, the data points
plotted in figure 34 show that, at least within our experimental accuracy, the value of γ is not
affected by the breaking of this symmetry. Such invariance is reminiscent of the behaviour
found in studies of disordered films and wires, in which the conductance corrections due
to electron interactions are known to be insensitive to the presence of symmetry-breaking
magnetic fields (for an extensive review, see [101]). In fact, we have suggested that the size-
dependent scaling of the logarithmic term in figure 34 is consistent with an effect in which
the boundary interactions of the electrons act to amplify their mutual repulsion. While in an
unconfined system the mutual repulsion between any two electrons will tend to drive them
apart from each other, in a mesoscopic structure the carriers are reflected at the confining
boundaries and are forced to interact more strongly with each other. This boundary interaction
should become more important as the system size is reduced, and we expect that its relative
influence should scale in inverse proportion to the perimeter of the structure, which is actually
consistent with the scaling behaviour found in figure 34.

4.2.2. Theoretical modelling. The suggestion of the experimental studies in section 4.2.1 is
that the additional, logarithmic, term in the resistance arises from confinement-enhanced of
the electron–electron interaction [38]. For this reason, we have formulated [40, 102] a many-
body description of transport in open dots that is based on the idea of the Anderson system,
in which a single impurity level with an on-site electron–electron interaction is coupled to a
one-dimensional lead [103–107]. In our case, the single impurity is interpreted as the quantum
dot, which is coupled to two quantum-point-contact leads. While the detailed formation of
this model is described in [102], we obtain a many-body model for the interacting open system
by starting from the single-particle eigenbasis of the integral dot/lead system, assuming just
one lateral mode. The propagating one-dimensional eigenstates of this system are identified
by their wavenumber (k) in the point-contacts. At certain energies, we have seen (figure 8)
that the transmission of this mode can exhibit a Fano-type resonance, reflecting the formation
of a quasi-bound state, as we have discussed. In this situation, we assume that the resulting
effective-interaction matrix elements will also exhibit a resonance and the model Hamiltonian
which should describe this interaction for one mode propagating through a single open dot
may be written as [102]:

Ĥ = −β


∑

k,σ

(εkσ − µk)c
+
kσ ckσ +

1

2

∑
(kσ ) 	=(k′σ ′)

V(kσ)(k′σ ′)c
+
kσ ckσ c+

k′σ ′ck′σ ′


 , (11)

where β = 1/kBT , µk is the electrochemical potential associated with the mode with
wavenumber k, σ denotes the usual spin index, c+

kσ /ckσ are the usual creation/annihilation
operators, and εkσ denotes the single-particle dispersion relation. The applied voltage
between the injecting electron reservoirs corresponds to the difference in chemical potentials,
µk>0 − µk<0. For the effective-interaction matrix that enters the Hamiltonian, we employ the
following peaked expression in the vicinity of a resonance (E0):

V(kσ)(k′σ ′) ∝ (U − δσσ ′U ex)
�2

(εk − E0)2 + �2

�2

(ε′
k − E0)2 + �2

. (12)

Here, U and U ex are the Hartree and exchange terms, respectively, and 2� denotes the total
width of the interaction resonance, corresponding to the lifetime of the resonantly trapped
charge. Note here that screening within any particular mode is included explicitly in this
many-body Hamiltonian, whereas screening effects arising from propagating background
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modes, and the environment, are assumed to be contained within the effective-interaction
matrix V .

To calculate transport properties from this model, we consider the diagonal
non-equilibrium (due the non-constant chemical potential) many-body density-matrix.
For numerical reasons, the continuum of k-states is discretized in our simulations, and we
further employ a mean-field approach for the calculation of occupation numbers for state-
numbers larger than 16 (The discretization in k-space must be chosen such that the resulting
energy-spacing is small compared to kBT [102]). The current flowing through the system
(and hence the conductance) can then be expressed in terms of the single-particle transmission
probability (with its Fano-type resonance) and the occupation numbers [102]. In the inset
to figure 35, we show the typical dependence of the conductance correction due to the
interaction (assuming unity transmission) with varying chemical potential and temperature.
The conductance valley, apparent in this figure, can be understood as arising from a depletion
of current-carrying k-states at energies below that at which the peaked interaction occurs.
After the interaction has been overcome by the chemical potential, an enhanced density
of states contributes to the current, and a conductance peak now results. A systematic
analysis [102] leads us to define the characteristic energy scale kBT ∗

G,R = αG,R(�V state
tot )0.5,

with fitting parameters αG ≈ 0.55 and αR ≈ 0.31 for the conductance and resistance
maxima, respectively. V state

tot denotes the normalized interaction energy per state, and we
note that the temperature T ∗

G,R has a form reminiscent of an effective Kondo temperature.
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At high-temperatures (i.e. when T � T ∗
G,R), we find a modified Boltzmann law for the scaling

of the corrections to the local conductance and resistance peaks:

Gcorr
peak ∝ exp

[(
T ∗

G

T

)2
]

, Rcorr
peak ∝ exp

[(
T ∗

R

T

)2
]

. (13)

In the limited temperature range near T ≈ T ∗
G,R , however, a conductance variation close to

ln T is found, similar to the behaviour found in experiment.
To compare the predictions of this peaked-interaction model with experiment, we show

the results of a more realistic simulation in the main panel of figure 35, which now includes
the Fano-type resonance (figure 8) in the single-particle transmission probability. Here, we
have taken � = 0.02 meV, U = 0.125 meV, and U ex = 0.5U , a parameter choice which
yields V state

tot ≈ 0.010 meV, T ∗
G ≈ 95 mK and T ∗

R ≈ 53 mK. We have also assumed a Fano-like
transmission probability with a peak at Ep = �, a zero at E0 = 0, a total amplitude prefactor
of 0.5, and a background transmission of 0.5. Furthermore, we have assumed that we have one
non-resonant background mode (with a conductance of 2e2/h). The dotted curves in figure 34
show the variation of the peak- and valley-resistance values as a function of the temperature,
which were computed without the inclusion of any interaction terms (i.e. this figure shows the
temperature behaviour due to the single-particle Fano-resonance of the mode). The solid lines
in the figure correspond to the situation where the peaked interaction term has been included
in the simulation. Clearly, the interaction yields an increased fluctuation amplitude, compared
to the single-particle behaviour. In the limited temperature range close to T ∗

G,R , one can see a
log-like correction due to the peaked interaction, as a first-order correction beyond the single-
particle case. The qualitative similarity with the experimental results of figure 33 is suggestive,
and a further interesting observation is that the interaction corrections to the resistance valley
(i.e. conduction peak) onset at higher temperatures than for the resistance peak, which can
also be seen in the experiment. The agreement between experiment and theory is by no
means complete, however. While, for ease of implementation [102], we have investigated the
behaviour for a single propagating mode, in experiment one typically deals with structures in
which many propagating modes, and temperature-dependent dephasing effects, are present.
To conclusively associate the features observed in experiment with many-body effects, it will
therefore be necessary to extend this model to account for these differences. This having been
said, however, we are encouraged by the fact that our rather simple model does indeed yield
interaction-induced corrections to the conductance of open dots.

5. Conclusions

In this review, we have seen that the study of electron transport in open quantum dots yields a
rich variety of behaviour, an understanding of which requires a proper treatment of the wave-
mechanical properties of the electron. At the same time, we have also seen that these structures
provide an ideal system for investigating the semiclassical description of quantum systems.
The starting point for the understanding of the transport properties of these devices is the non-
uniform broadening of their energy levels, which is generated when the dot is opened to its
reservoirs by means of one-dimensional leads. Due to their weak overlap with the leads, a small
subset of the closed-dot states develop only a weak broadening when the dot is opened, while
the majority of states are broadened beyond recognition. By applying an external magnetic
field, or by varying gate voltage and changing the size of the dot, the discrete states can be swept
past the Fermi level, giving rise to an associated modulation of the conductance that is observed
in experiment at sufficiently low temperatures. A characteristic feature of those eigenfunctions
that persist when the dot is opened, is that they tend to be scarred by semiclassical orbits that
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buildup probability in the wavefunction at regions located away from the leads. The scarring
orbits are typically inaccessible to classical particles injected into the quantum dot, and we
have provided evidence that these orbits are accessed by the quantum-mechanical process
known as dynamical tunnelling. An important property of the scars is that they are found to
recur regularly as the gate voltage or magnetic field is varied, and this property is understood
to follow from quantization of the associated semiclassical orbits. At the same time, we have
seen that the scars may equivalently be viewed as analogous to standing-wave modes of the
electron cavity, which are excited at specific magnetic fields, or gate voltages, when electron
waves are injected into the dot. Support for this notion is provided by the striking similarities
revealed in analogue studies of the microwave-transmission properties of macroscopic cavity
resonators.

The description of transport we have developed here is quite distinct from that which has
gained wide acceptance in the literature, where it is typical to assume that the classical dynamics
of electrons in the dots is fully chaotic (hyperbolic). While the advantage of such an assumption
is that it reduces the semiclassical analysis of transport to an elegant analytical form, it should
be emphasized that such convenience is achieved at the cost of a realistic physical description.
In particular, we have seen here, and other authors have shown [55–58], that the classical
dynamics of these dots is typically mixed, rather than fully chaotic. A characteristic feature
of the mixed phase space is the presence of well-defined KAM islands, which correspond
to periodic orbits separated from the chaotic sea by classically inaccessible regions of phase
space. In this review, we have provided strong evidence that the transport properties of these
dots can be dominated by the dynamical tunnelling of electrons onto the KAM islands. It is
important to emphasize that no such behaviour is expected in fully chaotic systems, in which
all points in phase space are classically accessible. In spite of some widely referenced works,
in which differences in the electrical properties were argued to arise for regular and chaotic
cavities [77, 78], it is our standpoint that, at least under typical experimental conditions, it
is impossible to realize fully chaotic dots. One widely studied indicator of the dynamics is
the zero-field peak in the magneto–resistance, which has been ascribed to a weak-localization
effect [108]. The lineshape of this peak is predicted to be different for chaotic and regular
cavities, and experimental support of these ideas was argued for in [78]. In numerical studies,
however, we have found that the lineshape of this peak can have little to do with the underlying
classical dynamics [109,110], and our basic viewpoint is that the transport properties of these
dots are, in fact, dominated by their regular orbits.

While strong support for the role of dynamical tunnelling in transport has been provided
here, the detailed mechanism that gives rise to this effect remains to be determined. In recent
studies of this effect in cold-atom systems, the tunnelling between different KAM islands was
argued to be mediated by the presence of the chaotic regions of phase space in which the islands
are embedded [65]. It is not clear, however, if such chaos-assisted tunnelling is relevant here,
where the strong diffraction of electrons, that is generated as they are injected into the dot,
must be taken into account [48]. The role of such diffraction effects has also been considered
by other authors [111], and an important task in future work will be to develop a description
of transport that properly accounts for the dynamical tunnelling.

While the split-gate dots on which we have focused are characterized by the presence
of soft walls, it should be noted that our conclusions are not restricted to such structures.
In fact, similar behaviour to that discussed here has also been found in numerical studies
of hard-walled dots [41, 47, 48], and in microwave cavities [15], which may essentially
be viewed as hard-walled due to the short skin depth at microwave frequencies. Regular
conductance oscillations, with similar characteristics to those which we have discussed, have
also been found in experimental investigations of etched dots [112, 113], which are expected
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to exhibit much harder walls. These observations demonstrate that the key requirement for
the occurrence of dynamical tunnelling is the presence of a dot geometry that gives rise to
classically mixed dynamics. In this sense, it is not surprising that our observations should
turn out to be so general, since mixed systems tend to be the rule in nature, rather than the
exception.

In much of our discussion, we have essentially relied upon a single-particle treatment of
transport, which neglects the influence of many-body interactions (although we have included
self-consistency in our calculations of realistic device profiles). In spite of this, we have seen
that we have been able to account successfully for many details of the transport in the open
dots. At the lowest experimental temperatures, however, we have observed a logarithmic
correction to the conductance which we have suggested is associated with the influence of
electron interactions. The magnitude of this term is insensitive to the application of modest
magnetic fields, and its amplitude increases inversely with dot size. In an attempt to account for
this behaviour, we have developed a many-body model of transport, based on the premise that
the Coulomb interaction can be peaked at certain energies, which correspond to the formation
of the scarred wavefunction states. While this model requires further refinement, it does at
least provide evidence for corrections to the conductance of open dots, arising from many-body
interactions. In this sense, the study of dynamical tunnelling in mesoscopic structures offers
the potential of observing new phenomena, associated with the many-body interactions that
arise during the tunnelling. We have considered, for example, the possibility that the dynamical
tunnelling might give rise to some sort of Kondo effect [114]. Quite generally, an important
requirement for observation of the Kondo effect is the presence of a localized spin that is able
to interact with a reservoir of conducting electrons. In the particular system of interest here,
we have seen that electrons may tunnel into isolated orbits, where they remain trapped for a
very long time before ultimately escaping from the dot. These orbits may therefore be viewed
as the analogue of the localized charge in the classic Kondo effect, and may interact with other
electrons that are more freely transmitted through the dot. Indeed, the logarithmic variation
that we observe, of the dot conductance with temperature, is strikingly reminiscent of that
found in the Kondo effect. Since Kondo physics has recently been proposed as the origin of
the so-called ‘0.7 structure’ in quantum point contacts [115, 116], it only seems reasonable to
also consider its possible manifestations in open dots.
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[15] Kim Y-H, Barth M, Stöckmann H-J and Bird J P 2002 Phys. Rev. B 65 165317
[16] Evans D V and Porter R 1999 J. Eng. Math. 35 149
[17] Chen Y F, Huang K F and Lan Y P 2002 Phys. Rev. E 66 046215
[18] Bird J P 1999 J. Phys.: Condens. Matter 11 R413
[19] Thornton T J, Pepper M, Ahmed H, Andrews D and Davies G J 1986 Phys. Rev. Lett. 56 1198
[20] Nixon J A and Davies J H 1990 Phys. Rev. B 41 7929
[21] Stopa M 1996 Phys. Rev. B 53 9595
[22] Vasileska D, Wybourne M N, Goodnick S M and Gunther A D 1998 Semicond. Sci. Technol. 13 A37
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[84] Richter A 1999 Emerging applications of number theory The IMA Volumes in Mathematics and its Applications

vol 109, ed D A Hejhal (New York: Springer) pp 479–523
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