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Localized surface plasmon and Klein tunneling resonances are two phenomena that were previously thought
to be unrelated, where the former plays an important role in subwavelength optics while the latter is fundamental
to relativistic quantum mechanics and physics of Dirac materials. We develop a rigorous theory for spin-1 Dirac-
Weyl particles, which establishes a striking analogy between the two phenomena and unveils a deep connection
between the distinct physical contexts, paving the way for gate-controlled surface plasmon mimetic electronics as
well as for realizing localized spoof plasmons in a scope wider than previously thought. A possible experimental
scheme is articulated.
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I. INTRODUCTION

Electronic and optical waves share a plethora of phenom-
ena such as interference, diffraction, and resonances. The
analogy extends to the classical regime where electron trajec-
tories obeying the principle of least actions correspond to rays
in geometrical optics governed by the principle of least time.
Exploiting the close analogy between electronics and optics
has led to breakthroughs such as photonic crystals for control-
ling light and the invention of the electron microscope [1–3].
At a fundamental level, the Maxwell’s equations can be recast
into a matrix wave equation of Hamiltonian form involving
spin-1 operators, which resembles the Dirac equation and
exposes the quantum spin nature of light [4–6]. On the spin
degree of freedom, an analogy exists between propagating
surface optical modes at a metal-vacuum interface and the sur-
face electronic states in topological insulators, as predicted by
the Dirac equation with a position-dependent, sign-changing
mass [7,8]. Recent studies of this analogy shed light on the
topological origin and properties of surface Maxwell waves in
continuous media [9–12] and other classical waves or collec-
tive excitations in different contexts of physics [13,14].

Recent years have witnessed a growing interest in explor-
ing and exploiting the interplay between optical phenomena
of light and electronic behaviors in condensed matter sys-
tems based on the picture of quasiparticles. For example,
in graphene, topological insulators, and Weyl semimetals,
electrons can behave as massless particles obeying a linear
energy-momentum dispersion relation and are thus reminis-
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cent of photons. In Dirac material systems, demonstrated
optical-like phenomena include the electronic analogs of
Veselago lens with Klein tunneling-enabled high transparency
[15], caustics [16], Mie scattering [17,18], the quantum Goos-
Hänchen effect [19], and the Imbert-Fedorov shift [20]. With
the principles of optics, it is possible to realize highly tunable
electron optics elements with Dirac fermions for solid-state
device applications such as quantum whispering gallery res-
onators [21], fiberlike electron waveguiding [22,23], and
collimator-reflector based quantum switches [24]. The unique
properties of Dirac cones and pseudospin in turn can be ex-
ploited for applications in electromagnetic wave optics such
as the development of photonic Dirac or Weyl metamaterials
[25,26].

In this paper, we report an analogy between the localized
surface plasmon in optics and Klein scattering resonances in
pseudospin-1 Dirac material systems. In particular, we estab-
lish a quantitative correspondence between the solutions of
pseudospin-1 waves in the setting of potential scattering and
those of Maxwell’s equations for scattering from a metallic
cylinder. We obtain analytic expressions of the analogous
Drude dielectric permittivity as a function of the applied
potential height (instead of the intrinsic material-specific pa-
rameters), rendering it experimentally tunable. In the regime
of small scatterer size, the resonance formulas, line shapes,
spatial patterns of the near-field intensities, and flows or cur-
rents in both cases bear a remarkable similarity. This finding
is surprising because conventionally the Klein effect makes
the scalar potential highly transparent [27,28] and therefore
provides the underlying mechanism for generating a Veselago
lens in Dirac electron optics [29–32]. Our finding offers an
approach to realizing surface plasmon mimetic states of spin-
1 Dirac-Weyl electrons without requiring any signchanging
mass or band-gap opening. It also opens up an avenue to
generate localized spoof plasmons in the photonic setting of
spin-1 Dirac systems through Klein scattering. We also note
that in traditional metamaterial physics, the emergence of
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evanescent surface modes requires a complex wave number
with physical restrictions such as band-gap opening or a neg-
ative permittivity, but our work presents a different route to
such modes: They can arise in gapless pseudospin-1 Dirac ma-
terial systems via the Klein scattering resonance mechanism.

II. RESULTS

A. Proof of the analog between Klein scattering resonances
and localized surface plasmon modes

We derive the analogy by exploiting the general setting of
spin-1 Dirac-Weyl wave scattering from a circular scalar po-
tential barrier [17,33] and light scattering from a long metallic
cylinder with Drude dielectric permittivity in vacuum or in a
host dielectric medium. The analogy is established explicitly
in terms of closed-form resonance formulas.

We first analyze spin-1 Dirac-Weyl wave scattering, which
is governed by the generalized Dirac-Weyl equation

Ĥ�(r) = [−ih̄vF Ŝ · ∇ + V (r)]�(r) = E�(r), (1)

in the position representation, where vF is the Fermi veloc-
ity, � = [ψ1, ψ2, ψ3]T , Ŝ = (Ŝx, Ŝy) are the spin-1 matrices,
and V = V0�(R − r) is a scalar potential of finite range of
radius R. The scattering efficiency, i.e., the ratio of the scat-
tering cross section σ̃ to the geometric cross sections, can be
used to characterize the process. In the subwavelength regime
R � λ/2π , with λ being the wavelength of the incoming
spin-1 Dirac-Weyl particles, we finally obtain the scattering
efficiency (see Appendix A)

�̃scat ≈ π2

4

(εs − 1)2

(εs + 1)2 + (π2ρ4/16)(εs − 1)2
ρ3, (2)

with ρ = kR ≡ ER/(h̄vF ), and

εs = sI sO|(E − V0)/E |, (3)

where the indices sI = sgn(E ) and sO = sgn(E − V0) label
the energy bands inside and outside the potential barrier,
respectively.

In comparison, for scattering of an electromagnetic wave of
transverse magnetic (TM) polarization from a metallic cylin-
der of the same radius R, the scattering efficiency for ρ � 1
is given by [34–36] (Appendix A)

�scat ≈ π2

4

(ε − 1)2

(ε + 1)2 + (π2ρ4/16)(ε − 1)2
ρ3. (4)

In the Drude approximation, the dielectric permittivity is

ε = 1 − ω2
p

ω2 + α2
+ i

α

ω

ω2
p

ω2 + α2
, (5)

where ωp and α are the plasma and collision frequencies,
respectively. Equation (4) characterizes the localized sur-
face plasmon resonance at ε = −1, signifying a sign change
in the dielectric permittivity across the scatterer interface.
Equation (5) gives, in the limit of vanishing collision dissipa-
tion rate α = 0, the surface plasmon resonance frequency as
ω = ωp/

√
2.

We now compare spin-1 Dirac-Weyl wave scattering with
electromagnetic wave scattering. Firstly, Eqs. (2) and (4) re-
veal a perfect analogy, with εs in Eq. (2) regarded as the

effective dielectric permittivity εeff for a spin-1 wave, despite
the difference in the underlying physics. Secondly, Eq. (3)
indicates that a negative value of εs is attained through a
sign change in the band indices sI sO = −1 with the Klein
scattering of particle-antiparticle transmutation across the po-
tential barrier boundary, while that of ε based on Eq. (5)
is responsible for the optical response of metals below the
plasma frequency. The former leads to the resonant energy or
frequency E = V0/2, which is tunable by varying the external
potential height V0, while the latter is limited to the material
specified plasma frequency. For some small scatterer size,
e.g., ρ = 0.1, numerical calculations confirm the similarity
in the line shape (spectrum profile) of the Klein scattering
resonance of spin-1 Dirac-Weyl waves and the well-known
localized surface plasmon resonance in light scattering, as
shown in Figs. 1(a) and 1(b), respectively. From the spatial
patterns of the intensity distributions of the spinor wave func-
tion and magnetic field in the middle (a dipole resonance) and
right (a quadruple resonance) panels, we observe an almost
exact correspondence between the Klein scattering resonance
modes and the excited localized surface plasmon modes.

The physical insights into the scattering efficiency as-
sociated with surface plasmon and its connection to the
three-band Dirac model are as follows. The gapless spin-1
Dirac-Weyl spectrum possesses two linear bands and a flat
band. Recalling that surface plasmon arising at a dielectric-
metal interface can be attributed to the interplay between
the electromagnetic wave and plasma oscillations in the
metal, we have that the two linear bands resemble the con-
ical dispersion of light, while the flat band corresponds to
the dispersionless plasma frequency. The applied scalar po-
tential controls the flat-band position and induces a sign
change in the band index across the potential boundary via
a simultaneous shift in the Dirac point. This plays an anal-
ogous role to that of the required metal element in exciting
localized surface plasmons from light scattering, which de-
termines the plasma frequency and is responsible for the
necessary sign change in the real part of the dielectric
function across the dielectric-metal interface. In particular,
the analogous plasma frequency is given by ω̃p = V0/h̄,
below which (E/h̄ = ω̃ < ω̃p) localized surface-plasmon-
like modes arise from the Klein scattering resonance about
ω̃ = ω̃p/2.

We note that in pseudospin-1 systems, the Berry phase
around the Dirac point is zero or 2π . This is a general
indication of the presence of backscattering and thus an
anti-Klein tunneling behavior. It can be used to understand,
for example, transport in bilayer graphene. The case of a
pseudospin-1 Dirac system is subtle because, when sub-
ject to a one-dimensional scalar potential step, it exhibits
the phenomenon of super-Klein tunneling, i.e., the poten-
tial becomes more transparent than that for pseudospin-1/2
systems. However, backscattering generally arises from the
two-dimensional scalar potential scattering due to the zero or
2π Berry phase argument.

The analogy exemplified in Fig. 1 is not simply another
case of anti-Klein tunneling, but demonstrates the emergence
of peculiar surface modes in the Klein tunneling regime.
It is counterintuitive and requires an understanding beyond
the Berry phase argument, as the presence of backscattering
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FIG. 1. Analogy between surface resonant modes in Klein scattering of a spin-1 Dirac-Weyl wave and surface plasmon modes in optics.
Plotted is the scattering resonance line shape for (a) a massless spin-1 wave and (b) light scattering by a metallic wire with zero collision
dissipation rate α = 0, for scatterer size ρ = 0.1. Right panels show the spatial patterns of the corresponding resonant modes as indicated in
(a) and (b), where ψ2 is the second component of the spin-1 wave function. For light scattering, Hz denotes the magnetic field.

associated with the zero or 2π Berry phase is only marginally
relevant to the occurrence of the surface modes. This is be-
cause the phenomenon does not arise spontaneously in bilayer
graphene where the Berry phase is 2π in the Klein tunneling
regime but requires an external magnetic field or some topo-
logical origin in gapped two-dimensional (2D) Dirac systems.
The contribution of our work is an understanding of such
anti-Klein tunneling surface modes through an analogy with
the well-known localized surface plasmon resonance modes
in optics. In particular, we have analytically demonstrated
the analogy in terms of the closed-form resonance formulas
[Eqs. (2) and (4)] obtained from the paradigmatic settings.
Furthermore, as demonstrated below, revisiting the Hamilto-
nian form of the Maxwell’s equations, we have elucidated
the physical idea underlying the striking analogy between
the Poynting and spin-1 Dirac currents. Importantly, we find
that the close analogy lies in the correspondence of boundary
conditions for Klein tunneling of a spin-1 Dirac wave and
localized surface mode excitations in optics.

B. Dirac currents and Poynting vectors

To further establish the analogy between the two physically
distinct scattering processes, we analyze the underlying flow
patterns for Figs. 1(a) and 1(b) by calculating the currents
of the spin-1 Dirac-Weyl waves and the total Maxwell-
wave-defined Poynting vectors, as shown in Fig. 2. The
resemblance is striking in terms of the phase information
and the topological property of vortices as well as the sad-
dle structure embedded in the flows. (Extended and more
detailed comparisons between the Dirac currents and Poynt-
ing vectors reinforcing the analogy with varying scatterer

size and across a particular resonance are presented in
Appendix B.) Heuristic insights into the correspondence
can be obtained by analyzing the Hamiltonian form of the
Maxwell’s equations. For a monochromatic electromagnetic
wave of frequency ω described by complex electric and
magnetic field amplitudes E(r) = (Ex, Ey, 0) and H (r) =
(0, 0, Hz ), the Maxwell’s equations in an isotropic, lossless,
and homogeneous optical medium characterized by the real-
valued permittivity ε and permeability μ are ∇ × H (r) =
−iεωE(r) and ∇ × E(r) = iμωH (r), which can be expressed
as a matrix equation

1√
2

⎛
⎝ 0 k− 0

k+ 0 k−
0 k+ 0

⎞
⎠ψ = ω

⎛
⎝ε 0 0

0 μ 0
0 0 ε

⎞
⎠ψ, (6)

where k± ≡ kx ± iky and

ψ ≡ [−(Ex − iEy)/
√

2, iHz, (Ex + iEy)/
√

2]T .

Using the transformation

 = �ψ = [φ1, φ2, φ3]T =

⎛
⎜⎝

−√
ε/2(Ex − iEy)

i
√

μHz√
ε/2(Ex + iEy)

⎞
⎟⎠, (7)

with � = diag(
√

ε,
√

μ,
√

ε), we obtain

(με)−1/2Ŝ · k = ω, (8)

where k = (kx, ky ). Interpreting  as the “photon wave func-
tion,” we have the optical counterpart of the local spin-1 Dirac
current as

1/
√

με†Ŝ = 2 Re[E × H∗],
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FIG. 2. Comparison in terms of local spin-1 Dirac currents and
Poynting vectors. (a)–(c) Spatial distributions of the local currents
(black arrowed streamlines) of spin-1 Dirac-Weyl wave scattering
by a scalar potential barrier in the setting of Fig. 1(a). (d)–(f)
The corresponding results for the Poynting vectors (white arrowed
streamlines) and color-coded contour maps of their magnitude
for electromagnetic wave scattering from a small (subwavelength)
metallic cylinder in the setting of Fig. 1(b). A more extensive and
detailed comparison between the Dirac currents and Poynting vectors
is presented in Appendix B.

which is nothing but the exact time-averaged Poynting vector
(energy flux) [37,38]:

〈P〉 = (c/8π )Re[E × H∗].

The remarkable similarity in the spatial patterns of the Dirac
current and the Poynting vector field thus holds at a deeper
level involving sophisticated phase information and topologi-
cal structures. The analogies uncovered in the scattering line
shape, the spatial intensity profile of the resulting resonance
modes, and the flow or current pattern are exact in the sub-
wavelength regime ρ � 1 but tend to break down for ρ > 1.
(A detailed account of the validity and breaking down of
regimes is presented below.)

The key to the common physics underlying the two con-
texts lies in the boundary conditions. In the spin-1 Dirac
system, the wave function is a three-component Dirac-Weyl
spinor  = [φ1, φ2, φ3]T . We find that, crossing a potential
boundary with the outward unit normal ên = (cos θ, sin θ ),
the conservation of the normal component of the spin-1 Dirac

current stipulates that φ2 and (φ1eiθ + φ3e−iθ ) must be con-
tinuous, which implies a discontinuity in (φ1eiθ − φ3e−iθ ).
Likewise, in electromagnetic wave scattering, boundary con-
ditions play an essential role in exciting surface plasmon
modes and generating a surface charge distribution leading to
a discontinuity in the electric field component normal to the
surface and field enhancement near the surface. These features
reflect the bound nature of surface plasmon modes [39]. Using
the recast spinor form of the electromagnetic field [Eq. (7)] in
the tangential-normal coordinates

 = [−
√

ε/2(En − iEt )e
−iθ , i

√
μHz,

√
ε/2(En + iEt )e

iθ ],

we have that the conservation of the spin-1 Dirac current
requires continuity of the tangential field components (Hz, Et )
at the boundary and a discontinuity in the electric field nor-
mal to the boundary (En), which are the boundary conditions
enabling excitations of surface plasmon in optics. This sub-
tle and fundamental connection between scattering of spin-1
Dirac-Weyl waves and light scattering with surface plasmonic
resonance leads to the analogy uncovered in this paper and is
the underlying reason for the striking similarity between the
resonance formula for the Klein scattering efficiency [Eq. (2)]
and that for the localized surface plasmon resonance [Eq. (4)].

A property associated with the excitation of localized
surface plasmons is near-field enhancement from a subwave-
length confinement with quality strongly dependent on the
scatterer geometry [40]. For example, a metallic dimer can
be used to achieve strong field enhancement in the center
of the gap for small separations due to the strong coupling
between the individual plasmons (mode hybridization) [41],
with applications in photovoltaics, enhancement of light-
matter interaction, and miniaturization of optical devices
[42–44]. Can similar features be expected from the Klein
scattering resonances of spin-1 Dirac-Weyl waves? Here, we
consider two common dimer configurations, disk and bowtie
[insets of Figs. 3(a) and 3(b), respectively], and develop an
efficient numerical method to solve the scattering problem
(Appendix C). Analogous to the local electric field enhance-
ment of a metallic dimer [45], we use the square of the first or
third spin-1 Dirac-Weyl wave function component amplitude
at the center of the dimer r0, e.g., |〈r0|ψ1〉|2, as a function of
kR to characterize the near-field intensity enhancement spec-
tra, as shown in Fig. 3. Similar to localized surface plasmons
in optics [45,46], the plasmonic effect associated with the field
enhancement accompanied by a frequency red shift with a de-
crease in the separation d can be seen in Figs. 3(a)–3(c), where
a mimicking bonding dipole type of plasmon hybridization
emerges, as shown in Fig. 3(d).

C. Relation to experiments

We articulate an experimental test of our finding through
a two-dimensional electronic Lieb lattice [47,48]. To validate
and detect the localized plasmon mimetic spin-1 Dirac sur-
face modes, we consider a two-terminal transport system of
a waveguide geometry with a short-range potential barrier
type of scatterer, as sketched in Fig. 4(a). The associated
bulk spin-1 Dirac spectrum is shown in Fig. 4(b). Interfer-
ence between the waveguiding channels and individual cavity
confinement mode would give rise to a dip in the background
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FIG. 3. Field enhancement analog through mode hybridization of coupled Klein scattering. Shown are the scattering resonance spectra
resolved by the near-field intensity at the center of a spin-1 Dirac (a) disk dimer and (b) bowtie dimer for different amounts of gap separation
d [R] (indicated by different colors). (c) Maximum field intensity at the gap center as a function of gap separation. (d) Real-space amplitude
distribution and local Dirac flows at resonances for d = 0.2R.

conductance plateau, as shown in Fig. 4(c) for potential height
V0R/h̄vF = 0.6. Compared with the continuum model based
scattering efficiency plot in Fig. 4(d) for an incident plane
wave, we obtain a good agreement with our theoretical pre-
diction of the dipole-plasmon-like resonance about kR = 0.3
in the Klein scattering and subwavelength (λ ≈ 24R) regime.
The resulting real-space local Dirac current flow [inset of
Fig. 4(c)] can be measured via the state-of-the-art quantum
imaging technique with nitrogen-vacancy center based sen-
sors [49]. We note that the realizations of artificial photonic
and acoustic materials hosting the spin-1 spectrum [50–53]
provide more diverse experimental settings to validate our
findings.

D. Breakdown of the analogy between Dirac spin-1 and surface
plasmon physics beyond the subwavelength regime

For inhomogeneous systems with Klein scattering and
localized surface plasmon, we have demonstrated that the
analogy between Dirac spin-1 and surface plasmon physics is
almost perfect but in the subwavelength regime ρ = kR � 1
(e.g., in optics), where the spatial scale of the scatterer R is
much smaller than the incident wavelength 2π/k (cf. Fig. 2

and Appendix B). (Figure 8 in Appendix B shows that charac-
teristic differences between electromagnetic and spin-1 wave
scattering will emerge when kR increases to move the systems
beyond the subwavelength regime.) The analogy between
Dirac spin-1 and surface plasmon physics breaks down for
kR � 1.

Understanding the conditions under which the analogy
breaks down is particularly relevant from the point of view
of experimental implementation, especially when considering
the effectiveness of the Dirac Hamiltonian in the low-energy
regime. To provide further evidence to support the analogy,
we have carried out computations of an experimentally vi-
able setting of Dirac spin-1 physics: the tight-binding Lieb
lattice. A detailed comparison between the current patterns
from the spin-1 lattice system and continuum model and those
of the Poynting vector from electromagnetic wave scattering
is presented in Fig. 5. It can be seen that the similarities
in the current patterns among the three cases in the sub-
wavelength regime are striking, providing further support
for the uncovered analogy between Dirac spin-1 and surface
plasmon physics. It can also be seen that beyond the subwave-
length regime, small differences violating the analogy begin to
emerge.
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FIG. 4. Validation of spin-1 Dirac physics in an electronic Lieb lattice and signatures in a typical transport measurement. (a) A two-terminal
transport device with an electrostatically gated circular region of radius R placed at the center of an electronic Lieb lattice sheet. (b) Bulk energy
spectra of the lattice. (c) Conductance as a function of the effective size kR of the scatterer. (d) Scattering efficiency vs kR calculated from the
continuum spin-1 Dirac-Weyl model for comparison purposes. The insets of (c) and (d) are spatial patterns of the associated local Dirac current
flows at the resonances indicated. The calculations are based on experimentally feasible system parameter values: a = 2.66 nm, t = 0.1 eV,
and vF = 3.5 × 1014 nm/s.

E. Effect of next-nearest-neighbor hopping process

The analogy or correspondence was established based on
the general continuum spin-1 Dirac model and demonstrated
using lattice models. The validity of the analogy is limited by
how well such a spin-1 Dirac model is realized or simulated in
experimental settings, e.g., electronic or photonic Lieb lattices
or any other relevant synthetic lattices or materials with the
spin-1 Dirac-cone band structure.

In Ref. [47], it was noted that the ratio between the next-
nearest-neighbor hopping and the nearest-neighbor hopping
is t ′/t ∼ 1/3, which is relatively large. We thus calculate the
effect of the next-nearest-neighbor hopping t ′ on the surface
plasmon mode analog via the scalar potential scattering mech-
anism in the Klein tunneling regime. The result is shown in
Fig. 6. It can be seen that for t ′/t = 1/3, the bulk spectrum
flat band curls up beyond the energy scale considered and
the phenomenon disappears. However, this does not mean that
the analogy breaks down, for the following reasons. First, the
analogy or correspondence is established for the spin-1 Dirac
systems. Second, the dramatically deformed flat band makes
the effective low-energy spin-1 Dirac description inaccurate.
When t ′/t is finite and relatively small so that the spin-1
Dirac Hamiltonian approximation holds, the localized surface
plasmon analog is valid. For a perturbed spin-1 Dirac model
incorporating the effect of t ′, a closed-form formula such as
Eq. (2) is not available.

We note that for an experimentally realized photonic Lieb
lattice setting, the next-nearest-neighbor hopping energy is
negligible [51]. In this case, our tight-binding Lieb lattice
based calculations are relevant.

F. Nonexistence of the analogy in spin-1/2 systems

Does the analogy arise in spin-1/2 systems? To address
this question, we note that the analogy involves three key
physical ingredients: (1) Klein tunneling associated with a
sign change in the band index, which is analogous to the sign
change in the real part of the dielectric function associated
with the energy flow across the interface, (2) the presence of a
flat band that plays the role of the dispersionless frequency of
surface plasmon excitation as the result of the interplay with
the linear dispersion of light, and (3) the Dirac current as the
counterpart of the Poynting vector with equivalent boundary
conditions. Spin-1/2 Dirac-cone systems such as graphene do
not meet conditions (2) and (3), so the analogy between Klein
scattering and localized surface plasmon does not arise.

To provide concrete support, we have carried out calcu-
lations for the case of a hexagonal lattice with the gapless
spin-1/2 Dirac cone. The system has the same hexagonal-
shaped Brillouin zone. To provide further support that the
analogy arises for a spin-1 Dirac system, we have also con-
sidered an alternative realization of the spin-1 system (near
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FIG. 5. Comparison of the currents associated with an electromagnetic wave and spin-1 Dirac wave. The top panels show the current
from a tight-binding Lieb lattice system with a gapless spin-1 Dirac-cone type of low-energy bulk spectrum from an experimentally viable
two-terminal setup illustrated in Fig. 4(a), the middle panels display the spin-1 Dirac current in the continuum model, and the bottom panels
demonstrate the Poynting vector associated with electromagnetic wave scattering. The similarities among the three cases in the subwavelength
regime are striking. Beyond the subwavelength regime, small differences violating the analogy begin to emerge.

the zone corner K and K′ points): a generalized dice lattice.
Representative results are presented in Fig. 7, providing fur-
ther support for the analogy and the physical conditions under
which it arises.

We note that for gapless spin-1/2 Dirac-cone systems, it
has been known [30] that Klein tunneling enables an unim-
peded penetration through high potential barriers and thus
makes it impossible to pinch off the conductance or current
effectively. This behavior can be seen from the left panels
of Fig. 7. This “expected” behavior does not arise in spin-1
Dirac systems. The analogy between spin-1 Dirac and surface
plasmon physics that we have uncovered has thus revealed
a different aspect of Klein tunneling physics, due to the co-
existence of a flat band and a Dirac-cone structure that is
characteristic of spin-1 systems.

Generalizing the predicted analogy to other types of
systems with a similar coexistence of Dirac cones and
a flat band, e.g., twisted layered graphene systems [54]
and Dirac-like semimetals with three-component quasipar-
ticles [55,56], remains completely open. Our finding opens
up a new possibility of research for both electronics
and (subwavelength) optics, in accordance with the re-
cent surge of interest in developing Dirac materials beyond

graphene as well as unconventional photonic Dirac-cone
metamaterials.

III. DISCUSSION

We have uncovered a striking analogy between localized
surface plasmon modes in optics and Klein scattering res-
onances of spin-1 Dirac-Weyl waves. Despite the distinct
underlying physics, the Klein scattering resonances mimic
all aspects of the localized surface plasmon modes, indicat-
ing a deep connection between the two contexts. We have
presented a rigorous demonstration of this analogy based on
the Mie scattering theory. At a fundamental level, the finding
reveals a unique aspect of the Klein paradox as a mechanism
for generating evanescent localized surface plasmons. This is
counterintuitive because conventional wisdom stipulates that
Klein tunneling enables an unimpeded transmission through
potential boundaries via nonevanescent waves, implying that
it is not possible to create surface modes through the Klein
tunneling mechanism [21,30,31]. With respect to applica-
tions, the finding has implications in both electronics and
optics with the advent of emerging electronic or photonic
spin-1 Dirac-cone metamaterials. For instance, it opens an
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FIG. 6. Effect of the next-nearest-neighbor hopping t ′ in the
tight-binding Lieb lattice based simulation on the localized surface
mode analog in the Klein tunneling regime. Shown are the modes
for t ′/t = 0 (top left), t ′/t = 0.1 (top middle), and t ′/t = 1/3 (top
right). The bottom panels are the corresponding band diagrams.
Other parameters used are V0/t = 1 and E/t = 0.47 (i.e., E ∼ V0/2,
as predicted by our theory, marked by the horizontal dashed lines in
the bottom panels).

avenue for localized plasmon mimetic nanoelectronics, where
gate-controlled localization or confinement and manipulation
of quasiparticle quantum states are desirable in construct-
ing functional circuitry and quantum computing devices. The
finding enables realization of spoof localized plasmons in
broader contexts than previously thought [46,57,58].

References [4–8] reported the spin aspect of light through
a Dirac- or Weyl-type description. However, our results are
different. In particular, the results in Refs. [4–6] were re-
stricted to a free and homogeneous space in constructing a
proper Dirac-type matrix form of the Maxwell’s equations,
and Refs. [7,8] dealt with spin properties of propagating sur-
face plasmons by drawing an analogy between the plasmonic
states at the vacuum-metal interface and the surface states of
the gapped Dirac spin-1/2 system at the domain wall sepa-
rating regions with a sign-changing Dirac mass. Such Dirac
surface states have actually been known for a long time and
have been well studied using the Dirac equation for massive
spin-1/2 particles [59,60]. Note that both the gapped nature
of the massive Dirac system and the negative permittivity of a
metal enable imaginary wave numbers to emerge and, hence,
evanescent waves to naturally set in.

The analogy that we have uncovered is between the lo-
calized surface plasmon resonance modes (nonpropagating
excitations) and those resulting from Klein scattering physics
in gapless Dirac spin-1 systems, rather than gapped Dirac
spin-1/2 systems. The gapless nature of the Dirac system
leaves no room for imaginary wave numbers and the result-
ing evanescent channels especially in the Klein tunneling
and subwavelength regime, where the picture of ray tracing
based on total internal reflection is not applicable. As a result,

the emergence of localized surface plasmon mimetic surface
Dirac modes via Klein scattering is surprising in terms of the
known Dirac theories on surface states and Klein tunneling.
Counterintuitively, this analogy indicates that it is not nec-
essary that creating evanescentlike surface modes involve a
complex wave number due either to gap opening or to negative
permittivity, as stipulated by the conventional wisdom.

It is worth emphasizing that the analogy uncovered in
this paper creates a route to spoof surface plasmons without
the well-documented need for any metal element or com-
plicated texturing surfaces [46,58,61,62]. It also opens up
the possibility of generating surface plasmon mimetic Dirac
surface modes beyond the known gap-opening scenario in
Dirac material systems as revealed in Ref. [7]. The analogy
is counterintuitive and has unveiled an aspect or twist of the
Klein paradox for spin-1 Dirac particles: It has the hidden
“power” to generate localized surface plasmons. Our finding
thus represents a fundamental contribution to our understand-
ing of the physics of Klein tunneling and surface plasmons.

Another point is that the phenomenon of the field en-
hancement effect associated with localized surface waves on
a spatial scale smaller than the wavelength in spin-1 Dirac
systems arises from the coupled Klein scattering mechanism.
Conventional wisdom in fact stipulates that Klein tunnel-
ing makes the boundary or interface more transparent with
markedly high transmission probabilities passing through a
classically forbidden region via waves that are not of the
evanescent type [30]. This known and conventional feature
of Klein tunneling has been exploited for applications such
as focusing Dirac electron flow analogous to a transparent
lens in classical optics [15]. In a resonator geometry, it is
commonly believed that Klein tunneling is irrelevant to the
surface modes, let alone localized surface plasmons in the
subwavelength regime. Our finding goes beyond the common
beliefs. Our results from the more intricate dimer geome-
tries or structures without the circularly rotational symmetry
(Fig. 3) provide further support for the unconventional anal-
ogy uncovered and have practical implication to simulating
spoof plasmonic molecules with spin-1 Dirac-Weyl waves via
multiple Klein scattering interactions.

Taken together, our finding paves the way for the interplay
between localized surface plasmon subwavelength optics and
Dirac spin-1 physics to mutually benefit both fields, which is
counterintuitive with respect to existing knowledge.
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APPENDIX A: DERIVATIONS OF EQUATIONS (2) AND (4)

For the spin-1 Dirac-Weyl waves, the Mie-type solutions
contain a series of partial scattering coefficients ãl expressed
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FIG. 7. Edge states arising from a hexagonal and a dice lattice. The left panels show the energy spectrum of the hexagonal lattice system
that hosts pseudospin-1/2 quasiparticles. The right panels show the energy spectrum and edge states of the dice lattice consisting of two nested
hexagonal lattices. While both dice and hexagonal lattices possess the same first Brillouin zone, the former has three sublattices and hosts a
low-energy gapless spin-1 Dirac cone near each of the two nonequivalent valleys K and K ′.

in terms of Bessel functions of integer order l:

ãl = − F̃l

F̃l + iG̃l
, (A1)

with

F̃l = Jl (ηρ)J ′
l (ρ) − sI sOJ ′

l (ηρ)Jl (ρ), (A2)

G̃l = Jl (ηρ)Y ′
l (ρ) − sI sOJ ′

l (ηρ)Yl (ρ), (A3)

where the normalized scatterer size is ρ = kR ≡ ER/(h̄vF )
and η ≡ |(E − V0)/E | is a parameter with E being the par-
ticle kinetic energy measured from the Dirac point outside
the scattering potential barrier. The band indices inside and
outside the scatterer are labeled by sI = sgn(E ) and sO =
sgn(E − V0), respectively, and Jl and Yl are the Bessel func-
tions of the first and second kinds, while Z ′

l ≡ dZl (z)/dz for
Zl ∈ {Jl ,Yl}.

By definition, the scattering efficiency is given by

�̃scat ≡ σ̃

2R
= 2

ρ

∞∑
l=−∞

|ãl |2. (A4)

In the regime of small scatterer size ρ � 1 (i.e., the subwave-
length regime R � λ/2π with λ being the wavelength of the
incoming spin-1 Dirac-Weyl particles), we have the leading

terms in the expressions of F̃l and G̃l as

F̃l ≈
{ sI sOη−1

2 ρ + · · · , for l = 0
ηl−1[η−sI sO]

2l!(l−1)!

(
ρ

2

)2l−1 + · · · for l > 0,
(A5)

G̃l ≈
{ 2

πρ
+ · · · for l = 0

ηl−1[η+sI sO]
πρ

+ · · · for l > 0.
(A6)

Keeping the dominant terms up to |l| = 1 for small ρ, we
obtain Eqs. (2) and (3).

We next review the corresponding results on the scatter-
ing of an electromagnetic wave from a metallic cylinder.
Consider an incident monochromatic plane wave of TM po-
larization propagating along the x axis, with the magnetic
field amplitude given by H inc. = ẑH inc.

z = ẑeikx (with the time-
harmonic factor e−iωt dropped). The exact Mie solution of the
Maxwell’s equations gives the partial expansion coefficient as
[34]

al = − Fl

Fl + iGl
, (A7)

with

Fl = √
εJl (

√
ερ)J ′

l (ρ) − J ′
l (

√
ερ)Jl (ρ), (A8)

Gl = √
εJl (

√
ερ)Y ′

l (ρ) − J ′
l (

√
ερ)Yl (ρ), (A9)
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FIG. 8. Comparison of scattering line shape and related spatial patterns of flow or current. Top two rows: calculated scattering spectra
for different scatterer sizes. Third and fourth rows: spatial distributions of the Poynting vector field and Dirac current at the corresponding
parameter values indicated by the arrows in the top two rows. The black arrowed streamlines denote the flows of the Poynting vector or Dirac
current. The color is scaled by magnitude.

where ε = ε′ + iε′′ denotes the relative dielectric permittivity
of the scatterer. It was obtained in previous work [35,36] that
for ρ � 1, the leading terms in the expressions of Fl and Gl

are

Fl ≈
{√

ε(ε−1)
2

(
ρ

2

)3 + · · · for l = 0
(
√

ε)l−1(ε−1)
2l!(l−1)!

(
ρ

2

)2l−1 + · · · for l > 0,
(A10)

Gl ≈
{ 2

√
ε

πρ
+ · · · for l = 0

(
√

ε)l−1(ε+1)
πρ

+ · · · for l > 0.
(A11)

We obtain the scattering efficiency as in Eq. (4).

APPENDIX B: MORE RESULTS ON DIRAC CURRENTS
AND POYNTING VECTORS

We present an extended and more detailed comparison be-
tween the Dirac currents and Poynting vectors to reinforce the

analogy between Dirac spin-1 and surface plasmon physics.
In particular, Figs. 8 and 9 present the comparison results
with varying scatterer size and across a particular resonance,
respectively.

APPENDIX C: MULTIPLE MULTIPOLE EXPANSION
METHOD FOR SOLVING THE SCATTERING OF A SPIN-1

DIRAC-WEYL WAVE FROM A DIMER
OF ARBITRARY SHAPE

The multiple multipole expansion method originated from
optics [63–67] and was adopted for photonic crystal waveg-
uides [68] and more recently to Dirac-Weyl spinor systems
under various circumstances [69–71].

To treat the scattering of a pseudospin-1 Dirac wave
from a complicated coupled structure, we develop a multi-
ple multipole method. To be concrete, we consider a dimer
configuration of potential step of an arbitrary shape. There
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FIG. 9. Comparison of spatial pattern evolution of Poynting vector and Dirac current about a given resonance. Top panel: zoom-in on the
dipole localized surface plasmon resonance (blue) and the first Klein scattering resonance (red) displayed in Fig. 1 of the main text. (a)–(c) show
the spatial profiles of Poynting vector fields corresponding to the scattering states indicated in the top panel. (d)–(f) are for the case of a spin-1
Dirac wave.

are three subregions, denoted as I, II, and III, as shown
in Fig. 10. The generalized Dirac-Weyl equation in each
subregion τ ∈ {I, II, III} is given by

Ŝ · k̂� (τ )(r) = ετ�
(τ )(r), (C1)

where ετ = (E − Vτ )/h̄vF . In the polar coordinates r = (r, θ ),
the spinor cylindrical wave basis of the solutions with angular
momentum l is

�
(τ )
l (r) =

⎛
⎝Bl−1(kτ r)e−iθ

isτ Bl (kτ r)
−Bl+1(kτ r)eiθ

⎞
⎠eilθ , (C2)

where sτ = sgn(E − Vτ ) denotes the pertinent band in-
dex and kτ = |E − Vτ |/h̄vF . Assuming E > 0 and choosing
Bl (kτ r) = H (1)

l (kτ r) (with H (1)
l being the Hankel function of

the first kind), we define the Dirac-type wave functions of
multipoles outside the specific solving region τ and positioned
at rmτ

as

�
(τ )
l

(
dmτ

) = 1√
2

⎛
⎜⎝

H (1)
l−1

(
kτ dmτ

)
e−iθmτ

i
√

2sτ H (1)
l

(
kτ dmτ

)
−H (1)

l+1

(
kτ dmτ

)
eiθmτ

⎞
⎟⎠eilθmτ , (C3)

where τ denotes the complement of τ and dmτ
≡ |dmτ

| =
|r − rmτ

| and θmτ
= Angle(r − rmτ

) with r ∈ τ . Carrying out
multiple multipole expansion for the specific region, we ob-
tain the wave function in region III as
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FIG. 10. Schematic illustration of multiple multipole expansion method. The physical boundary separating regions II and III is denoted as
�L/R, while the multiple multipoles (“fictitious” sources) are placed at rmτ

with τ ∈ {I, II, III}. The sources inside regions II and III (light-blue
triangles) “radiate” pseudospin-1 Dirac wave field �

(I)
l (r − rmII/III ), which is used to determine the wave function in region I. The sources in

domain I (green triangles) generate the fields �
(II)
l (r − rmI ) and �

(III)
l (r − rmI ), which are used to determine the wave functions in regions II

and III, respectively. Boundary conditions are satisfied at the collocation positions on �L/R (indicated by the short magenta lines).

� (III)(r) =
∑
mIII

∑
l

CmIII
l

1√
2

⎛
⎜⎝

H (1)
l−1

(
kIIIdmIII

)
e−iθmIII

i
√

2sIIIH
(1)
l

(
kIIIdmIII

)
−H (1)

l+1

(
kIIIdmIII

)
eiθmIII

⎞
⎟⎠eilθmIII ≡

⎛
⎜⎝

ψ III
1

ψ III
2

ψ III
3

⎞
⎟⎠. (C4)

The wave function in region II is obtained as

� (II)(r) =
∑
mII

∑
l

BmII
l

1√
2

⎛
⎜⎝

H (1)
l−1

(
kIIdmII

)
e−iθmII

i
√

2sIIH
(1)
l

(
kIIdmII

)
−H (1)

l+1

(
kIIdmII

)
eiθmII

⎞
⎟⎠eilθmII ≡

⎛
⎜⎝

ψ II
1

ψ II
2

ψ II
3

⎞
⎟⎠. (C5)

The scattered (outgoing) wave function in region I has the form

� (I)(r) =
∑
mI

∑
l

AmI
l

1√
2

⎛
⎜⎝

H (1)
l−1

(
kIdmI

)
e−iθmI

i
√

2sIH
(1)
l

(
kIdmI

)
−H (1)

l+1

(
kIdmI

)
eiθmI

⎞
⎟⎠eilθmI ≡

⎛
⎜⎝

ψ I
1

ψ I
2

ψ I
3

⎞
⎟⎠. (C6)

A planar incident wave propagating along the direction that makes an angle β with the x axis in region I can be written as

� in(r) = 1

2

⎛
⎝ e−iβ√

2sI

eiβ

⎞
⎠eik·r =

⎛
⎜⎝

ψ in
1

ψ in
2

ψ in
3

⎞
⎟⎠. (C7)

Imposing the boundary conditions parametrized by the angle α between the outward normal at any boundary point r j and the x
axis, (

ψ
(I)
2 + ψ in

2

)∣∣
r j∈�ν

= ψ
(τ )
2

∣∣
r j∈�ν

, (C8a)([
ψ

(I)
1 + ψ in

1

]
eiα + [

ψ
(I)
3 + ψ in

3

]
e−iα

)∣∣
r j∈�ν

= (
ψ

(τ )
1 eiα + ψ

(τ )
3 e−iα

)∣∣
r j∈�ν

, (C8b)
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with ν = L, R, we obtain

∑
mII

∑
l

jA(I)
lmII

CmII
l −

∑
mI

∑
l

jA(II)
lmI

CmI
l = − jψ in

2 , (C9a)

∑
mII

∑
l

jB(I)
lmII

CmII
l −

∑
mI

∑
l

jB(II)
lmI

CmI
l = − jχ in, (C9b)

where the substitutions are given by

jA(I)
lmII

= isIH
(1)
l

(
kI

∣∣r j − rmII

∣∣)eilθmII , (C10a)

jA(II)
lmI

= isIIH
(1)
l

(
kII

∣∣r j − rmI

∣∣)eilθmI , (C10b)

jB(I)
lmII

= 1√
2

[
H (1)

l−1

(
kI

∣∣r j − rmII

∣∣)ei(l−1)θmII eiα − H (1)
l+1

(
kI

∣∣r j − rmII

∣∣)ei(l+1)θmII e−iα
]
, (C10c)

jB(II)
lmI

= 1√
2

[
H (1)

l−1

(
kII

∣∣r j − rmI

∣∣)ei(l−1)θmI eiα − H (1)
l+1

(
kII

∣∣r j − rmI

∣∣)ei(l+1)θmI e−iα
]

(C10d)

and

jψ in
2 = 1√

2
sIe

ikI ·r j , (C10e)

jχ in = 1

2

[
ei(α−β ) + e−i(α−β )

]
eikI ·r j . (C10f)

In principle, the set consists of an infinite number of equations with an infinite number of undetermined expansion coefficients
CmII

l and CmI
l . To solve the system numerically, a finite truncation is necessary, which turns out to be feasible in practice by

discretizing the boundary to a finite number of points J and setting the number of multipoles Mτ in the specific region τ and
l ∈ [−L, L] for all the multipoles. Carrying out the discretization procedure, we arrive at the following finite-dimensional matrix
equation:

M2J×N · CN×1 = −Y 2J×1, (C11)

where N = (2L + 1) × (MI + MII + MIII ) = NI + NII + NIII and the compact substitutions are

CN×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1II
−L
...

C1II
l

C2II
l
...

CMII
l
...

CMII
L

C1I
−L
...

C1I
l

C2I
l
...

CMI
l
...

CMI
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×1

, Y 2J×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1ψ in
2

...
jψ in

2
...

Jψ in
2

1χ in

...
jχ in

...
Jχ in

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2J×1

, (C12)
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and

M2J×N =

⎛
⎜⎜⎜⎜⎝

P (I)
JI

−P (II)
JI

0

Q(I)
JI

−Q(II)
JI

0

P (I)
JII

0 −P (III)
JII

Q(I)
JII

0 −Q(III)
JII

⎞
⎟⎟⎟⎟⎠

2J×N

, (C13)

with

P (τ )
J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1A(τ )
−L1τ

· · · 1A(τ )
l1τ

1A(τ )
l2τ

· · · 1A(τ )
lMτ

· · · 1A(τ )
LMτ

2A(τ )
−L1τ

· · · 2A(τ )
l1τ

2A(τ )
l2τ

· · · 2A(τ )
lMτ

· · · 2A(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jA(τ )
−L1τ

· · · jA(τ )
l1τ

jA(τ )
l2τ

· · · jA(τ )
lMτ

· · · jA(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JA(τ )
−L1τ

· · · JA(τ )
l1τ

JA(τ )
l2τ

· · · JA(τ )
lMτ

· · · JA(τ )
LMτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×Nτ

, (C14)

Q(τ )
J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1B(τ )
−L1τ

· · · 1B(τ )
l1τ

1B(τ )
l2τ

· · · 1B(τ )
lMτ

· · · 1B(τ )
LMτ

2B(τ )
−L1τ

· · · 2B(τ )
l1τ

2B(τ )
l2τ

· · · 2B(τ )
lMτ

· · · 2B(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jB(τ )
−L1τ

· · · jB(τ )
l1τ

jB(τ )
l2τ

· · · jB(τ )
lMτ

· · · jB(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JB(τ )
−L1τ

· · · JB(τ )
l1τ

JB(τ )
l2τ

· · · JB(τ )
lMτ

· · · JB(τ )
LMτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×Nτ

. (C15)

As the expansions are generally nonorthogonal, more equations are required than unknowns to enable deduction of an overdeter-
mined matrix system with 2J  N , which can be solved by the pseudoinverse algorithm (e.g., in MATLAB): C = −pinv(M) ∗ Y .
In particular, we use the residual error evaluated at the boundary

SSE = ||M ∗ C + Y ||
||Y ||

as the criterion for testing convergence (where SSE is sum of squared errors). We adjust the number, the order, and/or the
positions of the multipoles to ensure SSE < tolerance. After the unknown coefficients C have been obtained, the associated
wave functions and hence the local density of states in the specific region can be calculated accordingly.
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