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Anomalous chiral edge states in spin-1 Dirac quantum dots
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We uncover an unexpected family of in-gap chiral edge states in noninverted spin-1 Dirac quantum dots. The
system represents a topologically trivial confinement configuration where such edge states are not expected
according to the conventional wisdom. In particular, for a massive type of confining potential, two distinct
situations can arise: with or without mass sign change, corresponding to a quantum dot with or without band
inversion, respectively. The former case is conventional, where topologically protected chiral edge modes can
arise in the gap. For the latter, contrary to the belief that there should be no one-way current-carrying edge
channels, we find the surprising emergence of such edge states and the spin-1 analog of Majorana modes. These
states are strikingly robust and immune to backscattering. In the presence of a magnetic field, the edge states
result in peculiar Fock-Darwin states originated from Landau-level confinement. The unexpected phenomenon is
also validated in systems with bulk-topology regularization through (1) a properly regularized continuum model
and (2) an experimentally accessible tight-binding dice lattice system.
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I. INTRODUCTION

A fundamental principle in the study of topological phases
of matters is the bulk-edge correspondence [1,2], which states
that robust interfacial modes immune to impurities or ge-
ometric perturbations can arise on the boundary between
domains with distinct bulk topological invariants. The emer-
gence of the interfacial states thus represents a topological
confinement mechanism with applications in controlling a
variety of wave phenomena. The principle was originally
discovered in electronic systems, but in recent years topo-
logical states and the bulk-edge correspondence have been
extended to a broad range of fields in physics, from cold
atoms [3], optics and photonics [4], to classical fluid and
solid mechanics [5]. Generally, the Dirac theory of electrons
provides a theoretical framework to analyze and understand
the topological interfacial states. For example, in one spatial
dimension, a sign-changing kink profile of the mass term
can lead to topological confinement of zero-energy bound
states with the peculiar property of fractional charge [6]. In
higher dimensions, an extension of the kink-shaped mass
profile can give rise to distinct topological excitations such
as vortices and magnetic monopoles [7]. In gapped Dirac
materials [8–10] such as magnetic topological insulators, a
mass term in the Dirac equation corresponds to a bulk band
gap while its sign determines the band arrangement order and
the resulting bulk topological invariant. Experimentally, the
sign-changing Dirac mass scenario can be implemented using
domain-wall junctions with band inversion in Dirac materials.
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The focus of our work is on two-dimensional Dirac materi-
als hosting the pseudospin-1 generalization of Dirac fermions
(hereinafter referred to as spin-1 Dirac particles). Massless
spin-1 Dirac particles arise in systems whose energy band
structure constitutes a pair of Dirac cones and a flat band,
with a conical intersection of triple degeneracy [11–38].
Pseudospin-1 Dirac materials have been realized or simu-
lated in a variety of physical systems ranging from photonic
crystals [17] and optical lattices [27] to two-dimensional
electronic lattices [36,37] and superconducting qutrit [38]
as well as crystalline solids [31]. Quite recently, quantum
materials hosting a flat band, such as the magic-angle twisted
bilayer graphene, have become a forefront area of research.
These materials can generate remarkable physical phenom-
ena such as unconventional superconductivity [39,40], orbital
ferromagnetism [41,42], and Chern insulating behavior with
topological edge states.

In this paper, we present our discovery of the emergence of
a class of anomalous in-gap chiral edge states without requir-
ing the topological restriction dictated by conventional rules
of either the index theorem or the bulk-edge correspondence.
Our setting is the generic mesoscopic structure of quantum dot
for massive spin-1 Dirac particles arising in materials with an
energy gap. In particular, we consider confining potentials of
the massive type with closed boundaries and ask the question
of what type of topological quantum states may arise in
such a confinement. As for spin- 1

2 fermions [43,44], the sign
of the generalized spin-1 Dirac mass effectively defines the
associated bulk topological invariant. There are two distinct
situations of confinement: with or without a sign-changing
mass. The corresponding topological invariant thus describes
a quantum dot system with or without an inverted band
alignment. The former case is conventional and has been
known to host topologically protected chiral edge modes in
the gap [45,46]. For the latter case where there is no band
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FIG. 1. Schematic illustration of confinement configuration and unconventional chiral edge states. The anomalous topological states are
harbored at the closed interface delineating two insulating regions without band inversion. (a) Energy-momentum dispersion relation of a bulk
massive spin-1 excitation, (b) phase diagram in the (�1, �2) plane, and (c) the two distinct cases of confining configurations indicated in (b):
with or without band inversion.

inversion and hence no change in the associated bulk topology,
the expectation was that no current-carrying topological edge
channels would arise. However, in sharp contrast to the con-
ventional wisdom, we find that such states can arise for spin-1
Dirac particles and are remarkably robust against geometric
perturbations.

II. RESULTS FROM SYSTEMS DESCRIBED
BY CONTINUUM DIRAC HAMILTONIAN

The Hamiltonian for a two-dimensional (2D) spin-1 Dirac
particle in the position representation is Ĥ = vF Ŝ · D̂ +
Ŝz�(r), where vF is the Fermi velocity, Ŝ = (Ŝx, Ŝy) and Ŝz

are 3×3 spin-1 matrices, and D̂ = p̂ + eA denotes the conju-
gate momentum with vector potential A defining an applied
magnetic field B. The second term in the Hamiltonian, where
�(r) is the mass profile, is responsible for the confinement,
which takes into account Klein tunneling. The Hamiltonian
Ĥ acts on the three-component spinor wave function �(r) =
[ψ1, ψ2, ψ3]T with eigenenergy E . The associated homoge-
neous bulk spectra of Ĥ (with A = 0 and a given positive
constant mass �), as shown in Fig. 1(a), are E0 = 0 and
E± = ±

√
v2

F h̄2k2 + �2 , with the corresponding (normalized)
eigenstates given by

�k,0(r) = 1

|ε|

⎛⎝ k−/
√

2
−δ

−k+/
√

2

⎞⎠eik·r

and

�k,s(r) = 1

2

k

|ε|

⎛⎝k−/(ε − δ)√
2

k+/(ε + δ)

⎞⎠eik·r, (1)

where the band index is s = sign(E±), k± = kx ± iky, and
the wave vector k = (kx, ky) has length k = √

ε2 − δ2 with
ε = E/h̄vF and δ = �/h̄vF , which makes an angle θ =
arctan(ky/kx ) with the x axis. The finite mass � accounts for
the gap opening between the positive and negative energy
bands, breaks the time-reversal symmetry T , but preserves
the antiunitary particle-hole symmetry P . As such, the sys-
tem falls into the same symmetry category as that of the
Bogoliubov–de Gennes Hamiltonian for p + ip superconduc-
tors hosting chiral/unpaired Majorana modes [47]. With the
definition of the helicity operator ĥ = Ŝ · p/|p| measuring
the in-plane spin projection onto the direction of momentum,
the finite gap opening leads to the inequality |〈ĥ〉| < 1. This
generates a spin tilting out of the plane.

For a closed boundary delineating two domains with gap
openings (or masses) �1 (outside) and �2 (inside), depending
on the relative sign and size of the gap (mass), distinct
phases can be defined in the (�1,�2) plane, as shown in
Fig. 1(b). Among them, the quantum dot confinement phases,
i.e., regions of |�1| > |�2|, are divided into two classes:
inverted case with �1�2 < 0 [ 1© in Fig. 1(b)] and noninverted
case with �1�2 > 0 [ 2© in Fig. 1(b)]. In light of the Jackiw-
Rebbi paradigm and the associated index theorem that relates
in-gap excitations to the topological charges of the defined
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background field [48,49], robust in-gap modes are expected
in the former case even without any magnetic field (A = 0),
but not in the latter case. Quite surprisingly, as sketched in
Fig. 1(c) and demonstrated below, we find that the latter
confinement configuration can bear such modes as well.

A. Unconventional chiral edge states without band inversion

For a circularly shaped dot geometry with the inner and
outer regions defined by radius R, i.e., �(r) = �1�(r − R) +
�2�(R − r), the Dirac equation can be analytically solved in
the polar coordinates r = (r, θ ), where the Hamiltonian is

Ĥ =
⎛⎝ � D̂− 0

D̂+ 0 D̂−
0 D̂+ −�

⎞⎠, (2)

with

D̂± = h̄√
2

e±iθ

[
−ivF

(
∂r ± i

r
∂θ

)
+ α±

]
.

Under the symmetric gauge B = ∇×A = B/2(−y, x), the
magnetic field term is α± = ±iωB/2lB with cyclotron fre-
quency ωB = vF /lB and magnetic length lB = √

h̄/eB. Be-
cause the z component of the total angular momentum
Ĵz = −ih̄∂θ + h̄Ŝz commutes with Ĥ : [Ĵz, Ĥ ] = 0, the com-
mon set of eigenstates takes the general form

�l (r) = [R1(r)ei( j−1)θ ,R2(r)ei jθ ,R3(r)ei( j+1)θ ]T

with the total angular momentum quantum number j ∈ Z. For
the dispersive bands, in the absence of any external magnetic
field, we have

�
μ
j (r) = Cμ√

2

⎛⎜⎜⎝
αμZμ

j−1(kμr)e−iθ

i
√

2Zμ
j (kμr)

−βμZμ
j+1(kμr)eiθ

⎞⎟⎟⎠ei jθ , (3)

where the index μ = 1, 2 labels the outer and inner regions
of the circular domain boundary, αμ = h̄vF kμ/(E − �μ), and

βμ = h̄vF kμ/(E + �μ) with h̄vF kμ =
√

E2 − �2
μ , Z2

j (x) =
Jj (x), and Z1

j (x) = H (1)
j (x) are the Bessel and Hankel func-

tions of the first kind, respectively. The eigenstates can be
obtained by imposing continuity at the interface R, as shown
in Appendix A.

Figure 2(a) shows the eigenenergies versus j. Given �1 =
36 (h̄vF /R), for the conventional case of band inversion:
�2 = −6 (h̄vF /R), a branch of in-gap edge states arises [left
panel of Fig. 2(a)], as expected. In addition, there are two
other branches of edge modes located outside of the gap,
which are reminiscent of the quantized, equatorial Rossby
waves. The nonquantized version of these waves has been
uncovered recently [50], which has stimulated an interest in
the bulk-edge correspondence. Here, the waves represent a
feature of quantization of spin-1 Dirac particles in the con-
figuration of quantum-dot confinement. Surprisingly, for the
noninverted case with �2 = +6 (h̄vF /R), a class of unusual
edge modes also emerges in the gap, as shown in the right
panel of Fig. 2(a). Examining the associated spin projections
onto the plane (Sθ , Sz ) = (〈ν|Ŝ · n̂θ |ν〉, 〈ν|Ŝz|ν〉) with n̂θ =
(cos θ, sin θ ) and the current expectation value u = ∫

u · dr

with u = 〈ν|∇pĤ |ν〉 for eigenstates |ν〉, as indicated by the
arrows and scaled by colors, respectively, in Fig. 2(b), we see
that the unexpected states exhibit the feature of unidirectional
current-carrying similar to that of conventional topological
states with band inversion. This coincides with the linear or
monotonic dispersion relation between energy and angular
momentum for in-gap excitations with its slope dEj/d j in-
dicating the current direction. Remarkably, this phenomenon
generally emerges in quantum dot confinement of noninverted
type-I junctions, i.e., |�1| > |�2| and �1�2 > 0. A concrete
example of the dependence of the eigenenergy on the inner
domain band gap �2 is presented in Fig. 2(d) with differ-
ent markers denoting the corresponding states whose spatial
density profiles are plotted in Fig. 2(c), for a fixed positive
value of the outer domain band gap. We see that peculiar
evolution of the bulk spectrum into chiral (unidirectional
current-carrying) in-gap edge states occurs as �2 varies from
the negative to the positive side in spite of the absence of band
inversion. A quite remarkable phenomenon is the persistence
of the chiral zero-energy modes with the characteristic feature
of fully (in-plane) spin-current locking. The directions of the
associated current and spin are simply determined by the sign
of the band gap (or Dirac-type mass), which can be rigorously
demonstrated in general (see Appendix A 2). Specifically, in
the limit of hard-wall confinement �1 → ∞, the zero-energy
modes have the form

�0(r) ∼

⎛⎜⎝ iI1(|δ2|r)e−iθ

sign(δ2)
√

2I0(|δ2|r)

−iI1(|δ2|r)eiθ

⎞⎟⎠�(R − r), (4)

rendering fully in-plane polarized the spatial spin texture
S = [Sx, Sy, Sz] ∼ sign(δ2)[sin θ,− cos θ, 0], and leading to a
vanishing (outward) normal current ur = �

†
0 û · n̂r�0 = 0 but

a unidirectional azimuthal current

uθ = �
†
0 û · n̂θ�0 ≈ −sign(δ2)I0(|δ2|r)I1(|δ2|r).

As a result, for the emerging chiral zero-energy modes, we
have u · S/|u| ≡ 1, signifying a perfect spin-current locking.
Remarkably, these modes are not subject to any finite-size
effect due to the confinement [51] and are analogous to the
Majorana modes in topological superconductors because of
the persistent vortex currents and the same type of symmetries
obeyed [47].

B. Robustness

The appealing features of conventional topological chi-
ral edge modes are zero dissipation and robustness against
backscattering. Effectively, they execute one-way propagation
along the boundary even in the presence of geometric defor-
mations or impurities. A key question is whether the uncon-
ventional edge modes, due to lack of band inversion and bulk-
edge correspondence, have similar features. To address this
question, we investigate the effects of geometric deformations
in the domain boundary on these modes. For an arbitrarily
shaped domain without the circular symmetry, to calculate the
solutions of the Dirac equation for three-component spinors
is extremely challenging. We have developed an accurate and
efficient numerical method to find the solutions (Appendix B).
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FIG. 2. Unique chiral edge states and spectrum evolution in spin-1 Dirac insulator quantum dots. (a) Eigenenergies versus total angular
momentum for the conventional case of inverted band order/alignment characterized by a negative bulk band gap inside the dot �2 = −6
(h̄vF /R) (left), and the case without band inversion �2 = +6 (h̄vF /R) (right), with the exterior bulk band gap (Dirac-type mass) fixed at �1 =
+36 (h̄vF /R). Color bar shows the magnitude of the LDOS (local density of states) on a square-root scale. (b) Spectral features characterized
by the circulating current u with its values color coded and spin orientation denoted by the arrows in the (Sθ , Sz ) plane. (c) Spatial density
profile of representative states [indicated by different markers in (d)] with specific quantum numbers ν = ( j, n): (0,0) for the zero-energy mode
(bottom panels) and (−1, 1) for the first positive-energy mode of j = 1 (top panels) for inverted (left) and noninverted cases (right). (d) Energy
levels versus �2 with the given fixed value of �1.

Figure 3 shows some representative results, where the eigen-
spectra correspond to the resonance peaks in the dependence
of the total density of states (DOS) on energy, as shown in
Figs. 3(a) and 3(b) for the inverted and noninverted cases,
respectively. We see that in-gap bound modes arise in both
cases (the light red and blue shaded regions with |E | < 2).
For a family of geometric deformations characterized by the
deformed strength parameter d , we find that such modes
persist in the noninverted case and exhibit patterns similar to
those of modes in systems with topological band inversion.

For a conventional topological insulator based quantum
dot with band inversion, the edge states possess a large
orbital magnetic moment μo = e/2

∫
r×u d2r, which can

be exploited as an efficient probe to characterize topologi-
cal protection against disorder [52,53]. We use the orbital
magnetic moment to quantitatively characterize the chiral
current-carrying property of the unconventional topological
states and their robustness against geometric deformation.
Figure 3(c) shows the calculated orbital moment μ0 for the

in-gap bound modes arising from the inverted (red circles)
and noninverted (blue squares) quantum dots, as well as
the bounded bulk band states (gray diamonds) as a func-
tion of the geometric deformation parameter d . The results
indicate that the unconventional chiral edge states without
engaging any topological band inversion have a comparable
level of robustness as the conventional topological states with
band inversion. The feature of lack of backscattering, as
revealed by the independence of μo on the deformation in
Fig. 3(c), can also be seen from the spatial profiles of the
corresponding states for a given deformed geometry, as dis-
played in Fig. 3(d).

C. Spin-1 Fock-Darwin and Landau-level states

To further ascertain the emergence of the edge states with-
out band inversion, we study the Fock-Darwin characteristics
of the states by solving the Dirac equation (Appendix A 3) in
the presence of a magnetic field B under the symmetric gauge.
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FIG. 3. Robustness comparison between conventional and unconventional topological chiral edge states against boundary/geometric
deformation. For �1 = +20 (h̄vF /R), DOS as a function of energy for cases with (a) inverted band order �2 = −2 and (b) noninverted
order �2 = +2, where the peaks of each curve associated with a specific deformation parameter d (d = 2 for the case of a circularly closed
boundary and d > 2 for irregular shaped boundaries) indicate the corresponding bound states. (Different curves are shifted vertically for better
visualization). (c) Orbital moment μo versus d , where the red circles and blue squares are for the in-gap states obtained from (a) inverted and
(b) noninverted cases with eigenenergies |En| < |�2| (light red and light blue shaded areas), respectively. The gray diamonds correspond to the
usual bounded bulk states obtained from (b) (gray shaded region with En > 13). (d) Left column: real-space topography of densities |�n|2 of
the zeroth and the first positive-energy states in the gap as well as one representative ordinary state outside of the gap as indicated by different
colored markers in (a). Right column: the corresponding case for the states marked in (b).

As for the case of conventional Fock-Darwin states under
band inversion, for a weak magnetic field, quantum dot type
of confinement is dominant. However, for a strong field, the
vector potential term leads to highly degenerate Landau levels,
as shown in Fig. 4. Remarkably, they are quite resistant against
coalescence and generate a peculiar Fock-Darwin spectrum

that signifies persistent paramagnetic currents I j = −∂Ej/∂B.
Because of the absence of gap inversion, the Landau-level
type of confinement is normal. As a result, the interfacial
states at a weak field are expelled from the gapped region as
the Landau-level confinement becomes dominant. (A detailed
analysis of the Landau levels is presented in Appendix A 3.)
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FIG. 4. Spin-1 Fock-Darwin states. Energy-level evolution as a
function of the magnetic field parametrized by R2/l2

B, where lB =√
h̄/eB is the magnetic length, for (a) �2 = −5, a conventional case

with band inversion, and (b) � = +5, an unconventional case with-
out band inversion, where we set �1 = +100 (h̄vF /R) to guarantee
quantum dot confinement. In both cases, the dashed curves denote
the corresponding Landau levels.

III. REGULARIZATIOIN ASSOCIATED WITH BULK
TOPOLOGY AND BULK-EDGE CORRESPONDENCE

A. Anamalous chiral edge modes in noninverted,
regularized, continuum spin-1 quantum dots

We have demonstrated the emergence of chiral edge modes
in noninverted spin-1 Dirac quantum dot systems based on the
continuum model of generalized Dirac Hamiltonian subject
to a confining potential of the massive type. The position-
dependent, Dirac-type of mass profile can be viewed as an
external perturbation/field associated with the real-space spin
texture parametrized by M̂(r) = sgn(�(r))êz. The signifi-
cance of our finding of the edge modes, which defy conven-
tional wisdom, may be appreciated by drawing a comparison
with the spin- 1

2 counterpart system. In this regard, a paradigm
in the study of spin- 1

2 particle confinement is the Jackiw-
Rebbi model [6,7], in which the inverted configuration with
sign-changing Dirac mass (i.e., �1�2 < 0) defines a real-
space topological defect of domain wall characterized by a
topological charge as

N = 1

4π

∫∫
d2r M̂ ·

[
∂M̂

∂x
×∂M̂

∂y

]
= 1

2
[sgn(�1) − sgn(�2)] = ±1, (5)

which leads to the in-gap chiral edge states at the dot boundary
as expected (e.g., from the index theorem [48,49]). However,
the noninverted configuration is topologically trivial and does
not support such subgap modes. Our finding of the chiral edge
modes in noninverted spin-1 Dirac quantum dot systems thus
represents an exception that defies the conventional wisdom.
Remarkably, the chiral edge modes arising from the topologi-
cally trivial confinement structure share all main characteristic
features of in-gap chiral edge states such as spin-momentum

locking, perfect unidirectionality, and the same degree of ro-
bustness as the modes engaged in the topological confinement
of domain walls.

An established notion in understanding the topological
wave phenomena is the bulk-edge correspondence that relates
the net chiral edge modes at a boundary to the change in
the relevant bulk topological invariants across it. A natural
question is whether the anomalous chiral edge states can
survive the “scrutiny” of the principle of bulk-edge correspon-
dence. For spin- 1

2 Dirac Hamiltonian, this issue was addressed
earlier [54]. More recently, the issue has been studied in the
context of topological waves in fluids [55]. Here, to study
the bulk-edge correspondence for spin-1 Dirac particles, we
construct a regularized continuum model of massive spin-1
particles with an additional quadratically dispersive mass term
in momentum. The Hamiltonian is

H(1)
r (k) = (kx, ky, f − εk2) · (Ŝx, Ŝy, Ŝz ). (6)

With the regularization, the Hamiltonian is well behaved
at the momentum infinity |k| → ∞, leading to well-defined
topological invariants associated with all three bulk bands in
the momentum space that are either trivial or nontrivial. The
invariants are explicitly determined by the first Chern numbers
given by

C± = sgn( f ) + sgn(ε)

for the dispersive positive and negative bands, and C0 = 0 for
the middle flat band [56]. The sign of the mass f effectively
plays the consequential role in identifying the bulk topology
with given ε �= 0, despite that the quantity itself is not a Chern
number. Modeling the quantum dot confinement of spin-1
particles through a position-dependent mass profile given by

f (r) = f1�(|r| − R) + f2�(R − |r|),
we conclude that the inverted case with f1 f2 < 0 is associated
with a discontinuous change in the bulk topological invariant
(Chern number) across the dot boundary, while the nonin-
verted one with f1 f2 > 0 has a vanishing change and thus
represents a topologically trivial boundary from the point of
view of bulk-edge correspondence. For representative param-
eter values, we numerically solve the system and obtain the
eigenspectra for each case with an irregular boundary shape,
as shown in Figs. 5(a) and 5(b). We see that, conventionally
unexpected in-gap edge modes can emerge in the noninverted
case. This provides further confirmation of our finding of
these topological modes in regularized systems in which the
underlying bulk topology can be properly defined.

To present a stark contrast of the result in Fig. 5(b) to the
conventional understanding, we solve the spin- 1

2 counterpart
of the quantum dot system described by the following regu-
larized two-band Dirac Hamiltonian:

H(1/2)
r (k) = (kx, ky, f − εk2) · (σ̂x, σ̂y, σ̂z ), (7)

with the corresponding results for the same set of parameter
values shown in Figs. 5(c) and 5(d) for the inverted and
noninverted configurations, respectively. As expected, for the
spin- 1

2 system, the in-gap boundary modes completely disap-
pear in the case of noninverted quantum dot with the trivial
bulk topology.
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FIG. 5. Energy spectra of regularized continuum model of spin-1 and spin- 1
2 Dirac quantum dots. The regularization parameter is ε = −0.2.

(a), (b) State number versus eigenenergies for the inverted and noninverted configurations of spin-1 Dirac particles, respectively, and (c), (d) the
corresponding results for the spin- 1

2 Dirac system. The values of other parameters are ( f1 = 1, f2 = − 1
6 ) and ( f1 = 1, f2 = + 1

6 ) for the inverted
and noninverted configurations, respectively. The color bar indicates the LDOS intensity evaluated about the dot boundary.

B. Anamalous chiral edge modes in noninverted
lattice spin-1 quantum dots

We demonstrate the emergence of the anomalous chiral
edge modes in noninverted quantum dots using the exper-
imentally accessible lattice systems. Particularly, the spin-1
generalization of the ordinary Dirac Hamiltonian can effec-

tively describe relativisticlike, low-energy excitations of vari-
ous lattice-based electronic and photonic materials [17,31,36],
where the regularization issue is inherently taken into account
by the underlying Brillouin zone, a built-in compact torus
manifold. In analogy to graphene [57], we consider the dice-
lattice-based realization of spin-1 systems, as illustrated in

FIG. 6. Emergence of predicted anomalous chiral edge states in dice lattice systems/materials. (a) A schematic diagram of dice lattice with
the Bravais lattice constant a and nearest-neighbor hopping energy t (top panel), and the associated bulk energy-momentum dispersion relation
in the presence of a staggered sublattice potential (�/t = 0.85), which is responsible for gap opening and the related bulk topology. Near the
K point, the massive spin-1 Dirac lattice system features low-energy bulk quasiexcitations in the long-wavelength regime. (b), (c) Dependence
of LDOS on the eigenenergies for the inverted and noninverted, corresponding to the confinement configuration with parameter settings
(δ1, δ2) = (+20, −2) and (+20, +2), respectively. These parameter values are adopted from the continuum spin-1 Dirac Hamiltonian based
system for a meaningful comparison. The gray and green curves are for the circularly shaped quantum dot geometry, while the red and magenta
are for the deformed dot. Insets are magnification of of the specified regions of the plots reflecting the two valley degrees of freedom. Panels
(b1) and (b2) and (c1) and (c2) display the real-space distributions of the local current of the in-gap states belonging to one of the valleys as
indicated in (b) and (c), respectively.

013062-7



HONG-YA XU AND YING-CHENG LAI PHYSICAL REVIEW RESEARCH 2, 013062 (2020)

FIG. 7. Emergence of predicted anomalous chiral edge states in dice lattice for another parameter setting. The parameters are adopted
from the simplified effective spin-1 Hamiltonian leading to the key results shown in Fig. 2. (a), (b) Dependence of LDOS on the eigenenergies
for the inverted case (�2 = +6h̄vF /R) and noninverted case (�2 = −6h̄vF /R), respectively, for �1 = +36h̄vF /R. The zero modes obtained
for both cases are indicated in panels a0 and b0. The corresponding real-space density (|ψ0|2) and the current (Jmn) topographies are displayed
in the bottom panels.

Fig. 6(a). The tight-binding Hamiltonian in real space is

Hdice = −t
∑
〈i, j〉

(c†
BicA j + c†

BicC j + H.c.)

+�
∑

i

(c†
CicCi − c†

AicAi ), (8)

where c†
νi (cνi) with ν = A, B,C being the creation (annihila-

tion) operators of the localized states |νi〉 at site i belonging
to the sublattice ν, and 〈i, j〉 denotes pairs of nearest-neighbor
sites with the tunneling strength (hopping energy) t ≈ 3 eV.
The last term represents a staggered sublattice potential re-
sponsible for the Dirac type of mass-based gap opening. A
position-dependent staggered potential is applied to imple-
ment the two cases of quantum dot confinement: inverted
and noninverted, as in the effective continuum model. The
resulting spectral properties are predicted and characterized
by the LDOS evaluated about the dot boundary so as to probe
the edge states effectively. Given the Bravais lattice constant
a = 0.246 nm, we set the typical size of the dot to be 21a ∼
5 nm, contained within a larger square flake of edge size of
70a ∼ 17 nm, so the eigenspectra and the edge states in the
quantum dot confinement can be calculated. We use the open
source KWANT package [58] to perform the calculations.

Figures 6(b), 6(b1), 6(b2) and 6(c), 6(c1), 6(c2) show the
representative results. We see that the tight-binding lattice-
model-based simulations reveal the same remarkable phe-
nomenon as that predicted by the continuum model (without
any regularization in defining a proper bulk topology, Fig. 2),
where the in-gap edge states emerged in the topologically
trivial case of the noninverted configuration are immune
to relatively large geometric deformations as the topologi-
cally protected modes in the inverted case. Figure 7 shows
the corresponding results but for a different confinement

parameter set (�1,�2) as specified in the corresponding
continuum model [cf., Figs. 2 and 3]. As shown in the bottom
panels of Fig. 7, highly polarized in-plane pseudospin edge
currents and the real-space distributions of the probability
density of the zero modes are visually indistinguishable be-
tween the noninverted and inverted cases, providing further
confirmation of our theoretically predicted anomalous chiral
edge states in the tight-binding lattice setting that is directly
experimentally relevant. In both Figs. 6 and 7, the local current
flowing from site m to site n is calculated by

Jmn = i

h̄
[tmnψ

†
mψn − tnmψmψ†

n ], (9)

with tmn denoting the hopping amplitude between the two
sites.

We note that the staggered sublattice potential breaks the
inversion symmetry but preserves the time-reversal symmetry
due to the presence of two nonequivalent valleys K and K ′. As
in the case of graphene [57], the two valleys carry opposite
bulk topological charges NK = −NK ′ = sgn(�) (except the
flat band), while the Chern number based bulk topological
invariant always vanishes. As such, provided that intervalley
couplings are negligible, the in-gap excitations constitute pairs
of nearly degenerate modes circulating in opposite directions
in the two valleys. This feature has in fact been captured in our
simulated results as illustrated in the insets of Figs. 6(b) and
6(c). The physical significance is that the tight-binding Dice
lattice implementation of the spin-1 Dirac quantum dot hosts
two copies of the chiral edge states that can be thought of as
“valley-helical” states, analogous to the spin-helical states in
quantum spin Hall systems. Distinctively, our results suggest
an unconventional but physical way to attain such states with
appealing topological properties but without engaging the
proper topological restriction as imposed by the conventional
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rules of either bulk-edge correspondence or the index theorem
(which is relatively difficult to realize in experiments). Taken
together, our finding opens a new avenue to realizing topolog-
ically protected, chiral edge states in 2D Dirac materials.

IV. CONCLUSION AND DISCUSSION

Our study of spin-1 Dirac particles in a confining
potential of the massive type, which belong to the same
class-D symmetry (particle-hole symmetry P and broken
time-reversal symmetry T ) as in two-dimensional p + ip
superconductors, has led to the discovery of a class of
unconventional, backscattering-immune, chiral edge modes
without engaging the topological restriction of band inversion.
The uncovered mid-gap zero modes are reminiscent of the
chiral Majorana modes in terms of the associated persistent
vortex currents and the symmetry class obeyed. In the
presence of an external magnetic field, the modes lead to
a unique Fock-Darwin spectrum that endows them with
experimentally detectable signatures of sizable persistent
(paramagnetic) currents and magnetic moments. We expect
the unconventional states to be experimentally realizable
because they were unveiled under the same setting of quantum
dot confinement as for the conventional topological states. The
significance of our finding is that topologically protected states
can arise in condensed matter systems even without topological
restriction, opening a wider avenue for applications of
topological quantum states. Our finding is also fundamental
to the field of relativistic quantum wave dynamics.

To address the fundamental issue of regularization of spin-
1 Dirac Hamiltonian in the emergence of chiral edge states,
we have constructed a class of regularized continuum models.
Similar models have been used recently in classical fluids and
plasma physics [50,55,56] to study topological wave phenom-
ena and the bulk-edge correspondence in classical continuum
media. However, unlike all previous studies that focused
on the well-defined nonvanishing bulk topology regime, our
efforts have concentrated on searching for and understanding
possible topological edge states in a topologically trivial
setting in which such states were deemed impossible by the
conventional wisdom. We have accomplished this goal by
theoretically predicting the emergence of in-gap chiral edge
states in spin-1 Dirac quantum dot systems, regardless of
whether the system has or has no regularization, and regardless
of whether the system is continuum or of the directly exper-
imentally relevant lattice type. Remarkably, the anomalous
in-gap chiral edge modes uncovered in our work can possess
the characteristic traits of spin-current (momentum) locking,
perfect unidirectionality, and the same level of robustness
as those requiring the proper topological restriction with the
zero modes. Our finding thus represents a contribution to the
fundaments of the field of topological quantum states.
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APPENDIX A: PROPERTIES OF GAPPED DIRAC
MATERIALS AND SOLUTIONS OF THE

GENERALIZED DIRAC-WEYL EQUATION

1. Basics

We consider gapped Dirac materials hosting spin-1 low-
energy excitations. The governing equation is the general-
ized Dirac-Weyl equation for three-component spinor �(r) =
[ψ1(r), ψ2(r), ψ3(r)]T :

Ĥ�(r) = [vF Ŝ · D̂ + �Ŝz]�(r) = E�(r), (A1)

where D̂ = p̂ + eA with p̂ being the momentum operator is a
scalar type of perturbation, e.g., an electrostatic potential. The
local current û associated with state �(r) can be calculated
from the local expectation value as

u(r) = vF (ψ∗
1 , ψ∗

2 , ψ∗
3 )Ŝ

⎛⎝ψ1

ψ2

ψ3

⎞⎠
=

√
2vF (Re[ψ∗

2 (ψ1+ψ3)],−Im[ψ∗
2 (ψ1−ψ3)]). (A2)

By definition, the local current is the local probability density
of spin vector (Sx, Sy).

The Hamiltonian in Eq. (A1) possesses a particular type
of discrete symmetry under the action of the antiunitary
operators of time reversal T and particle-hole conjugate P
defined as

T =
⎛⎝ 0 0 −1

0 1 0
−1 0 0

⎞⎠K
∣∣∣
k→−k

,

P =
⎛⎝0 0 1

0 1 0
1 0 0

⎞⎠K
∣∣∣
k→−k

, (A3)

where K is the operator for complex conjugation. In general,
a finite gap opening perturbation, i.e., the Dirac-type mass
� �= 0, will break the time-reversal symmetry T ĤT −1 �=Ĥ
even without any externally applied magnetic field (i.e.,
A = 0). However, the particle-hole symmetry is preserved:
PH ( p̂)P−1 = −Ĥ (−p̂). We note that, in terms of symme-
try classification, the spin-1 generalization of a conventional
(2 + 1)-dimensional massive Dirac fermion Hamiltonian be-
longs to class D (with P2 = 1 and broken T ), which is the
same as that of the Bogoliubov–de Gennes (BdG) Hamil-
tonian for the rare, p + ip type of superconductors hosting
chiral/unpaired Majorana modes [47,59].

In the gapped phase with a finite constant � and absence
of external magnetic field (A = 0), the eigenenergies of Ĥ
are E0 = 0 and E± = ±

√
�2 + h̄vF |k|2 with the wave vector

k = (kx, ky) making an angle θ = arctan(ky/kx ) with the x
axis. The corresponding eigenvectors are

|k, 0〉 = 1√
2
√

|k|2 + δ2
[ke−iθ , −

√
2δ, −keiθ ]T

and

|k, s〉 =
√

ε2
s − δ2

2|εs|

⎛⎝αe−iθ√
2

βeiθ

⎞⎠, (A4)

where α = √
ε2

s − δ2/(εs − δ) and β = √
ε2

s − δ2/(εs + δ)
with δ = �/h̄vF , εs = Es/h̄vF , and s = ±.
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In the polar coordinates r = (r, θ ), Eq. (A1) becomes⎛⎝ δ D̂− 0
D̂+ 0 D̂−
0 D̂+ −δ

⎞⎠⎛⎝ψ1

ψ2

ψ3

⎞⎠ = ε

⎛⎝ψ1

ψ2

ψ3

⎞⎠, (A5)

where

D̂± = − i√
2

e±iθ

[(
∂r ± i

r
∂θ

)
+ ia±

]
,

with

a± = (êr ± iêθ ) · Ae/h̄,

êr = (cos θ, sin θ ), êθ = (− sin θ, cos θ ).

2. Eigensolutions of dot confinement without magnetic field

Analytical solutions. We consider a circularly shaped
nonuniform gap opening profile that describes a quantum dot
confinement geometry of radius R:

�(r) = �I�(r − R) + �II�(R − r).

For A = 0, the common set of eigenstates has the general form

�l (r) = [R1(r)ei(l−1)θ ,R2(r)eilθ ,R3(r)ei(l+1)θ ]T , (A6)

where l ∈ Z is the total angular momentum quantum number.
The associated local current density is u(r, θ ) = ur êr + uθ êθ

with

uθ = −
√

2vF Im[R∗
2(R1 − R3)],

ur =
√

2vF Re[R∗
2(R1 + R3)]. (A7)

For the two dispersive bands, we have

�
μ

l (r) = Cμ√
2

⎛⎜⎝αμZμ

l−1(kμr)e−iθ

i
√

2Zμ

l (kμr)

−βμZμ

l+1(kμr)iθ

⎞⎟⎠eilθ , (A8)

where the indices μ = I, II label the outer and inner regions of
the circular domain boundary, respectively, and the parameters
are

αμ = h̄vF kμ/(E − �μ),

βμ = h̄vF kμ/(E + �μ),

h̄vF kμ =
√

E2 − �2
μ,

and Z II
l (x) = Jl (x) and Z I

l (x) = H (1)
l (x) are Bessel and Hankel

functions of the first kind, respectively. Matching the spinor
wave functions �II

l and �I
l at the domain boundary (interface)

r = R, we obtain the following transcendental equation:

Jl (kIIR)

⎡⎣
√

E2 − �2
I

E − �I
H (1)

l−1(kIR) −
√

E2 − �2
I

E + �I
H (1)

l+1(kIR)

⎤⎦
= H (1)

l (kIR)

⎡⎣
√

E2 − �2
II

E − �II
Jl−1(kIIR)

−
√

E2 − �2
II

E + �II
Jl+1(kIIR)

⎤⎦, (A9)

which can be calculated numerically to yield the eigenen-
ergies and eigenstates with high accuracy. In particular, for
an energy value within the bulk band gap, i.e., |E | < |�I/II|,
the radial wave numbers are purely imaginary and can be
redefined as

kIR =
√

E2 − �2
I

h̄vF /R
=
√

ε2 − δ2
I = iκI;

kIIR =
√

E2 − �2
II

h̄vF /R
=
√

ε2 − δ2
II = iκII. (A10)

With the substitutions

Kl (x) = π

2
il+1H (1)

l (ix), Il (x) = i−l Jl (ix),

we rewrite the eigenvalue equation (A9) as

Il (κII )

[
κI

ε − δI
Kl−1(κI ) + κI

ε + δI
Kl+1(κI )

]
= −Kl (κI )

[
κII

ε − δII
Il−1(κII ) + κII

ε + δII
Il+1(κII )

]
(A11)

with the associated eigenstates given by

�l (r) = 〈I|�l〉 + 〈II|�l〉

=
√

2i−lCI

π

⎛⎜⎝
iκI

ε−δI
Kl−1(κIρ)e−iθ

√
2Kl (κIρ)

iκI
ε+δI

Kl+1(κIρ)eiθ

⎞⎟⎠eilθ�(r − R)

+ il+1CII√
2

⎛⎜⎝
−iκII
ε−δII

Il−1(κIIρ)e−iθ

√
2Il (κIIρ)

−iκII
ε+δII

Il+1(κIIρ)eiθ

⎞⎟⎠eilθ�(R − r),

(A12)

where ρ = r/R, Il (x) and Kl (x) are modified Bessel functions.
As explained in the main text, a surprising phenomenon un-

covered through the solutions as described above is the emer-
gence of in-gap chiral edge modes on the confinement bound-
ary without imposing any topological band inversion. This
breaks the widely believed principle of bulk-edge correspon-
dence. Especially, this principle stipulates that only domain-
wall configurations with band inversion, i.e., �I�II<0,
can bear chiral in-gap edge states. Figure 8 shows some
representative results. For reference, we also include the cor-
responding results for the conventional, massive spin- 1

2 Dirac
fermion system. We see that, for the spin-1 system, a branch
of chiral edge modes exists for the noninverted case, but no
such nodes can arise in the spin- 1

2 Dirac fermion system or
other existing wave systems [44–46,60].

Existence of chiral zero-energy modes: A rigorous proof.
An intriguing phenomenon in Fig. 8 is the emergence of
the zero-energy modes. The existence of these modes can
be proved rigorously, enabling an analytic understanding of
their properties. In particular, for ε = 0, the eigenvalue equa-
tion (A11) reduces to

2l
Il (|δII|)Kl (|δI|)

δIδII
[δI + e−i(l−1)πδII] = 0, (A13)
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FIG. 8. Eigenspectra of a massive Dirac quantum dot confinement. Top and bottom panels: calculated eigenspectra for a quantum dot of
Dirac materials of conventional massive spin- 1

2 Dirac fermions and spin-1 generalization, respectively. In both cases, the Dirac mass is fixed
at �I = +36h̄vF /R. The left and middle columns show the eigenenergy versus the angular momentum for the inverted (�II = −6h̄vF /R) and
noninverted (�II = +6h̄vF /R) confinement cases, respectively. The right column is eigenenergy versus the gap opening (i.e., mass) of the
inner domain �II. For spin- 1

2 Dirac fermions, without band inversion no topological edge states can occur (top middle panel and right half of
the top right panel).

which gives an eigensolution for l = 0, i.e.,

ε = 0 : �0(r) = �I
0(r)�(r − R) + �II

0 (r)�(R − r),

with

r > R : �I
0(r) =

√
2CI

π

⎛⎜⎝ −iK1(|δI|ρ)e−iθ

sgn(δI )
√

2K0(|δI|ρ)

iK1(|δI|ρ)eiθ

⎞⎟⎠ (A14a)

and

r < R : �II
0 (r) = iCII√

2

⎛⎜⎝ iI1(|δII|ρ)e−iθ

sgn(δII )
√

2I0(|δII|ρ)

−iI1(|δII|ρ)eiθ

⎞⎟⎠. (A14b)

The underlying local current and spin densities are

uI = 8vF |CI|2
π2

K0K1 × sgn(δI )(− sin θ, cos θ ) = (
uI

x, uI
y

)
,

uII = 2vF |CII|2I0I1 × sgn(δII )(sin θ,− cos θ ) = (
uII

x , uII
y

)
(A15a)

and

SI = 8|CI|2
π2

K0K1 × sgn(δI )(− sin θ, cos θ, 0) = (
SI

x, SI
y, SI

z

)
,

SII = 2|CII|2I0I1 × sgn(δII )(sin θ,− cos θ, 0) = (
SII

x , SII
y , SII

z

)
.

(A15b)

We see that, for the zero-energy modes, the spin textures are
fully in-plane polarized and perfectly locked with the currents,
regardless of whether there is topological band inversion (i.e.,
δIδII < 0) or not.

Current-carrying properties and dispersion relation be-
tween energy and angular momentum. The current-carrying
properties of the states can be inferred from the dispersion re-
lation between energy and angular momentum, and vice versa.
In particular, with the ansatz in Eq. (A6), the generalized
Dirac equation in the radial direction deduced from Eq. (A5)
is

ĤrRl (r) = εlRl (r), (A16)
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where Rl (r) = [R1,R2,R3]T with the radial Hamiltonian given by

Ĥr =

⎛⎜⎜⎝
δ − i√

2

(
d
dr + l

r

)
0

− i√
2

(
d
dr − l−1

r

)
0 − i√

2

(
d
dr + l+1

r

)
0 − i√

2

(
d
dr − l

r

) −δ

⎞⎟⎟⎠. (A17)

Making use of the Hellmann-Feynman theorem [61], we get

∂εl

∂l
=
〈
Rl

∣∣∣∣∂Ĥr

∂l

∣∣∣∣Rl

〉
=
∫ ∞

0
r dr(R∗

1,R∗
2,R3)

⎛⎜⎝ 0 − i
r
√

2
0

i
r
√

2
0 − i

r
√

2

0 i
r
√

2
0

⎞⎟⎠
⎛⎜⎝R1

R2

R3

⎞⎟⎠
=
∫ ∞

0
dr{−

√
2Im[R∗

2(R1 − R3)]} ≡
∫ ∞

0
dr

uθ

vF
= u

vF
, (A18)

which relates, in an explicit way, the current carried by the eigenstates to the derivative of the corresponding eigenenergy with
respect to the total angular momentum quantum number l .

3. Landau levels and confinement in the presence of a magnetic field

We consider an external, perpendicular magnetic field B = Bêz applied to the 2D quantum dot structure. It is convenient to
choose the symmetric gauge: A = B/2(−y, x). Equation (A5) becomes⎛⎜⎜⎝

δ − ie−iθ√
2

(
∂r − i

r ∂θ + br
)

0

− ieiθ√
2

(
∂r + i

r ∂θ − br
)

0 − ie−iθ√
2

(
∂r − i

r ∂θ + br
)

0 − ieiθ√
2

(
∂r + i

r ∂θ − br
) −δ

⎞⎟⎟⎠�l (r) = ε�l (r), (A19)

where b = eB/2h̄ with e being the magnitude of the electronic charge. For a bulk gapped system of a spatially uniform δ (gap
opening), for ε2 �= δ2, we obtain the following decoupled second-order differential equation:

d2R2

dr2
+ 1

r

dR2

dr
−
[

b2r2 + a + n2

r2

]
R2 = 0, (A20)

where

a = 2b(l − δ/ε) − (ε2 − δ2)

and n = |l| with l ∈ Z. The solutions which are regular at the origin are

R2(r) = crne−z/2M(γ , η, z), (A21)

where M denotes the Kummer M function, c is the coefficient, z = br2, η = n + 1, and

γ = 1

4

[
a

b
+ 2(n + 1)

]
. (A22)

The other two components can be obtained by substituting the expression of R2 back into Eq. (A19). The whole solution set for
l > 0 is given by ⎛⎜⎝R1

R2

R3

⎞⎟⎠ = c+rne−z/2

⎛⎜⎜⎝
2n

(ε−δ)r M(γ , n, z)

iM(γ , n + 1, z)

− 2br(n+1−γ )
(ε+δ)(n+1) M(γ , n + 2, z)

⎞⎟⎟⎠, (A23a)

for l < 0 ⎛⎝R1

R2

R3

⎞⎠ = c−rne−z/2

⎛⎜⎜⎝
2brγ

(ε−δ)(n+1) M(γ + 1, n + 2, z)

iM(γ , n + 1, z)

− 2n
(ε+δ)r M(γ − 1, n, z)

⎞⎟⎟⎠. (A23b)
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For l = 0, we have ⎛⎝R1

R2

R3

⎞⎠ = c0e−z/2

⎛⎜⎝
2b−ε(ε+δ)

2ε
rM(γ + 1, 2, z)

iM(γ , 1, z)

− 2b+ε(ε−δ)
2ε

rM(γ , 2, z)

⎞⎟⎠. (A23c)

For ε2 − δ2 = 0, Eq. (A19) has another regular solution at ε = −δ, l = −1 with the associated state given by⎛⎝R1

R2

R3

⎞⎠ = ce−z/2

⎛⎝0
0
1

⎞⎠. (A24)

Normalizability of M(γ , η, z) requires γ to be a nonpositive integer −N = 0,−1,−2, . . . , which leads to Landau levels

ELL =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�, for l = −1

h̄vF
R

−δ±
√

δ2+4(R/lB )2

2 , for l = 0

2 h̄vF
R

√
− p

3 cos
[

1
3 arccos

(
3q
2p

√
−3
p

)
− ν 2π

3

]
, for l �= 0

(A25)

where ν = 0, 1, 2, and

p = −
[
δ2 +

(
R

lB

)2

(2N + l + |l| + 1)

]
, q = δ

(
R

lB

)2

with the magnetic length defined as lB = √
h̄/eB.

In the presence of the confining potential �(r), to solve the system analytically is infeasible due to the complex interplay
between confinement mechanisms due to the dot geometry and the Landau levels. We thus develop a numerical solver for massive
spin-1 particles based on the finite-difference method (FDM) originally designed for conventional spin- 1

2 Dirac fermion systems
[62–65]. In particular, using the polar decomposition ansatz

ψl (r, θ ) = eilθ

√
r

⎛⎜⎝R̃1(r)e−iθ

R̃2(r)

R̃3(r)eiθ

⎞⎟⎠, (A26)

we obtain the corresponding radial eigenvalue equation for the three-component spinor R̃ = [R̃1, R̃2, R̃3]T as

ĤrR̃ =
⎡⎣−iŜx∂r + Ŝy

(
l

r
+ br

)
− 1/2

r

⎛⎝ 0 −i/
√

2 0
i/

√
2 0 i/

√
2

0 −i/
√

2 0

⎞⎠ + Ŝz
�(r)

h̄vF

⎤⎦R̃ = E

h̄vF
R̃. (A27)

When discretizing this equation on a finite lattice/grid, it is necessary to judiciously specify the difference scheme and the
boundary conditions at the ends of the lattice so as to preserve the Hermiticity of the Hamiltonian. An effective procedure is the
backward-forward-backward (BFB) difference scheme to approximate the derivatives of the three components in Eq. (A27):

∂rR̃1 ≈ R̃1(r) − R̃1(r − h)

h
, ∂rR̃2 ≈ R̃2(r + h) − R̃2(r)

h
, ∂rR̃3 ≈ R̃3(r) − R̃3(r − h)

h
, (A28)

where h = L/(N + 1) is the discretization step size for the
system in the range 0 < r < L with N + 2 lattice points.
The boundary conditions can be deduced from the Hermitian
constraint of Ĥr :∫ L

0
[R̃†

αĤrR̃β − (ĤrR̃α )†R̃β]dr = 0,

which can be explicitly written as

− i√
2

[(R̃1α+R̃3α )∗R̃2β +R̃∗
2α (R̃1β +R̃3β )]

∣∣L
0 =0. (A29)

The specific boundary conditions on R̃(0) and R̃(L) then
become

R̃1(0) + R̃3(0) = 0, R̃2(L) = 0.

Implementing this procedure results in an eigenvalue prob-
lem for a 3N×3N Hermitian matrix H3N×3N = [Hμν] with
elements given by

H(3n−2)×(3n−2) = δn, H(3n−1)×(3n−1) = 0, H3n×3n = −δn,

H(3n−2)×(3n−1) = i√
2h

− i√
2

(
l − 1/2

rn
+ brn

)
,

H(3n−1)×(3n−2) = (H(3n−2)×(3n−1))
∗,

H(3n−1)×3n = − i√
2h

− i√
2

(
l + 1/2

rn
+ brn

)
,

H3n×(3n−1) = (H(3n−1)×3n)∗, (A30)
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FIG. 9. Validation of finite-difference method for solving the generalized spin-1 Dirac quantum dot confinement systems. Shown are
comparisons between numerical and analytic results: contour map of the density of states (DOS) versus energy and angular momentum
for A = 0, where the analytic solutions are represented by the markers. For fixed value of �I = +20h̄vF /R, the cases with and without band
inversion are specified by �II = −2h̄vF /R and �II = +2h̄vF /R, respectively.

for n = 1, . . . , N . For n < N , the matrix elements are

H(3n−2)×[3(n+1)−1] = − i√
2h

, H[3(n+1)−1]×(3n−2) = i√
2h

, H3n×[3(n+1)−1] = − i√
2h

, H[3(n+1)−1]×3n = i√
2h

. (A31)

We use the typical experimental values of the local density of states (DOS) [62,64,65] to measure the spectral features, which
are defined as

D(E , r0) =
∑

l

∑
ν

�

π

〈|Rν (r = r0)|2〉λ
(E − Elν )2 + �2

, (A32)

with ν labeling the radial eigenstates for fixed l , and

〈|Rν (r = r0)|2〉λ =
∫ L

0
dr|Rν (r)|2e−(r−r0 )2/2λ

representing the spatial average of the wave function centered at r = r0 with a Gaussian weight λ. We approximate the δ

function by a Lorentzian with the broadening parameter �. For illustrative purpose, in our simulations, we use a system of size
L/R = 10 and discretize it with a uniform lattice of N = 600 sites. Other parameters are chosen as �/E∗ = 0.2 and λ = 0.1R.
Representative results are shown in Figs. 9 and 10, which agree with the analytic results (in special cases where they are available)
very well. Physically, the results provide strong support for the predicted emergence of unconventional in-gap chiral edge modes
in gapped spin-1 Dirac systems without topological band inversion.
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FIG. 10. Evolution of eigenenergy as a function of the applied magnetic field in dot confinement. The field is parametrized by (R/lB)2.
The left and right columns are for the cases where there is and is no band inversion: �II = −2h̄vF /R and �II = +2h̄vF /R, respectively, with
respect to the fixed gap opening of the outer domain �I = +20h̄vF /R. For high magnetic fields, the results converge to the Landau level
spectrum indicated by colored curves.

APPENDIX B: MULTIPLE MULTIPOLES METHOD:
CALCULATION OF EIGENENERGIES AND EIGENSTATES

OF MASSIVE SPIN-1 DIRAC PARTICLE IN
ARBITRARY DOMAINS

For an arbitrarily shaped dot geometry, we develop a multi-
ple expansion technique to solve the Dirac-Weyl equation for
spin-1 particles, incorporating the evanescent waves by gen-
eralizing the multiple multipole expansion method originally
developed in optics [66–70]. Our method is computationally
reliable and efficient, providing a powerful tool to detect and
verify the existence of in-gap excitations/modes and study
their robustness in the presence of geometric deformations.

1. Implementation

A concrete setting of a single potential domain of arbitrary
shape is illustrated in Fig. 11, where the exact shape of the ge-
ometric boundary is specified according to the superformula
in botany [71], a simple but powerful prescription that can

generate a vast variety of complex geometric shapes. In the
polar coordinates, the superformula is

r(θ ) =
[∣∣∣∣1a cos

(
m1

4
θ

)∣∣∣∣n2

+
∣∣∣∣1b cos

(
m2

4
θ

)∣∣∣∣n3
]−1/n1

, (B1)

where the parameters (m1, m2, n1, n2, n3; a, b) control the
shape. The boundary defines two subregions, one exterior
another interior, denoted by I and II, respectively, as shown
in Fig. 11. The three-component spinor wave equation for a
massive spin-1 Dirac particle in each sub-region τ ∈ {I, II}
reads as

[Ŝ · k̂ + δτ Sz]�
(τ )(r) = ε� (τ )(r), (B2)

where δτ = �τ/h̄vF and ε = E/h̄vF . In the polar coordinates
r = (r, θ ), the spinor cylindrical wave basis of the solutions
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FIG. 11. Schematic illustration of the setting of multiple multipole
expansion method. The confining potential has a closed boundary
� separating regions I and II. The basis functions originated at rmI

(blue circular dots) are used to determine the wave function in region
II, while those at rmII (red crosses) determine the wave function in
region I. The boundary conditions for the massive spin-1 Dirac wave
functions are imposed at the collocation points r j ∈ �.

with angular momentum l is

�
(τ )
l (r) = 1√

2

⎛⎜⎝ατ Bl−1(kτ r)e−iθ

i
√

2Bl (kτ r)

−βτ Bl+1(kτ r)eiθ

⎞⎟⎠eilθ , (B3)

where ατ = kτ /(ε − δτ ), βτ = kτ /(ε + δτ ), and kτ =√
ε2 − δ2

τ . Choosing Bl (kτ r) = H (1)
l (kτ r) (with H (1)

l being the
Hankel function of the first kind), we have that the Dirac-type
expansion basis wave functions originated at rmτ

for the
specific region τ are given by

�
(τ )
l (dmτ

) = 1√
2

⎛⎜⎝ατ H (1)
l−1(kτ dmτ

)e−iθmτ

i
√

2H (1)
l (kτ dmτ

)

−βτ H (1)
l+1(kτ dmτ

)eiθmτ

⎞⎟⎠eilθmτ , (B4)

where τ denotes the complement of τ ,

dmτ
≡ |dmτ

| = |r − rmτ
|

and

θmτ
= Angle(r − rmτ

)

with r ∈ τ . Carrying out the expansion in region II, we obtain
the wave function as

� (II)(r) =
∑
mI

∑
l

CmI
l

1√
2

⎛⎜⎜⎝
αIIH

(1)
l−1(kIIdmI )e

−iθmI

i
√

2H (1)
l (kIIdmI )

−βIIH
(1)
l+1(kIIdmI )e

iθmI

⎞⎟⎟⎠eilθmI

≡

⎛⎜⎝ψ II
1

ψ II
2

ψ II
3

⎞⎟⎠. (B5)

The wave function in region I has the form

� (I)(r) =
∑
mII

∑
l

CmII
l

1√
2

⎛⎜⎜⎝
αIH

(1)
l−1(kIdmII )e

−iθmII

i
√

2H (1)
l (kIdmII )

−βIH
(1)
l+1(kIdmII )e

iθmII

⎞⎟⎟⎠eilθmII

+� in(r) ≡

⎛⎜⎝ψ I
1

ψ I
2

ψ I
3

⎞⎟⎠, (B6)

where

� in(r) = 1

2

⎛⎜⎝ αI√
2

βI

⎞⎟⎠eikI (x−x0 ) =

⎛⎜⎝ψ in
1

ψ in
2

ψ in
3

⎞⎟⎠ (B7)

denotes the input source triggered by an applied external
excitation outside of the domain (cf. top panel of Fig. 11).

Imposing the relevant boundary conditions parametrized
by the angle φ between the outward normal at any boundary
point r j and the x axis,

ψ
(I)
2

∣∣
r j∈�

= ψ
(II)
2

∣∣
r j∈�

, (B8a)(
ψ

(I)
1 eiφ + ψ

(I)
3 e−iφ

)∣∣
r j∈�

= (
ψ

(II)
1 eiφ + ψ

(II)
3 e−iφ

)∣∣
r j∈�

,

(B8b)

we obtain∑
mII

∑
l

jA(I)
lmII

CmII
l −

∑
mI

∑
l

jA(II)
lmI

CmI
l = − jψ in

2 , (B9a)

∑
mII

∑
l

jB(I)
lmII

CmII
l −

∑
mI

∑
l

jB(II)
lmI

CmI
l = − jχ in, (B9b)

where the substitutions are given by

jA(I)
lmII

= iH (1)
l (kI |r j − rmII |)eilθmII , (B10a)

jA(II)
lmI

= iH (1)
l (kII|r j − rmI |)eilθmI , (B10b)

jB(I)
lmII

= 1√
2

[
αIH

(1)
l−1(kI|r j − rmII |)ei(l−1)θmII eiφ − βIH

(1)
l+1(kI|r j − rmII |)ei(l+1)θmII e−iφ

]
, (B10c)

jB(II)
lmI

= 1√
2

[
αIIH

(1)
l−1(kII|r j − rmI |)ei(l−1)θmI eiφ − βIIH

(1)
l+1(kII|r j − rmI |)ei(l+1)θmI e−iφ

]
, (B10d)
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and

jψ in
2 = 1√

2
eikI (|r j | cos θ j−x0 ), (B10e)

jχ in = 1

2
[αIe

iφ + βIe
−iφ]eikI (|r j | cos θ j−x0 ). (B10f)

For the boundary shape defined by Eq. (B1), the associated unit normal direction can be written explicitly

eiφ = −ieiθ dr(θ )/dθ + ir(θ )

|dr(θ )/dθ + ir(θ )| . (B11)

In principle, the set consists of an infinite number of equations with an infinite number of undetermined expansion coefficients
CmII

l and CmI
l . To solve the system numerically, a finite truncation is necessary, which turns out to be feasible in practice by

discretizing the boundary to a finite number J of points and setting the number Mτ of basis functions in the specific region τ and
l ∈ [−L, L] for all the functions. Carrying out the discretization procedure, we arrive at the following finite-dimensional matrix
equation:

M2J×N · CN×1 = −Y 2J×1, (B12)

where N = (2L + 1) × (MI + MII ) = NI + NII and the compact substitutions are

CN×1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1II
−L

...

C1II
l

C2II
l

...

CMII
l

...

CMII
L

C1I
−L

...

C1I
l

C2I
l

...

CMI
l

...

CMI
L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N×1

; Y 2J×1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1ψ in
2

...
jψ in

2

...
Jψ in

2

1χ in

...
jχ in

...
Jχ in

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2J×1

(B13a)

and

M2J×N =
(
A(I) −A(II)

B(I) −B(II)

)
2J×N

, (B13b)

with

A(τ ) =
(

A(τ )
−L1τ

. . . A(τ )
l1τ

A(τ )
l2τ

. . . A(τ )
lMτ

. . . A(τ )
LMτ

)
J×Nτ

, (B13c)

B(τ ) =
(

B(τ )
−L1τ

. . . B(τ )
l1τ

B(τ )
l2τ

. . . B(τ )
lMτ

. . . B(τ )
LMτ

)
J×Nτ

, (B13d)
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FIG. 12. Validation of the multiple multipole method. For validation purpose, an analytically solvable case of a circular potential domain
is used. Comparisons between the numerical results (orange solid lines) calculated from the multiple multipole base expansion method and
analytic results (indicated by markers) for (a) case of band inversion: �II = −2h̄vF /R and (b) noninverted case: �II = +2h̄vF /R. The reference
gap parameter in the exterior domain is �I = +20h̄vF /R.

where

B(τ )
lmτ

=
[1

B(τ )
lmτ

, 2B(τ )
lmτ

, . . . , jB(τ )
lmτ

, . . . , JB(τ )
lmτ

]T
,

A(τ )
lmτ

=
[1

A(τ )
lmτ

, 2A(τ )
lmτ

, . . . , jA(τ )
lmτ

, . . . , JA(τ )
lmτ

]T
.

As the expansions are generally nonorthogonal, more equations are required than the number of unknowns to enable the
deduction of an overdetermined matrix system with 2J � N , which can be solved by the standard pseudoinverse algorithm:
C = −pinv(M) ∗ Y . Particularly, we use the residual error evaluated at the boundary

Error = ‖M ∗ C + Y‖
‖Y‖

as the criterion to test convergence. We adjust the number, the order, and/or positions of the multipoles to ensure Error <

tolerance. After the unknown coefficients C are obtained, the associated wave functions and hence the local density of states in
the specific region can be calculated accordingly.

2. Method validation

To validate the method, we exploit the analytically solvable case of circular geometry. Figure 12 shows a comparison of the
eigenenergy spectra obtained analytically and calculated from the multiple multipole method. The agreement is remarkable.
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