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Quantum materials that host a flatband, such as pseudospin-1 lattices and magic-angle twisted bilayer
graphene, can exhibit drastically new physical phenomena including unconventional superconductivity, orbital
ferromagnetism, and Chern insulating behaviors. We report a surprising class of electronic in-gap edge states
in pseudospin-1 materials without the conventional need of band-inversion topological phase transitions or
introducing magnetism via an external magnetic type of interactions. In particular, we find that, in two-
dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge
through only an electrostatic potential applied to a finite domain. Associated with these unconventional edge
modes are spontaneous formation of pronounced domain-wall spin textures, which exhibit the feature of
out-of-plane spin-angular momentum locking on both sides of the domain boundary and are quite robust against
boundary deformations and impurities despite a lack of an explicit topological origin. The in-gap modes are
formally three-component evanescent wave solutions, akin to the Jackiw-Rebbi type of bound states. Such
modes belong to a distinct class due to the following physical reasons: three-component spinor wave function,
unusual boundary conditions, and a shifted flatband induced by the external scalar potential. Not only is the
finding of fundamental importance, but it also paves the way for generating highly controllable in-gap edge
states with emergent spin textures using the traditional semiconductor gate technology. Results are validated
using analytic calculations of a continuum Dirac-Weyl model and tight-binding simulations of realistic materials
through characterizations of local density of state spectra and resonant tunneling conductance.
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I. INTRODUCTION

The physics of quantum materials hosting a flatband, such
as the magic-angle twisted bilayer graphene, has become
a forefront area of research. These materials can generate
surprising physical phenomena, such as unconventional su-
perconductivity [1,2], orbital ferromagnetism [3,4], and the
Chern insulating behavior with topological edge states. The
purpose of this paper is to report the surprising emergence
of a class of in-gap edge states in two-dimensional (2D)
Dirac/Weyl pseudospin-1 materials, which cannot be fit into
any of the known scenarios for producing such states. The
uncovered states, at their birth, exhibit topologically nontrivial
domain-wall-like pseudospin textures.

In modern physics, the emergence of low-dissipation
or dissipationless topological surface or edge states in
condensed-matter systems is a fascinating phenomenon [5–7]
as exemplified by topological insulators (TIs) [8–16]. A TI
has a bulk band gap, so its interior is insulating, but there
are gapless surface states within the bulk band gap, which
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are protected by the time-reversal symmetry that renders the
states robust against backscattering from nonmagnetic impu-
rities. These topologically protected surface or edge states
possess a perfect spin-momentum locking characterized by
the invariance of spin orientation with respect to the direction
of the momentum. Quite recently, high-order TIs hosting,
e.g., robust in-gap excitations of zero-dimensional corner
modes have been uncovered [17–19]. Topological states of
matter, in addition to their importance to fundamental physics,
have potential applications in electronics and spintronics [20].
For electronic systems, current understanding of the physi-
cal mechanisms behind the topological edge states requires
a discontinuous change in the associated bulk topological
invariants across the interface/edge rendered by, e.g., a strong
external magnetic field in a two-dimensional electron gas
[6], band inversion driven by spin-orbit coupling [8,21,22],
introduction of ferromagnetism in topological insulators [23],
presetting domain walls in gapped Dirac materials [24–27],
stacking order in layered two-dimensional materials [28],
and particular spatial crystalline symmetries [29]. There have
been studies of defects and midgap formation in topological
materials [30] and hybridization in metamaterials of midgap
modes [31]. A general method based on Green’s function was
developed to analyze the midgap modes [32].

Pseudospin-1 type of low-energy excitations beyond the
Dirac-Weyl-Majorana paradigm have recently been realized
in electronic lattice systems [33–38]. In a broader context,
two-dimensional massive spin-1 bulk excitations can arise in
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classical nonlinear physical systems, such as rotating shal-
low water in a horizontally unbounded plane [39] and the
wave system of magnetoplasmons where the corresponding
Hamiltonian representations [40] can be effectively reduced
to the Dirac-like equation for spin-1 particles. Applying the
sign-changing Dirac mass scenario to the systems leads to
an extension of the Jackiw-Rebbi mechanism that serves to
ascertain the topological origin of, e.g., the equatorial waves
[39], as well as rich topological phenomena in bosonic and
classical systems [41–45].

The subject of our paper is pseudospin-1 relativistic quan-
tum systems described by the generalized Dirac-Weyl equa-
tion which are fundamentally linear. Specifically, low-energy
excitations in condensed-matter systems, such as graphene
[46] and topological insulators [8–16], and in analogous phys-
ical systems of molecules, cold atoms, cavity polaritons, light,
and even mechanical waves in judiciously designed lattices
[41–45] are described by the Dirac-Weyl equation. In those
circumstances, if the corresponding quasiparticles are mass-
less, the energy band structure contains a pair of Dirac cones
characteristic of the relativistic energy-momentum dispersion
relation. A finite mass leads to a band gap, giving rise to
unconventional topological phases in Dirac material systems
[47] with unusual physical properties associated with tun-
neling, confinement, and transport, which have no analogies
in quantum systems described by the Schrödinger equation.
Among those, the physics of edge states and robust in-gap
excitations are of fundamental interest. Jackiw and Rebbi [48]
predicted a surprising zero-energy bound-state solution of the
Dirac equation in the presence of a kink-shaped mass profile
that generates a domain wall separating regions with sign-
changing Dirac mass. The realization in polyacetylene [49,50]
and the theoretical studies of narrow-gap semiconductors
[51,52] led to the discovery of the phenomenon of band-gap
inversion enabling topologically protected conducting inter-
face states and localized subgap excitations in TIs [8–19]. In
the description based on the massive Dirac equation, band-gap
inversion is equivalent to a sign change in the mass. The
topological edge states give rise to appealing physical prop-
erties and phenomena, such as robust low-power-dissipation
wave transport [26], electrically tunable magnetism [53], and
quasiparticles analogous to elementary fermionic particles in
high-energy physics [54].

Our main finding is that, in pseudospin-1 systems with an
energy gap, a surprising class of in-gap edge bound states
can arise without band- or mass-inversion-based domain walls
that separate the regions with different kinds of bulk band
topology and any external magnetic interaction, but these
states are remarkably robust against geometric deformations
and impurities. In fact, they are generated through only a
local electrostatic potential barrier of the repulsive type in the
underlying insulating spin-1 systems. We uncover a number of
remarkable quite unusual spectral properties of these modes.
Unlike the topological edge states previously discovered and
studied, the states reported here require no established topo-
logical restrictions, such as interfacing domains/systems of
different bulk topological invariants and any particular type of
discrete symmetries. In fact, through self-inducing topological
spin textures, the uncovered states possess the degree of
robustness enjoyed by conventional topological states, but
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FIG. 1. Schematic of the system setting and main finding. (a) A
side view of the setting leading to in-gap edge modes without
magnetism and the conventional band inversion topological phase
transition where a gapped two-dimensional system (thick gray line)
hosting Dirac-like low-energy excitations of massive spin-1 is sub-
ject to a locally applied electrostatic potential. The energy band
diagram in the absence of the potential is shown on left side of
the bottom panel [below (a)]. (b) In-gap edge bound modes with an
emergent domain-wall-like spin ordering/texture (top panel) arise in
the presence of a repulsive type of potential, which defines an antidot
profile as shown in the bottom panel. The criterion for the stable
emergence of the in-gap states is |Vg − �| � �/2.

they belong to a distinct class due to the following physi-
cal reasons: three-component spinor wave function, unusual
boundary conditions, and a shifted flatband induced by the ex-
ternal electrical potential. Experimentally, these states can be
generated readily through routine electrostatic gating within
the same material (or within a single device), rendering them
promising in applications, e.g., a gate-controlled spin-1 Dirac
electron transistor of high on/off ratio.

II. RESULTS FROM A CONTINUUM DIRAC-WEYL
HAMILTONIAN

A. Illustration of finding

Figure 1(a) presents a schematic of the system setting,
whose effective Hamiltonian is Heff = vF Ŝ · p̂ + �Ŝz + U (r)
where the first term describes the bulk low-energy excita-
tion of a massive spin-1 particle with quasimomentum p̂ =
(px, py), the second term represents the generalization of the
Dirac mass with Ŝz being a component of the spin-1 matrix
vector Ŝ, and the last term is the locally applied electrostatic
potential of height Vg which defines a closed interface at the
boundary. As we will establish, this magnetism-free configu-
ration permits in-gap edge states, and the states with higher
angular momenta possess highly organized domain-wall-like
spin textures as illustrated in Fig. 1(b). In general, for the
in-gap states to emerge and be stable, the perturbation in the
form of the applied gate potential Vg cannot be negligibly
small in comparison with the pristine band-gap �. Neither
can the perturbation be too large to result in a substantially
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reduced effective band-gap size. In fact, the inequality Vg <

2� is required, and the reduced band-gap (2� − Vg) should
be comparable to the pristine one. In terms of � and Vg as
defined in Fig. 1, the criterion for the stable emergence of the
in-gap states is |Vg − �| � �/2. The case shown in Fig. 1 is
for Vg � �.

B. Emergence of in-gap edge states

For a circular domain of radius R, the electrostatic potential
is given by U (r) = Vg�(R − r), where � is the Heaviside
function. The system as governed by Heffψ = Eψ can be
solved analytically in the polar coordinates r = (r, θ ) to yield
closed-form solutions of the form

ψ
μ
j (r, θ ) = 1√

2

⎛
⎜⎜⎝

h̄vF kμ

E−�
Zμ

j−1(kμr)e−iθ

i
√

2Zμ
j (kμr)

− h̄vF kμ

E+�
Zμ

j+1(kμr)eiθ

⎞
⎟⎟⎠ei jθ , (1)

where μ = I, O labels the inner and outer regions as defined

by the interface, h̄vF kμ =
√

E2
μ − �2, and F I

j = Jj and F O
j =

H (1)
j are the Bessel and the Hankel functions of the first kind

with j being the integer angular momentum quantum number.
As explained in Appendices A and B, the in-gap modes
uncovered take the form of a three-component evanescent
edge state. In comparison with known edge states, either
topological or nontopological, the states uncovered here be-
long to a distinct class due to the following physical reasons:
three-component spinor wave function, unusual boundary
conditions, and a shifted flatband induced by the external
scalar potential. Particularly, for | j| � 1, we calculate the
eigenenergy E ≈ Vg/2 and the resulting spin textures,

S = [Sx, Sy, Sz]

≈ [sin θ sin �(r),− cos θ sin �(r), cos �(r)], (2)

where

cos �(r) = j/
√

j2 + ξ 2[2�(R − r) − 1],

with ξ = (Vg + 2�)r/2h̄vF . Concretely, for a representative
parameter setting, e.g., Vg = � = 6h̄vF /R, we calculate the
resulting energy spectra as a function of the angular momen-
tum quantum number j as shown in Fig. 2(a). We see that
additional bounded eigenstates arise in the gap, i.e., those in
the shaded area in Fig. 2(a). The striking feature is that these
states emerge for Eμ < � where the system is an insulator. In
this case, without any change in the band topology (e.g., due to
band inversion), conventional understanding of TIs stipulates
that such states are impossible.

A feature of the spin textures is worth mentioning. If we
calculate the topological number defined as

N = 1

4π

∫∫
n ·

(
∂n
∂x

× ∂n
∂y

)
dx dy,

where n = S/|S|, we get

N = −sgn( j)/2,

signifying vortexlike spin textures that can arise from in-gap
excitations of meronlike skyrmions [55]. Similar features have
been predicted in chiral p-wave superconductors [56,57] that

have the same symmetry class as the spin-1 Dirac Hamiltonian
studied in this paper [Eq. (A1)].

To gain further insights, we characterize the energy spec-
tra using two experimentally relevant quantities: the LDOS
and spin LDOS defined as D(E , r) = ∑

ν〈ν|ν〉δ(E − Eν ) and
Ds(E , r) = ∑

ν〈ν|Sz|ν〉δ(E − Eν ), respectively, where ν is
the eigenstate label. As shown in Fig. 2(c), the in-gap modes
are localized at the boundary and exhibit distinct domain-wall
spin textures where the energy broadening effect (e.g., caused
by measurement) has been taken into account by approximat-
ing the δ function as �/π [(E − Eν )2 + �2] with � = 0.2ε∗.
Figure 2(d) shows the spatial distributions of the correspond-
ing wave density and spin texture for a representative state
[indicated by the red arrow in Fig. 2(a)]. A calculation of
the associated spin projection 〈Sz〉 versus j in the inner and
outer regions reveals that the domain-wall spin ordering is
more pronounced for states with higher angular momenta as
shown in Fig. 2(b). Associated with the strengthening of the
spin ordering, the energy flow tends to decrease as revealed
by a nearly dispersionless dependence of the energy level
on the angular momentum quantum number as shown in
Fig. 2(a). Figure 2(b) demonstrates the emergence of spin
angular momentum locking that depends on the side of the
interface in which the state is located, suggesting that these
states are robust.

C. Robustness

The robustness of the quantum spin Hall and quantum
anomalous Hall edge states are known to be protected by
the presetting discontinuous change in the associated bulk
topological invariants across the interface, such as the Z2

index and Chern number, all requiring some sort of magnetic
interaction. However, for the edge modes demonstrated in
Fig. 2, there is no such a priori topological origin/restriction.
The question is whether the modes are protected or stable
against irregular perturbations. To address this question, we
consider a general type of perturbation: geometric deforma-
tion of the potential domain. A significant challenge is to
obtain accurate eigensolutions of the massive spin-1 Dirac
equation as with an irregular domain analytic solutions are no
longer possible. We have developed an accurate and efficient
numerical method to find solutions for arbitrarily shaped
domain interfaces (Appendix C). As an illustration, we create
deformed domains via the superformula in botany that can
generate a great diversity of natural shapes with only a few
parameters [58]. Figure 3(a) shows, for 13 deformed boundary
shapes (insets), the corresponding energy spectra resolved
by the total DOS. With respect to the eigenstates of the
circular geometry, there are considerable shifts (up or down)
in some eigenenergies of the strongly deformed domains but,
importantly, there are stable states with virtually no changes
in their energies despite the severe deformations.

To ascertain the nontrivial feature of the in-gap states,
we examine the associated spin properties. In particular, we
introduce an effective exchange energy penalty,

Ew = −〈S〉I · 〈S〉O,

to identify a domain-wall-like spin ordering structure between
the inner and the outer regions. It can be seen from Fig. 3(b)
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FIG. 2. Emergence of in-gap edge modes. (a) Eigenenergy E (in units of h̄vF /R) as a function of the total angular momentum j for
Vg = � = 6h̄vF /R. The light yellow shaded area represents the band gap. The inset shows the in-gap modes within the same energy range as
that of Fig. 3(b). The light blue triangles denote the common eigenstates due to the induced quantum dot confinement of bulk valence-band
carriers where all the corresponding wave functions are localized within the dot, see, e.g., complementary Fig. 7 in Appendix B. (b) Expectation
values of Sz versus j for the in-gap modes marked by the purple dots in (a). The values are evaluated on both sides of the boundary, which are
denoted by 〈Sz〉I (blue squares; inside the domain) and 〈Sz〉O (red dots; outside of the domain), respectively. (c) Local density of state (LDOS)
and spin-resolved LDOS (spin LDOS) maps versus energy E and the radial spatial position r/R associated with the spectra in (a) where an
empirical parameter value �/ε∗ = 0.2 is used to characterize the energy broadening effect as in an experimental situation. (d) Spatial profiles
of wave (left panel) and spin texture (right panel) distributions of the in-gap mode indicated by the red arrow in (a).

that the stable modes insensitive to deformation attain large
energy penalties, a strong indication of the emergence of
domain-wall spin ordering, whereas the modes with small
values of Ew are sensitive to deformations. Figure 3(c) shows
the real-space wave density and the corresponding spin tex-
ture patterns of three representative states as indicated in
Fig. 3(b). The wave density topography associated with the
strong domain-wall spin texture is mainly contributed by the
high angular momentum states [those with distinctly more
angular nodes—cf., middle panel of Fig. 3(c)]. This agrees
with the prediction of the continuum theory that a nearly
perfect out-of-plane spin angular momentum locking should

emerge for the high orbital angular momentum states as
shown in Fig. 2(b), providing the physical reason for the
robustness. (Intuitively, this behavior can be understood that
a faster spinning egg is able to stand upright in a more
stable manner). The unambiguous signature of spin angular
momentum locking can greatly circumvent mode coupling
due to backscattering caused by the deformation. For those
modes, the conventionally anticipated level repulsion/shifting
effect due to geometric deformation is greatly suppressed,
an unequivocal indication that the modes with spin an-
gular momentum locking are robust with self-induced
protection.
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FIG. 3. Robustness of in-gap modes against geometric deformations of the domain. (a) DOS-based spectral lines for 14 boundary shapes
(inset). (b) Dependence of the energies of the in-gap edge modes on the deformed shape as revealed by a color-coded map of the effective
(exchange) energy penalty Ew for forming a globally organized domain-wall spin texture, defined as the dot product of the spin expectation
values inside and outside of the domain for each mode. The penalty attains large values for edge modes with a strong domain-wall ordering
but has small values for ones with a dominant in-plane vortex spin texture. The yellow shaded region is for eye guidance of the approximately
invariant energy range in which the in-gap modes arise in the presence of systematically varying geometric deformations. (c) Representative
real-space wave (top panel) and spin texture (bottom panel) profiles of the categorized in-gap edge modes indicated by the corresponding
color-filled markers in (b) for three distinct energy values.

As in most studies of TIs [8,59], we have employed a sharp
potential boundary to demonstrate the findings. However, by
performing calculations using a finite difference method for
realistic and smoothly varying potential profiles, we find that
the topological states as exemplified in Figs. 2 and 3 persist
(Appendix C). We also find that these states can tolerate strong
disorders.

III. RESULTS FROM TIGHT-BINDING CALCULATIONS
OF AN EXPERIMENTALLY RELEVANT LATTICE MODEL

The in-gap excitations predicted have the striking physical
properties of dispersionless spectral flow and spontaneous
domain-wall spin ordering. They manifest themselves as dis-
tinct real-space topographies of LDOS and spin LDOS, which
can be experimentally mapped out using the low-temperature
scanning tunneling spectroscopy technique [60,61]. With ad-
vances in Dirac materials in recent years, realizing the spin-1
generalization of ordinary Dirac/Weyl fermions in the form
of low-energy collective states or quasiparticles is experimen-
tally possible in condensed-matter systems [34,36,37,62,63],
photonic crystals [63,64], and even classical systems [40].

Our theoretical prediction is general for gapped systems
of massive spin-1 particles subject to an electrostatic potential

applied to a finite domain. The band-gap-associated Dirac-like
mass generation can be implemented in alternative ways. For
example, for a two-dimensional lattice with three sublattices
[36,62–65], such as a Lieb or a dice lattice, the generalized
mass term can be induced via a staggered sublattice potential
that breaks the inversion symmetry, which is an extension of
the standard Dirac mass term in, e.g., graphene. As a way of
an example, we consider the case of a Dice lattice model as
illustrated in Fig. 4(a), which is relevant to emerging 2D Dirac
materials, such as transition-metal dichalcogenide/dihalide
monolayers [66], monolayer Mg2C (MXene) [67], decorated
graphene [68], etc. Its tight-binding Hamiltonian in real space
is given by

HDice = −t
∑
〈i, j〉

(c†
BicA j + c†

BicC j + H.c.)

+�
∑

i

(c†
CicCi − c†

AicAi ), (3)

where c†
νi (cνi ) with ν = A, B,C are creation (annihilation)

operators of the localized states |νi〉 at site i belonging to the
sublattice ν, 〈i, j〉 denotes pairs of nearest-neighbor sites with
the tunneling strength (hopping energy) of t . The last term
represents a staggered sublattice potential that is responsible
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FIG. 4. Tight-binding Dice lattice model of a 2D spin-1 Dirac in-
sulator. (a) Left: schematic of a Dice lattice consisting of three sublat-
tices denoted by A, B, and C with a nearest-neighbor hopping t (be-
tween them) and primitive vectors a1 = (a, 0), a2 = (a/2,

√
3a/2),

given a the primitive lattice constant. Right: the corresponding first
Brillouin zone. (b) Left: bulk band structure plotted along the lines
connecting points of high symmetry indicated in the right panel of
(a). Middle and right show the resulting LDOS and pseudospin-
polarized LDOS (sLDOS) spectra, respectively.

for the Dirac-type mass-based gap opening. In the absence of
any external field, we obtain the bulk energy band structure
and corresponding LDOS spectra as shown in Fig. 4(b). We
see that, near the K point, the system behaves as a band
insulator hosting Dirac-like quasiparticles of massive spin-1.
Notably, the flatband leads to a sharp peak in the LDOS but
has a vanishing group velocity as well as a vanishing out-of-
plane pseudospin polarization/orientation [cf. right panel in
Fig. 4], i.e., sLDOS ≡ |DB − DC | = 0 with Dμ as the LDOS
occupied at sublattice μ.

An electrostatic potential of height V0/t is locally applied
to a small region of an undoped Dice lattice sheet to realize
the gate-controlled quantum dot structures. Concretely, for
�/t = 0.439 and V0/t = �/t (<2�/t), we calculate the sL-
DOS measured at the boundary of the gated region for three
different domain shapes with a characteristic size parameter
R = 5 nm as depicted in the insets of Figs. 5(a)–5(c). The
results are displayed by red curves, whereas those for the
(ungated) case of V0/t = 0 (black curves) are also shown
for comparison. Signified by dramatic changes in the sLDOS
spectra with large amplitudes, a number of in-gap states
emerges. As displayed in the middle panel of Fig. 5, they
are highly localized edge modes. This result agrees with that
obtained from the analytic continuum spin-1 Dirac model
in Sec. II.

We also consider a lead-contacted Dice lattice flake with a
circular gate-defined quantum dot as schematically illustrated
in the top panel of Fig. 5(d) for a possible experimental detec-
tion via transport measurements. One typical simulation result
is given in the bottom panel of Fig. 5(d). Remarkably, the

FIG. 5. In-gap edge modes in the Dice lattice-based material system. sLDOS at the position of the domain boundary (marked by the cyan
dot) as a function of energy for a uniformly gated region with a shape of (a) a disk, (b) a rectangle and (c) a stadium via an electrostatic gate
potential V0/t . Middle panels display typical real-space patterns of associated in-gap states. (d) Top: schematic of a gate-controlled spin-1
Dirac electron transistor setup. Bottom: the simulation result of of transport conductance versus energy.
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FIG. 6. Energy spectra and electronic states for a semi-infinite geometry of a gapped Dice lattice. The spin-1 low-energy excitations carry
an effective-mass �/t . (a) States in the absence of any applied gate potential and (b) in the presence of a potential V/t . (c) and (d) The
corresponding results from a gapped graphene lattice. (e) Spatial LDOS patterns of the respective states as indicated by different markers in
(b). The dotted vertical green lines mark the boundaries of the locally applied gate potential along the x axis. A translational symmetry is
imposed on the y axis.

emerging in-gap modes acting as “doorway” states can actuate
resonant tunneling through the device with large conductance.
Because of the ease of realizing control with an electrostatic
gate potential, the setup can act as a novel quantum switch or
transistor of high on/off ratio with spin-1 Dirac electrons.

Alternatively, associated with triple point semimetals of
bulk massless spin-1 excitations described by a three-band
extension of the Weyl Hamiltonian [37], i.e., H3 ∝ kxSx +
kySy + kzSz, a thin-film structure of thickness L in the z
direction can host the two-dimensional spin-1 quasiparticles
with an analogous finite mass ∝π/L due to the confinement
effect. This provides another potential experimental platform.
In addition, the massive spin-1 physics turns out to be ac-
cessible in a dimerized quantum magnet [34] and is even
relevant to classical systems of a two-dimensional magneto-
plasmon [40] where the mass term is induced by an applied
magnetic field.

We have also solved a gapped Dice lattice in a semi-infinite
geometry in the presence or absence of a locally applied
gate potential, which represents a trivial bulk band insulator
with low-energy massive pseudospin-1 excitations. For com-
parison, we have also included the known case of gapped
graphene. The results are shown in Fig. 6. It can be seen that,
in contrast to the well-studied graphene case [(c) and (d)],
in the Dice lattice with massive pseudospin-1 quasiparticles,
the in-gap states emerge as the result of simply applying
an electrostatic potential to a trivial bulk band insulator. As
shown in (e), they are localized edge states that are distinct
from the dispersionless flatband states [top panel in (e)] and
from the typical quantum well bound states [bottom panel in
(e)] as well. These results agree with the prediction from the
general continuum model.

IV. CONCLUSION AND DISCUSSION

To summarize, we have predicted a class of in-gap edge
excitations with spontaneous domain-wall spin textures in
insulating Dirac-type systems of massive spin-1 particles with
only a locally applied electrostatic potential. Despite the ab-
sence of magnetism and any a priori topological origin, these
states are extremely robust against boundary deformation and
disorders. The remarkable property of these states is the
self-induced emergence of domain-wall spin ordering that
renders distinct spin angular momentum locking on different
sides of the domain interface. Consequently, the states are
stable against impurities and/or geometric deformation. The
in-gap modes are formally three-component evanescent wave
solutions, bearing certain resemblance with the Jackiw-Rebbi
type of bound states. The modes belong to a distinct class
due to the following physical reasons: three-component spinor
wave function, unusual boundary conditions, and a shifted
flatband induced by the external scalar potential. Our findings
provide a fully electrostatic-based route to generate protected
robust spin ordering edge states without requiring any sort
of magnetism, extrinsic or intrinsic. The states can be ex-
ploited for spintronics and quantum information processing
applications, e.g., realization of a gate-controlled spin-1 Dirac
electron transistor or quantum switch. With rapid advances in
generalized Dirac materials, especially those hosting the spin-
1 generalization of ordinary Dirac/Weyl fermions and with
the state-of-the-art measurement technologies, experimental
confirmation of the states discovered here is possible.

We note a distinct feature of the system studied: the in-
herent midgap flatband hosting macroscopically degenerate
states. Without the applied electrostatic potential (Vg = 0),
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we obtain the flatband states, i.e., E (p) = 0, given by (non-
normalized)

�k,0(r) ∼ 1√
2

[vF |p|e−iζ ,−
√

2�,−vF |p|eiζ ]T eik·r, (4)

with the wave-vector k = (kx, ky) ≡ p/h̄ making an angle
ζ = arctan(ky/kx ) with the x axis. The states result in a
vanishing current and a trivial spin distribution over the space
as well as a vanishing Chern number [40,69,70]. Our finding
is that a locally applied potential shifts the flatband relative
to the surrounding and surprisingly leads to a class of exotic
edge excitations that inherit the (quasi)flat dispersionlessness
but attain a nontrivial feature associated with the emerging
domain-wall-like spin ordering. Due to the vanishing Chern
number of the flatband in the configuration in Fig. 1(b), the
regions with different applied potentials Vg possess the same
Chern number. This indicates that the uncovered in-gap states
do not have a topological origin. It has been known that
flatbands can lead to exotic physical phenomena, such as
zero-refractive index, unconventional Anderson localization
[71,72], itinerant ferromagnetism [73], and unconventional
superconductivity [1,74,75]. Moreover, the finite gap opening
makes it possible to categorize the unperturbed bulk system
into the phase of class D with a particle-hole symmetry and a
broken time-reversal symmetry, which also arises in p + ip
superconductors [40]. In this regard, the two-dimensional
gapped pseudospin-1 system represents a paradigm to inves-
tigate high-spin topological phases with exotic edge excita-
tions and flatband physics. With enriched pseudospin degrees
of freedom, graphene-based heterostructures, such as the
graphene-In2Te2 bilayer [68] and the twisted bilayer graphene
superlattice [76], can also be exploited for possible experi-
mental realization of the topological edge states uncovered in
this paper.

Taken together, the main contributions of this paper are as
follows: (1) In-gap edge modes can arise in a topologically
trivial spin-1 Dirac insulators with local electrical gating
or nonmagnetic doping, (2) the in-gap edge modes possess
pseudospin-polarized textures akin to localized domain walls
of either the hedgehog or the vortex type without requiring
any external pseudospin-resolved field, (3) the edge modes
are robust against boundary deformations and disordered
scalar impurities, (4) the edge modes are nearly dispersionless
in energy and intrinsically possess the capability of strong
charge and spin confinement/localization, and (5) all these
features of the in-gap edge modes can be electrically con-
trolled within the same material setting. We note that the
existing mechanisms for in-gap bound modes or excitations
can be either topological or nontopological. Examples are the
extensively studied topological in-gap edge modes [15,16],
the nontopological Yu-Shiba-Rusinov bound states associated
with magnetic impurities in superconductors [77–79], va-
cancy defects or particular lattice termination-induced bound
states in crystalline lattice systems [80,81], and modes in-
duced by nonmagnetic impurities in topologically nontrivial
band insulators [82]. There was also a recent work [83] hinting
that the multicomponent character of the Dirac-Bloch wave
function and the associated boundary conditions would enable
nontopological Dirac materials, through proper engineering
of the graphene lattice boundaries, to potentially host robust

surface states. The system of pseudospin-1 Dirac insulators
that we have studied does not require any special lattice engi-
neering, does not involve any magnetic type of perturbations
or defects either, nor does it have a nontrivial band topology.
Yet, robust in-gap edge modes can arise. Our system, thus,
does not fall into any known category of systems in which
in-gap bound modes can arise, and the edge modes uncovered
belong to a distinct class due to the three-component spinor
wave function and the unusual boundary conditions as well as
an electrically induced shift of the flatband.
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APPENDIX A: BASICS

In the position representation r = (x, y), the Hamiltonian
for a massive spin-1 generalization of Dirac/Weyl fermion
reads

Ĥ = vF Ŝ · p̂ + �Ŝz + U (r), (A1)

where vF is the Fermi velocity, p̂ is the momentum operator,
Ŝ = (Sx, Sy) and Ŝz are spin-1 matrices, � denotes a Dirac-
type mass, and U (r) is a scalar type of perturbation (e.g.,
an electrostatic potential). The energy eigenstates �(r) =
[ψ1(r), ψ2(r), ψ3(r)]T can be determined by the generalized
Dirac-Weyl equation,

Ĥ�(r) = E�(r). (A2)

For a spatially homogeneous/constant potential, e.g., U (r) =
V0, the eigenenergies are E = V0 and V0 + s

√
�2 + h̄vF |k|2

with s = ± being the dispersion band index. The correspond-
ing plane-wave solutions can be written as

�k,0(r) = 1√
2

[ke−iζ ,−
√

2δ,−keiζ ]T eik·r,

and

�k,s(r) = 1

2

⎛
⎝αe−iζ√

2
βeiζ

⎞
⎠eik·r, (A3)

where the wave-vector k = (kx, ky) has length k = √
ε2 − δ2

with
ε = (E − V0)/h̄vF , δ = �/h̄vF , which makes an angle

ζ = arctan(ky/kx ) with the x axis. Other factors are α =
k/(ε − δ) and β = k/(ε + δ). The current operator is defined
based on Eq. (A1) as

û = ∇pĤ = vF Ŝ. (A4)
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The local current associated with state �(r) = [ψ1, ψ2, ψ3]T

can be calculated from the local expectation value of û as

u(r) = vF (ψ∗
1 , ψ∗

2 , ψ∗
3 )Ŝ

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠

=
√

2vF {Re[ψ∗
2 (ψ1 + ψ3)],−Im[ψ∗

2 (ψ1 − ψ3)]}.
(A5)

By definition, the local current is the local probability density
of spin-vector (Sx, Sy). Using the plane-wave solution (A3),
we obtain

u = vF
ε√

ε2 − δ2

k
k
.

The effects of the applied scalar potential are to shift the
Dirac point (k = 0) in the energy domain, to tune the kinetic-
energy ε = (E − V0)/h̄vF , and to alter the particle attributes
from hole to electron type, and vice versa.

The time-reversal symmetry operator is

T =
⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠K

∣∣∣∣
k→−k

,

where K is the operator for complex conjugation. Due to the
Dirac-like mass term, the time-reversal symmetry is broken.

APPENDIX B: EIGENSOLUTIONS OF TYPE-II QUANTUM
DOTS OF MASSIVE SPIN-1 PARTICLES

We obtain the eigensolutions of the spin-1 massive Dirac
system where an electrostatic potential is applied to a circu-
lar domain: U (r) = V0�(r − R). This is effectively a type-
II quantum (anti-)dot configuration for Dirac-like massive
spin-1 particles. Because of the rotational symmetry, it is
convenient to use polar coordinates r = (r, θ ) where the
eigenequation is

Ĥ�(r) = Ĥ

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠ = E

⎛
⎝ψ1

ψ2

ψ3

⎞
⎠, (B1)

where

Ĥ =
⎡
⎣ h̄vF√

2

⎛
⎝ 0 L̂− 0
L̂+ 0 L̂−
0 L̂+ 0

⎞
⎠ + �Ŝz + U (r)

⎤
⎦,

with

L̂± = −ie±iθ

(
∂r ± i

r
∂θ

)
.

Because the total angular momentum operator Ĵz = −i∂θ +
Ŝz commutes with the Hamiltonian Ĥ , the common set of
eigenstates has the general form

�l (r) = [R1(r)ei(l−1)θ ,R2(r)eilθ ,R3(r)ei(l+1)θ ]T , (B2)

with l ∈ Z. For the dispersive bands, we have

�
μ

l (r) = Cμ√
2

⎛
⎜⎝

αμZμ

l−1(kμr)e−iθ

i
√

2Zμ

l (kμr)

−βμZμ

l+1(kμr)iθ

⎞
⎟⎠eilθ , (B3)

where the index μ = I, O labels the inner and outer re-
gions of the circular domain boundary, αμ = h̄vF kμ/(Eμ −
�) and βμ = h̄vF kμ/(Eμ + �) with h̄vF kμ =

√
E2

μ − �2 and

(EI , EO) = (E − V0, E ), and ZI
l (x) = Jl (x) and ZO

l (x) =
H (1)

m (x) are the Bessel and the Hankel functions of the first
kind, respectively. Matching the spinor wave-functions �I

l
and �O

l at the domain boundary (interface) r = R yields the
following transcendental equation:

Jl (kI R)
[
αOH (1)

l−1(kOR) − βOH (1)
l+1(kOR)

]
= H (1)

l (kOR)[αI Jl−1(kI R) − βI Jl+1(kI R)], (B4)

which can be calculated numerically to yield the eigenener-
gies and eigenstates with high accuracy. Figure 7 shows some
representative results. For reference, we have also included
the corresponding results for the standard massive spin-1/2
Dirac fermion system. We see that, for the massive spin-1
system, apart from the conventional quantum dot bound states,
an additional group of modes emerge in the gap. Whereas
edge states can arise in the band gap as in conventional
topological insulators, some kind of magnetic perturbations
are required [8–16]. As there is no magnetic perturbation of
any sort in our quantum dot system for massive spin-1 Dirac
particles; the emergence of the states in the band gap is quite
counterintuitive and striking.

We show analytically that the modes in the band gap pos-
sess a unique spectral peculiarity and are, in fact, edge states
with domain-wall-like topologically nontrivial spin textures.
In particular, in the gap |Eμ| < |�|, the radial wave numbers
are purely imaginary, which can be redefined as

kOR =
√

E2 − �2

h̄vF /R
=
√

ε2 − δ2 = ip, (B5)

kI R =
√

(ε − v0)2 − δ2 = iq. (B6)

With the substitutions,

Kl (x) = π

2
il+1H (1)

l (ix), Il (x) = i−l Jl (ix),

we rewrite the eigenvalue equation Eq. (B4) as

Il (q)

[
p

ε − δ
Kl−1(p) + p

ε + δ
Kl+1(p)

]

= −Kl (p)

[
q

ε − v0 − δ
Il−1(q) + q

ε − v0 + δ
Il+1(q)

]
,

(B7)

with the associated eigenstates given by

�l (r) = 〈O|�l〉 + 〈I|�l〉,

=
√

2i−lCO

π

⎛
⎜⎝

ip
ε−δ

Kl−1(pρ)e−iθ

√
2Kl (pρ)

ip
ε+δ

Kl+1(pρ)eiθ

⎞
⎟⎠eilθ�(r − R)

+ ilCI√
2

⎛
⎜⎝

q
ε−v0−δ

Il−1(qρ)e−iθ

i
√

2Il (qρ)
q

ε−v0+δ
Il+1(qρ)eiθ

⎞
⎟⎠eilθ�(R − r)
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FIG. 7. A type-II Dirac material quantum dot for massive spin-1 generalization of Dirac fermions and the associated eigenstates. (a) Energy
band diagram of a type-II quantum dot for Dirac-type massive spin-1 particles. (b) Top: wave probability patterns for the eigenstates indicated
by the corresponding colored arrows in the bottom panel for both massive spin-1 and massive spin-1/2 particles. Bottom: eigenenergies versus
angular momentum. Parameters are � = V0 = 6h̄vF /R for both cases.

=
√

2i−lCO

π

⎧⎪⎨
⎪⎩
⎛
⎜⎝

ip
ε−δ

Kl−1(pρ)e−iθ

√
2Kl (pρ)

ip
ε+δ

Kl+1(pρ)eiθ

⎞
⎟⎠eilθ�(ρ − 1)

+Kl (p)

Il (q)

⎛
⎜⎝

−iq
ε−v0−δ

Il−1(qρ)e−iθ

√
2Il (qρ)

−iq
ε−v0+δ

Il+1(qρ)eiθ

⎞
⎟⎠eilθ�(1 − ρ)

⎫⎪⎬
⎪⎭, (B8)

where ρ = r/R, Il (x) and Kl (x) are modified Bessel functions.
Making use of asymptotic expansions of high-order Bessel
functions [84], i.e., l � 1,

Il (x) ∼ 1√
2π l

(ex

2l

)l
, Kl (x) ∼

√
π

2l

(ex

2l

)−l
,

we obtain, from the eigenvalue equation Eq. (B4), the
following relation:

lim
l→∞

[
1

ε + δ

√
l + 1

l

(
1 + 1

l

)l

+ 1

ε − v0 − δ

√
l

l − 1

(
1 + 1

l − 1

)l−1]
→ 0. (B9)

Using the identity limn→∞(1 + 1/n)n = e, we arrive at
an equation that can be solved to yield the asymptotic
eigenenergies,

2ε − v0

(ε + δ)(ε − v0 − δ)
→ 0 �⇒ ε → v0

2
. (B10)

The eigenenergies are independent of the angular momentum
and are, thus, in-gap (energy) dispersionless excitations. The
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associated eigenstates are approximately given by

�l (r) ≈ Cl

⎧⎪⎨
⎪⎩ρ−l

⎛
⎜⎝

ρ(ε+δ)
4il2 e−iθ

√
2

2l
i

ρ(ε+δ) e
iθ

⎞
⎟⎠�(ρ − 1)

+ρ l

⎛
⎜⎜⎝

i
ρ(ε+δ) e

−iθ

√
2

2l
ρ(ε+δ)

4il2 eiθ

⎞
⎟⎟⎠�(1 − ρ)

⎫⎪⎬
⎪⎭eilθ , (B11)

where

Cl =
√

2i−lCO

π

√
2π l

(
e
√

δ2 − v2
0/4/2l

)−l
. (B12)

So, inside the domain ρ < 1, we have

〈I|�l〉 ≈ Clρ
l

⎛
⎜⎝

i
ρ(ε+δ) e

−iθ

√
2

2l
ρ(ε+δ)

4il2 eiθ

⎞
⎟⎠eilθ

l�1−−→ Cle
−l (1−ρ)

⎛
⎜⎝

i
ρ(ε+δ) e

−iθ

0

0

⎞
⎟⎠eilθ . (B13)

Outside of the domain ρ > 1, we have

〈O|�l〉 ≈ Clρ
−l

⎛
⎜⎝

ρ(ε+δ)
4il2 e−iθ

√
2

2l
i

ρ(ε+δ) e
iθ

⎞
⎟⎠eilθ

l�1−−→ Cle
−l (ρ−1)

⎛
⎜⎝

0

0
i

ρ(ε+δ) e
iθ

⎞
⎟⎠eilθ . (B14)

We, thus, have that the in-gap excitations are localized edge
modes and exhibit domain-wall-like spin textures for high
angular momentum values.

Note that, for a given value of l , in the semiclassical limit
p, q � 1, we have, approximately,

Il (x) ∼ ex

√
2πx

, Kl (x) ∼
√

π

2x
e−x.

From the eigenvalue equation, we have

ε − v0

q
+ ε

p
≈ 0 �⇒ v0(v0 − 2ε) ≈ 0 �⇒ ε ∼ v0

2
,

(B15)

which leads to the same in-gap spectral properties as those
from the large l regime. The associated semiclassical eigen-
states are

�l (r) ≈ i−lCO√
π

e−κ

√
κρ

e−κ|ρ−1|

⎧⎪⎨
⎪⎩
⎛
⎜⎝

iκ
ε−δ

e−iθ

√
2

iκ
ε+δ

eiθ

⎞
⎟⎠�(ρ − 1)

+

⎛
⎜⎝

iκ
ε+δ

e−iθ

√
2

iκ
ε−δ

eiθ

⎞
⎟⎠�(1 − ρ)

⎫⎪⎬
⎪⎭eilθ , (B16)

where κ = p ≈ q ∼
√
δ2 − v2

0/4�1. We obtain the resulting
spin textures as⎛
⎝〈Sx〉

〈Sy〉
〈Sz〉

⎞
⎠ ≈ |CO|2e−κ

πκρ
e−2κ|ρ−1| 4δ

κ

⎛
⎝− sin θ

cos θ
v0√

4δ2−v2
0

⎞
⎠[2�(ρ−1)−1],

(B17)

which exhibit a Bloch type of domain-wall spin ordering
about the domain boundary as a result of the applied elec-
trostatic potential. Semiclassically, the in-gap states are, thus,
exponentially localized edge modes with spontaneously topo-
logical spin textures, which are reminiscent of the interfacial
Jackiw-Rebbi modes, but, here, the modes have a distinct
spectral features and an unconventional physical origin.

APPENDIX C: EFFECTS OF SMOOTHLY VARYING
ELECTROSTATIC POTENTIAL PROFILES AND

IMPURITIES ON IN-GAP MODES IN MASSIVE SPIN-1
DIRAC SYSTEMS

Realistically, the applied electrostatic potential will not be
infinitely sharp at the domain boundary, but, rather, the poten-
tial file varies smoothly across the boundary. From an exper-
imental standpoint, it is necessary to investigate if the in-gap
states can persist when the domain boundary is “smeared.”
The test would provide further support for the robustness and
topological origin of those states. To be concrete, we use the
following smoothly varying potential profile:

U (r) = −V0

2
tanh

(
r − R

d

)
+ V0

2
, (C1)

where d (1/d ) characterizes the boundary smoothness (sharp-
ness) with d = 0 corresponding to the ideal case of an in-
finitely sharp boundary. Generally, for a finite value of d ,
it is not feasible to write down explicit solutions of the
spin-1 Dirac equation. We, thus, exploit the finite differ-
ence method recently developed for massless spin-1/2 Dirac
fermions [85–88] and generalize it to massive spin-1 particles.
In particular, taking advantage of the rotational symmetry of
U (r) and using the polar decomposition ansatz,

ψl (r, θ ) = eilθ

√
r

⎛
⎝R1(r)e−iθ

R2(r)
R3(r)eiθ

⎞
⎠, (C2)

we obtain the corresponding radial eigenvalue equation of the
three-component spinor R = [R1,R2,R3]T as

ĤrR = ER, (C3)

where

Ĥr =
⎡
⎣ − iSx∂r + Sy

l

r
− 1/2

r

⎛
⎝ 0 −i/

√
2 0

i/
√

2 0 i/
√

2
0 −i/

√
2 0

⎞
⎠

+ Sz� + U (r)

⎤
⎦.

When discretizing this equation on a finite lattice/grid, we
need to judiciously specify the difference scheme and the
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FIG. 8. Eigenenergy spectra numerically calculated from the finite differential solver for massive spin-1 Dirac systems with a smooth
potential domain boundary. (a) For massive spin-1 Dirac particles, eigenenergy versus angular momentum (left panel) and the resulting local
DOS versus energy (right panel). (b) Results for the corresponding massive spin-1/2 Dirac fermion system for comparison.

boundary conditions at the ends of the lattice so as to preserve
the Hermiticity of the Hamiltonian. A feasible procedure
is to use the backward-forward-backward difference scheme
to approximate the derivatives of the three components in
Eq. (C3),

∂rR1 ≈ R(r) − R(r − h)

h
,

∂rR2 ≈ R(r + h) − R(r)

h
, (C4)

∂rR3 ≈ R(r) − R(r − h)

h
,

where h = L/(N + 1) is the discretization step size for the
system in the range of 0 < r < L with N + 2 lattice points.
The boundary conditions can be deduced from the Hermitian
constraint of Ĥr ,

∫ L

0
[R†

αĤrRβ − (ĤrRα )†Rβ]dr = 0,

which can be explicitly written as

− i√
2

[(R1α + R3α )∗R2β + R∗
2α (R1β + R3β )]

∣∣∣∣
L

0

= 0. (C5)

The specific boundary conditions on R(0) and R(L) then
become R1(0) + R3(0) = 0 and R2(L) = 0. Implementing

this procedure results in an eigenvalue problem for a 3N × 3N
Hermitian matrix H3N×3N = [Hμν] with entries given by

H(3n−2)(3n−2) = Un + �, H(3n−1)(3n−1) = Un,

H3n3n = Un − �,

H(3n−2)(3n−1) = i√
2h

− i
l − 1/2√

2rn

,

(C6)
H(3n−1)(3n−2) = (H(3n−2)(3n−1))

∗,

H(3n−1)3n = − i√
2h

− i
l + 1/2√

2rn

,

H3n(3n−1) = (H(3n−1)3n)∗

for n = 1, . . . , N . For n < N , the matrix elements are

H(3n−2)[3(n+1)−1] = − i√
2h

,

H[3(n+1)−1](3n−2) = i√
2h

,

(C7)

H3n[3(n+1)−1] = − i√
2h

,

H[3(n+1)−1]3n = i√
2h

.

We use the typical experimental values of the DOS [85,87,88]
to measure the spectral features and study the effects of the
smooth potential profile and impurity on the in-gap states
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FIG. 9. Effect of smooth domain boundaries on the bounded edge states. (a) Color-coded DOS versus energy E and boundary smoothness
d . (b) Left panel: partial DOS of the l = −4 state versus E for a smooth potential domain of d/h = 10 as depicted in the inset. Right panel:
wave density profile associated with the resonance in the partial DOS. (c) The corresponding results for the case of infinitely sharp potential
domain for comparison.

where the DOS is defined as

D(E , r0) =
∑

l

∑
ν

�

π

〈|Rν (r = r0)|2〉λ
(E − Elν )2 + �2

, (C8)

with ν labeling the obtained radial eigenstates for fixed l
and 〈|Rν (r = r0)|2〉λ = ∫ L

0 dr|Rν (r)|2e−(r−r0 )2/2λ represents
a spatial average of the wave function centered at r = r0

with a Gaussian weight λ. We approximate the δ function
by a Lorentzian with the broadening parameter �. In our
simulations, we use a system of size L/R = 10 and discretize
it with a uniform lattice of N = 600 sites. Other parameters
are chosen as �/E∗ = 0.2 and λ = 0.01R. Representative
results are shown in Figs. 8–10, which provide strong support
for the persistence of the in-gap modes in massive spin-1
Dirac systems in realistic systems with a smooth potential
profile and impurities.

APPENDIX D: MULTIPLE MULTIPOLES METHOD:
CALCULATION OF EIGENENERGIES AND EIGENSTATES

OF MASSIVE SPIN-1 DIRAC PARTICLES IN
ARBITRARY DOMAINS

To test the robustness and to establish the topological
origin of the in-gap states for massive spin-1 Dirac particles
analytically predicted from the setting of a circular potential
domain, we seek to search for such states in systems with
a deformed domain. A difficulty that must be overcome is
to calculate the eigenenergies and eigenstates of massive

spin-1 Dirac particle in deformed domains of an arbitrarily
geometric shape. We have succeeded in generalizing the
multiple multipole expansion method originally developed in
optics [89–93] to massive spin-1 Dirac particles. The end
result of this nontrivial generalization is a systematic, reliable,
accurate, and efficient computational paradigm incorporating
the evanescent waves to detect and ascertain the existence of
in-gap excitations/modes for arbitrarily shaped electrostatic
potential domains.

1. Method implementation

A concrete setting of a single potential domain of arbitrary
shape is illustrated in Fig. 11 where the exact shape of the ge-
ometric boundary is specified according to the superformula
in botany [58], a simple but powerful prescription that can
generate a vast variety of complex geometric shapes. In polar
coordinates, the superformula is

r(θ ) =
[∣∣∣∣1a cos

(m1

4
θ
)∣∣∣∣

n2

+
∣∣∣∣1b cos

(m2

4
θ
)∣∣∣∣

n3
]−1/n1

, (D1)

where the parameters (m1, m2, n1, n2, n3; a, b) control the
shape. The boundary defines two subregions, one exterior
another interior, denoted by I and II , respectively, as shown
in Fig. 11. The three-component spinor wave equation for a
massive spin-1 Dirac particle in each subregion τ ∈ {I, II}
reads

[Ŝ · k̂ + δSz]�
(τ )(r) = ετ�

(τ )(r), (D2)
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FIG. 10. Effect of scalar impurities on the in-gap edge modes. (a) DOS as a function of energy for different values of the disorder strength,
each obtained from 100 realizations as indicated by multiple colored curves. The insets show the corresponding ensemble-averaged DOS versus
energy with thick solid curves where the dashed curves are for the case of absence of disorder. (b) Typical wave density profiles corresponding
to the three cases of disorder strength in (a).

where δ = �/h̄vF and ετ = (E − Vτ )/h̄vF . In polar coor-
dinates r = (r, θ ), the spinor cylindrical wave basis of the
solutions with angular momentum l is

�
(τ )
l (r) = 1√

2

⎛
⎜⎝

ατ Bl−1(kτ r)e−iθ

i
√

2Bl (kτ r)

−βτ Bl+1(kτ r)eiθ

⎞
⎟⎠eilθ , (D3)

where ατ = kτ /(ετ − δ), βτ = kτ /(ετ + δ), and kτ =√
ε2
τ − δ2. Choosing Bl (kτ r) = H (1)

l (kτ r) (with H (1)
l being the

Hankel function of the first kind), we have that the Dirac-type
expansion basis wave functions originated at rmτ

for the
specific region τ are given by

�
(τ )
l (dmτ

) = 1√
2

⎛
⎜⎝

ατ H (1)
l−1(kτ dmτ

)e−iθmτ

i
√

2H (1)
l (kτ dmτ

)

−βτ H (1)
l+1(kτ dmτ

)eiθmτ

⎞
⎟⎠eilθmτ , (D4)

where τ denotes the complement of τ ,

dmτ
≡ |dmτ

| = |r − rmτ
|,

and

θmτ
= Angle(r − rmτ

),

with r ∈ τ . Carrying out the expansion in region II , we obtain
the wave function as

� (II )(r) =
∑
mI

∑
l

CmI
l

1√
2

⎛
⎜⎝

αII H
(1)
l−1(kII dmI )e−iθmI

i
√

2H (1)
l (kII dmI )

−βII H
(1)
l+1(kII dmI )eiθmI

⎞
⎟⎠eilθmI

≡

⎛
⎜⎝

ψ II
1

ψ II
2

ψ II
3

⎞
⎟⎠. (D5)

The wave function in region I has the form

� (I )(r) =
∑
mII

∑
l

CmII
l

1√
2

⎛
⎜⎝

αI H
(1)
l−1(kI dmII )e−iθmII

i
√

2H (1)
l (kI dmII )

−βI H
(1)
l+1(kI dmII )eiθmII

⎞
⎟⎠

× eilθmII + � in(r)

≡

⎛
⎜⎝

ψ I
1

ψ I
2

ψ I
3

⎞
⎟⎠, (D6)
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FIG. 11. Schematic of the setting of multiple multipole expan-
sion method. The domain in which an electrostatic potential is ap-
plied has boundary � separating regions I and II . The basis functions
originated at rmI (blue circular dots) are used to determine the wave
function in region II , whereas those at rmII (red circles) determine the
wave function in region I . The boundary conditions for the massive
spin-1 Dirac wave functions are imposed at the collocation points
r j ∈ �.

where

� in(r) = 1

2

⎛
⎝ αI√

2
βI

⎞
⎠eikI (x−x0 ) =

⎛
⎜⎝

ψ in
1

ψ in
2

ψ in
3

⎞
⎟⎠ (D7)

denotes the input source triggered by an applied external
excitation outside of the domain [cf., top panel in Fig. 11].

Imposing the relevant boundary conditions parametrized
by angle φ between the outward normal at any boundary point
r j and the x axis,

ψ
(I )
2

∣∣
r j∈�

= ψ
(II )
2

∣∣
r j∈�

, (D8a)(
ψ

(I )
1 eiφ + ψ

(I )
3 e−iφ

)∣∣
r j∈�

= (
ψ

(II )
1 eiφ + ψ

(II )
3 e−iφ

)∣∣
r j∈�

,

(D8b)

we obtain∑
mII

∑
l

jA(I )
lmII

CmII
l −

∑
mI

∑
l

jA(II )
lmI

CmI
l = − jψ in

2 , (D9a)

∑
mII

∑
l

jB(I )
lmII

CmII
l −

∑
mI

∑
l

jB(II )
lmI

CmI
l = − jχ in, (D9b)

where the substitutions are given by

jA(I )
lmII

= iH (1)
l

(
kI

∣∣r j − rmII

∣∣)eilθmII , (D10a)

jA(II )
lmI

= iH (1)
l

(
kII

∣∣r j − rmI

∣∣)eilθmI , (D10b)

FIG. 12. Validation of the multiple multipole method. For vali-
dation purposes, an analytically solvable case of a circular potential
domain is used. Top panel: eigenenergy E versus the angular momen-
tum quantum number l calculated analytically from Eq. (B4). Middle
panel: the local density of states at a given position inside the domain
as a function of energy, which are calculated numerically using the
multiple multipole base expansion method. Bottom panel: the corre-
sponding residual error versus energy quantifying the convergence of
the numerical method. The potential height is � = V0 = 6h̄vF /R.

jB(I )
lmII

= 1√
2

[
αI H

(1)
l−1

(
kI

∣∣r j − rmII

∣∣)ei(l−1)θmII eiφ

−βI H
(1)
l+1

(
kI

∣∣r j − rmII

∣∣)ei(l+1)θmII e−iφ
]
, (D10c)

jB(II )
lmI

= 1√
2

[
αII H

(1)
l−1

(
kII

∣∣r j − rmI

∣∣)ei(l−1)θmI eiφ

−βII H
(1)
l+1

(
kII

∣∣r j − rmI

∣∣)ei(l+1)θmI e−iφ
]
, (D10d)

and

jψ in
2 = 1√

2
eikI (|r j | cos θ j−x0 ), (D10e)

jχ in = 1

2
[αI e

iφ + βI e
−iφ]eikI (|r j | cos θ j−x0 ). (D10f)

For the boundary shape defined by Eq. (D1), the associated
unit normal direction can be written down explicitly,

eiφ = −ieiθ dr(θ )/dθ + ir(θ )

|dr(θ )/dθ + ir(θ )| . (D11)

In principle, the set consists of an infinite number of equations
with an infinite number of undetermined expansion coeffi-
cients CmII

l and CmI
l . To solve the system numerically, a finite

truncation is necessary, which turns out to be feasible, in
practice, by discretizing the boundary to a finite number of
points J and setting the number of basis functions Mτ in
the specific region τ and l ∈ [−L, L] for all the functions.
Carrying out the discretization procedure, we arrive at the
following finite-dimensional matrix equation:

M2JN · CN1 = −Y 2J1, (D12)

023368-15



HONG-YA XU AND YING-CHENG LAI PHYSICAL REVIEW RESEARCH 2, 023368 (2020)

where N = (2L + 1)MI + MII ) = NI + NII and the compact
substitutions are

CN×1 = [
C1II

−L · · ·CMII
L ,C1I

−L · · ·CMI
L

]T

Y 2J×1 = [
1ψ in

2 · · · Jψ in
2 , 1χ in · · · Jχ in

]T
,

(D13a)

and

M2J×N =
[

A(I ) −A(II )

B(I ) −B(II )

]
2J×N

, (D13b)

with

A(τ ) =
(

A(τ )
−L1τ

· · · A(τ )
lMτ

· · · A(τ )
LMτ

)
J×Nτ

, (D13c)

B(τ ) =
(

B(τ )
−L1τ

· · · B(τ )
lMτ

· · · B(τ )
LMτ

)
J×Nτ

, (D13d)

where

B(τ )
lmτ

= [ 1B(τ )
lmτ

, 2B(τ )
lmτ

, . . . , jB(τ )
lmτ

, . . . , JB(τ )
lmτ

]T
,

A(τ )
lmτ

= [
1A(τ )

lmτ
, 2A(τ )

lmτ
, . . . , jA(τ )

lmτ
, . . . , JA(τ )

lmτ

]T
.

As the expansions are generally nonorthogonal, more equa-
tions are required than the number of unknowns to enable the

deduction of an overdetermined matrix system with 2J � N ,
which can be solved by the standard pseudoinverse algorithm:
C = −pinv(M) ∗ Y . In particular, we use the residual error
evaluated at the boundary,

Error = ‖M ∗ C + Y‖
‖Y‖ ,

as the criterion to test convergence. We adjust the number,
the order, and/or the positions of the multipoles to ensure
Error < tolerance. After the unknown coefficients C have
been obtained, the associated wave functions and, hence, the
local density of states in the specific region can be calculated
accordingly.

2. Method validation

To validate the method, we exploit the analytically solvable
case of circular geometry. Figure 12 shows a comparison of
the eigenenergy spectra obtained analytically and calculated
from the multiple multipole method. The agreement is re-
markable.
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