Physical Therapy in Sport 41 (2020) 43—48

journal homepage: www.elsevier.com/ptsp

Contents lists available at ScienceDirect

Physical Therapy in Sport

Physical
Therapy in

\\ Sport

Commentary

Injury prediction as a non-linear system

Benjamin D. Stern *, Eric J. Hegedus °, Ying-Cheng Lai ¢

@ Department of Outpatient Rehabilitation, HonorHealth, Scottsdale, AZ, USA
b Department of Physical Therapy, High Point University, High Point, NC, USA

Check for
updates

€ School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

ARTICLE INFO

Article history:

Received 25 September 2019
Received in revised form

30 October 2019

Accepted 31 October 2019

1. Background- The injury prediction debate

The purpose of screening in sports is to examine large pop-
ulations of asymptomatic individuals aiming to predict who is at
greatest risk of sustaining an injury. Ideally, once at-risk athletes are
identified, scientists, clinicians, and coaches would address vari-
ables associated with risk by using behavior modification, changing
training regime, or improving movement strategies (mitigate risk).
This approach is logical and would be of great benefit to active
individuals everywhere, but sports scientists cannot agree on
whether it is possible.

Some sports scientists have advocated the use of individual tests
and measures that are associated with injury to stratify risk based
on linear models and multiple regression methodology (Freckleton
& Pizzari, 2013; Hewett, 2016). Critics of this approach have
countered that no single test or measure nor any combination
thereof has demonstrated strong enough sensitivity and specificity
to predict injury and that, therefore, risk screening (high sensi-
tivity) and injury prediction (high specificity) should be abandoned
in favor of placing all players on every team on an injury prevention
program (Bahr, 2016, 2016b). Still others have begun to wonder
whether injury screening and prediction are too complex for the
linear models that have been used in the past (van Dyk & Clarsen,
2017). It is also possible that a recursive model employing ongoing,
frequent monitoring of athletes may address some of these
shortcomings.
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In 2016, Bittencourt et al. (Bittencourt et al., 2016) advanced
thinking in this area by recommending more frequent screening as
well as proposing that injury might be predicted by “a complex
interaction of a web of determinants”. Germaine to this concept is
that resistance to injury is nonlinear, dynamic, and composed of
interdependent factors. We are struck at the similarity between
prediction of injury and predicting wildly complex events such as
the path of hurricanes (Lorenz, 1963; Wang, Lai, & Grebogi, 2016).
Although marked improvements have occurred in recent years, the
prediction of the path of a hurricane is an imperfect science, but
useful enough to guide critical decisions and give estimates.

The purpose of this viewpoint is to propose and explain the
hypothesis that an athlete’s resistance to injury is a nonlinear, dy-
namic system. As such, individual resistance to injury should not be
viewed as a steady state, an inherent assumption in any pre-season
testing model. We propose that, as with the tracking of a volatile
weather pattern like a hurricane, frequent sampling of variables
through athlete testing is a prerequisite to understanding the
behavior of the human system and to detecting when there is a
change in the resistance of the system to injury. Moreover, better
detection of a change in the system could lead to a better under-
standing of which athlete is at a greater risk for injury-paramount
in order to efficiently target preventative interventions.

2. Athletes, like hurricanes are nonlinear, dynamic systems

Hurricanes and athletes are both nonlinear dynamic systems.
The web of determinants for a hurricane includes wind speed, wind
direction, humidity, and sea surface temperature, among others
(Brennan & Majumdar, 2011). Because of the continuous-time
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nature of the system, it is necessary to collect data as frequently as
possible. In fact, existing data-based methods to analyze nonlinear
dynamical systems all require continuously sampled time series
data to enable the intrinsic properties of the system to be deter-
mined with confidence. Hurricane strength and path changes over
time based on changes to the web of determinants and the factors
acting on the system. The difference between the actual position of
a hurricane and one predicted 48 hours in advance has improved
from 450 nautical miles in the 1970’s to less than 100 nautical miles
today (Lewis, 2014). Early forecasts relied on patterns found in
older data. Over time, in addition to improving technology
(computing power, data from satellites and hurricane hunter
aircraft, etc.), meteorologists have incorporated new, dynamic
models which rely on increasingly accurate measurements of cur-
rent conditions (Brennan & Majumdar, 2011).

Using dynamic models, powerful computers process the over 40
million observations (determinants) which are collected multiple
times daily to update parameters and generate deterministic and
ensemble 10- and 15-day forecasts respectively (Magnusson, Bidlot,
Bonavita, & etal, 2018). The ensemble includes 50 forecasts gener-
ated by slightly varying the measured conditions and parameters
obtained from the initial observations. Compare this process and
technology with the current state of the art of athlete injury pre-
diction where, for example, a single leg squat is performed pre-
season and we expect the results to tell us who will be injured
during the season. This common model used in athletics frequently
and globally is far less than dynamic.

With regard to athletes and injury, we would suggest that the
complex physiological and psychosocial human system has
distinctly separate coexisting states: (1) a healthy state and (2) an
injured state. Factors that push an athlete toward either of the two
states are represented by an interdependent web of determinants
(independent variables in the linear model) which change contin-
uously affecting the system as a whole as well as the relationships
between the determinants themselves. The dynamics are nonlinear
and small differences in the initial measurements of determinants
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can evolve exponentially over time. For example, an athlete quality
of life self-report outcome may show little difference between
players in the pre-season but show vast differences 2 months later
based on life events (positive or negative) and athlete ability to
cope with negative events. Each athlete’s determinants are exposed
to two competing forces: stress (destabilizing) input (ex: death in
the family) and accommodative (stabilizing) input (ex; grief
counseling). The web of determinants flows between these two
paths continuously as the athlete balances stress and accommo-
dation, nudging the athlete toward or away from injury much like a
hurricane waffles on its path through the ocean. We would suggest
that the determinants in this system are variable (exceptions might
be BMI in a mature athlete) and that the system itself is so dynamic
and irregular that hoping to capture the athlete’s risk of injury by
some pre-season test is folly.

A simple example involving a recreational student athlete may
better elucidate these thoughts as we can demonstrate great
change in a system of low resilience (Fig. 1). In our example, the
student, who is in fair physical condition, decides to train for a first
marathon. Fig. 1a represents the student at baseline (the large
sphere represents the athlete and the smaller spheres represent
just a small sample from a vast web of determinants which may
include, for example, genetics, hormonal factors, personality type,
load and biomechanics. Not knowing how to train, he runs every
day the first week for a total of 40 miles so load increases too
quickly. A few weeks later, the student is training through medial
tibial pain, has increased his mileage, and has entered finals week
so sleep is less, stress is more, coping skills are challenged, and
quality of life decreases (Fig. 1b). As an aside, at this point,
depending on the sensitivity of the test or tests, some might
conclude the athlete is at risk for injury while others might still
conclude this athlete is at low or no risk for injury. Keep in mind,
the athlete is still in the healthy state (depending on the definition
of injury), has pain, but is still in the transitional zone between
health and injury. Our student is now vulnerable, running in pain,
prone to more stress input (concurrently the student fails two

Dangerous

Injury valley
—_—

Fig. 1a. Determinants of injury in athlete at steady-state or baseline.
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academic examinations) and once he passes the tipping point,
change is unavoidable (Fig. 1c). Perhaps, he can be saved by more
accommodative input (student decides that the marathon is not for
him or the 8 weeks of hip strengthening he has been doing im-
proves his ground reaction force or movement pattern) (Fig. 1d).
Throughout this scenario, the system changes but so do the re-
lationships among the variables or determinants within the system.
This model allows the athlete to be observed and examined as a
fluid, dynamic system.

3. Is there any evidence resistance to injury is a dynamic
system?

There is some support for viewing the athlete’s resistance to
injury as a dynamic system. Strength, power, and markers of muscle
damage can vary dramatically throughout a season (Kraemer,
Looney, Martin, & etal, 2013; McMaster, Gill, Cronin, & McGuigan,
2013). Physiological components of human performance can vary
over the course of a single day (Ammar, Chtourou, & Souissi, 2017;
Atkinson & Reilly, 1996; Kafkas, Taskiran, Sahin Kafkas, & etal,
2016). There is inherent uncertainty of the athlete’s condition in
the time period adjacent to and during exposure to physical ac-
tivity. By monitoring intensity and duration within 30 minutes of
each training session and match, Gabbett and colleagues identified
a relationship between spikes in training load and injury (Gabbett,
2004). Thus, some factors associated with injury behave deter-
ministically or predictably over short periods of time. In response to
usual daily experiences (training, sleep, stress, illness, etc.), an in-
dividual’s physiological and psychosocial states are in constant flux
(Ammar et al., 2017; Elkington, Cassar, Nelson, & Levinger, 2017;
Finger et al., 2015; Kraemer et al., 2013). The way that most injury
prediction studies are conducted is, unfortunately, not valuable in a
dynamic system because these studies don’t tell us enough about
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how the system behaves over time.

4. Suggested changes in injury risk assessment

Studies examining the predictive value of various tests and
measures on injury risk generally collect data from the screen just
prior to the start of the sports season and injury data is then
collated and analyzed at some point after the season (Hegedus,
McDonough, & Bleakley, 2016; van Dyk, Bahr, Whiteley, & etal,
2016; Warren, Smith, & Chimera, 2015). Upon analyzing the data,
positive or negative associations between injuries and the
screening results are assumed. However, the time interval between
initial measurements and the actual injury often leaves a period of
weeks to months during which the factors contributing to injury
may change or evolve for any number of reasons. Recency of data
matters (Chen et al., 2016, 2017; Leutbecher & Palmer, 2008;
Palmer, 1993). If the athlete is a fluid, dynamic system then the
analogy of the hurricane is appropriate and collecting data more
frequently as in hurricane path prediction is critical. Just as hurri-
cane tracking has improved with advances in technology, we may
construct new dynamic models to predict injury in athletes using
increasingly accurate, continuous measurement of current condi-
tions (Fig. 2). Wearable technology like heart rate monitors, inertial
sensors and global positioning systems (GPS) are making real-time,
continuous data more accessible. However, for some, cost is a
limitation. In those cases where lower technology assessment tools
are the only option, not only would we recommend sampling more
frequently but also we would advocate for a more complete sam-
pling model that captures more of the possible web of de-
terminants. Some of these determinants cannot be changed by
interventions but are still valuable like genetic predisposition, age,
past injury, and gender. Many other determinants can be assessed
and altered and we would recommend the following as examples:

Athlete under stress: increased stress
input; running further; sleeping less;
coping skills are suffering and load is
increasing too rapidly

Injury valley
_—

Fig. 1b. Determinants of injury in an athlete under stress and near the tipping point.
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Athlete becomes injured: stress input
continues to grow; running in pain;
movement strategy is changing for the
worse; load continues to rise; coping
skills are overmatched; self-efficacy
suffers

ovemen
strategy

Dangerous
point

Healthy valley Injury valley
— ——

Fig. 1c. Determinants of injury in an athlete who has crossed the boundary and transitioned from a healthy state to an injured state.

Athlete pulled back from the brink of
injury: accommodative input
outweighs stress input; load
decreases, strength increases;
healthy movement pattern restored;
self-efficacy increases

Dangerous
point

Healthy valley Injury valley
— [ ——

Fig. 1d. Determinants of injury in athlete pulled back from the brink of injury.

1. Self-report measures that examine life stress, anxiety, and 4. Beighton hypermobility testing

coping skills 5. Physical Performance tests of stability, power and motor control
2. Sleep quality assessment
3. Nutrition log This list is not meant to be exhaustive but instead, to serve as an
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Tipping Point

Injury State

Healthy State

3 Day Forecast

2 Day Forecast

1 Day Forecast

Tipping Point

Injury State

Fig. 2. The system underlying the occurrences of non-contact injuries evolves continuously and frequent collection of data allows us to monitor the evolution or changes in the
system over time. The further into the future we attempt to forecast the less confidence we have in our forecast.

example of affordable sampling from multiple domains that would
still be time efficient.

In sum, screening can improve allocation of resources, stratifi-
cation of patients by risk and inform decision making. Results assist
with prediction about the athlete’s current state, but system
properties limit forecasting far in the future with any degree of
accuracy. Minor changes may result in profound differences over
time which influence the ensemble of possible scenarios (Ruelle &
Takens, 1971). Like improving prediction of a wildly uncertain
hurricane path, we may improve injury prediction by viewing
athletes and their resistance to injury as dynamic systems. Viewing
athletes and injury risk through this lens will lead to improved
sampling techniques and a better understanding of the relationship
of injury variables to each other and hopefully, to keeping more
athletes from the tipping point.

5. Key points

o Athletes and resistance to injury, like hurricanes, represent a
dynamic system.

e Prediction of injury methodology must improve if we are to
capture meaningful relationships among variables and between
variables and injury in a non-linear system, that evolves
continuously over time.

e More frequent and a broader sampling of the athlete’s web of
injury determinants is required if we are to predict and modify
injury risk.
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