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Scattering of Dirac electrons from a skyrmion: Emergence of robust skew scattering
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We study electron scattering from a closed magnetic structure embedded in the top surface of a topological
insulator. Outside the structure there is a uniform layer of ferromagnetic insulators, leading to a positive effective
mass for the Dirac electrons. The mass inside the structure can be engineered to be negative, leading to a
skyrmion structure. The geometric shape of the structure can be circular or deformed, leading to integrable or
chaotic dynamics, respectively, in the classical limit. For a circular structure, the relativistic quantum scattering
characteristics can be calculated analytically. For a deformed structure, we develop an efficient numerical
method, the multiple-multipole method, to solve the scattering wave functions. We find that, for scattering
from a skyrmion, an anomalous Hall effect, as characterized by strong skew scattering, can arise, which is
robust against structural deformation due to the emergence of resonant modes. In the short- (long-)wavelength
regime, the resonant modes manifest themselves as confined vortices (excited edge states). The origin of the
resonant states is the spin phase factor of massive Dirac electrons at the skyrmion boundary. Further, in the
short-wavelength regime, for a circular skyrmion, a large number of angular momentum channels contribute
to the resonant modes. In this regime, in principle, classical dynamics is relevant, but we find that geometric
deformations, even those as severe as leading to fully developed chaos, have little effect on the resonant modes.
The vortex structure of the resonant states makes it possible to electrically charge the skyrmion, rendering
feasible the electrical manipulation of its motion. In the long-wavelength regime, only the lowest angular
momentum channels contribute to the resonant modes, making the skew scattering sharply directional. These
phenomena can be exploited for applications in generating dynamic skyrmions for information storage and in
Hall devices.

DOI: 10.1103/PhysRevResearch.2.013247

I. INTRODUCTION

This paper is devoted to studying relativistic quantum
scattering of Dirac electrons in systems involving magnetism.
There are two motivations. First, quantum scattering of spin-
1/2 fermions is fundamental to developing two-dimensional
(2D) Dirac-material-based devices. Second, magnetic materi-
als have been efficient carriers of information and the physics
of magnetic textures has been a topic of significant interest. In
general, in quantum scattering, the nature of the underlying
classical dynamics can play a role. For example, consider
electronic scattering from a 2D electrical potential domain
generated by an external gate voltage. In the classical limit
of zero wavelength, the electrons are point particles and the
domain is effectively a 2D billiard system in which electrons
move along straight lines and are reflected when hitting the
boundary. For a circular domain, the classical dynamics are
integrable. However, for a deformed domain, e.g., a stadium-
shaped domain, the classical dynamics can be ergodic in the
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phase space. In this case, there is sensitive dependence on
initial condition because two nearby trajectories will diverge
from each other exponentially, the hallmark of chaos. Since
geometric deformations are inevitable in applications, it is
necessary in the study of quantum scattering to take into
account the nature of classical dynamics. In particular, it is
useful to consider deformed domains to uncover the possible
effects of classical chaos on quantum scattering.

We employ the setting of a 2D closed magnetic structure
embedded in a uniform layer of ferromagnetic insulator (FMI)
materials on the top of a 3D topological insulator (TI). Outside
the structure, due to the FMI layer and the proximity effect,
the electrons obey the Dirac equation with a positive mass.
The mass of the closed structure can be engineered to be
negative, making it a skyrmion [1–4]. The skyrmion structure
can be deformed so that the classical particle motion inside is
chaotic. The massive Dirac electrons moving on the surface
of the TI are scattered by the structure. The system thus not
only provides a setting for exploring new physics associated
with scattering of Dirac electrons from a magnetic skyrmion
for applications, e.g., in spintronics, but also represents a
paradigm to study the effects of classical chaos on relativistic
quantum scattering in the presence of magnetism.

To be systematic and general, we consider the cases where
the magnetic structure on top of the TI can be of either
the skyrmion or the nonskyrmion type. The structure can
simply be a circle, in which case the classical dynamics is
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integrable, or it can be deformed from the circular shape,
e.g., a stadium, where there is fully developed chaos in the
classical limit. For a circular structure, the various scattering
cross sections can be obtained analytically from the standard
partial-wave analysis. For a deformed structure, we adopt an
efficient method, the multiple multipole (MMP) method in
optics, to solving the scattering wave functions of the two-
component Dirac fermion in the magnetic system. We focus
on two regimes: the short-wavelength regime, where the size
of the magnetic structure is larger than the wavelength so that
the underlying classical dynamics is relevant, and the long-
wavelength regime, where the structure size is comparable to
or smaller than the wavelength. There are two main results.
First, a skyrmion can lead to strong skew scattering due to
the emergence of resonant modes that manifest themselves as
confined vortices inside the skyrmion in the short-wavelength
regime or confined edge states in the long-wavelength regime.
The resonant modes are the result of mass sign change across
the skyrmion boundary. For a circular skyrmion, in the short-
wavelength regime, a large number of angular momentum
channels contribute to the resonant modes and electron charg-
ing arises, providing a way to electrically manipulate the
skyrmion motion. In the long-wavelength regime, only the
lowest angular momentum channels contribute to the resonant
states, leading to strongly directional skew scattering with
implications in developing Hall devices. The second result
is that classical chaos generated by geometrical deformations
has little effect on the scattering from a skyrmion. The scat-
tering phenomena uncovered for the circular case are thus
robust. The immunity of the scattering dynamics to severe
deformation of the skyrmion structure is advantageous for
spintronic device applications.

This paper is organized as follows. In Sec. II we provide the
background of our research in terms of magnetic skyrmion,
TIs, the marriage between the skyrmion and TI, and relativis-
tic quantum chaos. In Sec. III we describe the Hamiltonian
and outline the methods (analytic and numerical). In Sec. IV
we demonstrate the emergence of robust resonant states in
scattering from the skyrmion for both integrable and chaotic
classical dynamics. In Sec. V we develop a partial-wave-
decomposition-based analysis for resonances associated with
scattering corresponding to classical integrable dynamics. In
Sec. VI we summarize the main findings and discuss exper-
imental feasibility and open issues. Finally, in the Appendix
we detail the MMP method developed for numerically calcu-
lating the scattering wave functions associated with deformed
domain hosting chaotic dynamics in the classical limit.

II. BACKGROUND

A. Magnetic skyrmion

Generally, a skyrmion is a particlelike magnetic excitation
with a swirling topological 2D spin texture, i.e., the spin at
the core and the spin at the perimeter point are in opposite
directions [1–4]. The small size of the skyrmions and the
possibility of moving them with electrical currents of small
density (∼105 A/m2) make them promising candidates for
spintronic storage or logic devices [1,2]. Skyrmions have been
experimentally observed in chiral magnets [5,6] as a result

of the competition between the Dzyaloshiskii-Moriya (DM)
interactions, Heisenberg exchange, and Zeeman interactions.
It has been demonstrated that metallic skyrmions can be
driven by spin transfer torque from the electric current [7–9].
Optical skyrmion lattices have been achieved in an evanescent
electromagnetic field [10]. In addition, the topological spin
Hall effect has been demonstrated in which a pure trans-
verse spin current is generated from a skyrmion spin texture
[11–15].

B. Topological insulators

Topological insulators are quantum materials with surface
states residing in the bulk insulating gap [16,17]. The edge
states are topologically protected and are robust against non-
magnetic disorders due to a strong spin-momentum locking.
The electron motion on the surface follows the 2D linear
dispersion with a single band-touching Dirac point and are
described by the Dirac equation. In spite of the strong spin-
momentum locking, the surface electronic states are sensi-
tive to magnetic perturbations. That is, the electrons will
be scattered off upon encountering a magnetic structure on
the surface of the TI. The interaction between the topolog-
ical surface states and magnetic materials in a quasi-one-
dimensional setting has been studied [18–20] where, due to
the spin-momentum locking, the exchange coupling between
the magnetization and the surface electronic states can lead to
intriguing phenomena such as anomalous magnetoresistance
and unconventional transport behaviors [21,22]. The interac-
tion can also lead to nonlinear or even chaotic dynamics in
the evolution of magnetization of the FMI [23,24]. For exam-
ple, complicated dynamics can emerge in the magnetization
switching due to a Hall-current-induced effective anisotropic
field [18,25–27] and steady self-oscillations can arise in an
FMI/TI heterostructure [28–30]. A quite recent computa-
tional study has revealed phase locking in the magnetization
dynamics of two FMIs on top of a 3D TI [31].

C. Skyrmion and TI

Efforts in improving thermal efficiency and better ma-
nipulating skyrmions have led to the marriage between the
skyrmion and TI, where skyrmions arise on the surface of a
TI. Electric charging of magnetic vortices on the surface of
a TI was investigated [32] and the confinement state in the
skyrmion structure on the surface of a TI was discovered,
paving the way to driving skyrmion motion using an applied
electric field [33]. Electron skew scattering induced by the
skyrmion structure on the TI surface was also studied [34].
Quite recently, the combination of two skyrmions with op-
posite winding numbers, called skyrmionium, in an FMI/TI
heterostructure was observed in the physical space [35–37].
Theoretically, fluctuation-induced Néel and Bloch skyrmions
on the surface of a TI have been predicted [38].

Previous studies focused on scattering of electrons from
radially symmetric skyrmion structures. Deformed skyrmion
structure has been studied in recent years. For example, it was
found that Majorana modes are robust against skyrmion defor-
mations [39]. Quantum engineering of Majorana fermions in
a deformed skyrmion structure was also studied [40,41] and
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deformed (elongated) skyrmions were used for stabilization
and control of Majorana bound states in proximity to an s-
wave superconductor [42]. Shape-dependent resonant modes
have been discovered recently in skyrmions in magnetic nan-
odisks [43].

D. Relativistic quantum chaos

The study of the manifestations of classical chaos in
relativistic quantum systems was pioneered by Berry and
Mondragon [44] and recently emerged as an interdisciplinary
field of research [45,46] with applications to Dirac material
systems [47,48]. In contrast to the traditional field of (non-
relativistic) quantum chaos [49,50], where classical chaos
often bears strong signatures in the corresponding quantum
systems, such identifying characteristics tend to be weakened
in the relativistic quantum counterparts [51,52]. For example,
in scattering, e.g., electronic transport through a quantum-dot
structure, chaos tends to smooth out fluctuations in scat-
tering matrix elements, quantum transmission, or conduc-
tance [53–58] if the quantum behaviors are governed by the
Schrödinger equation. However, in 2D Dirac materials such as
graphene, strong fluctuations of the quantum scattering char-
acteristics can persist to a certain extent in spite of classical
chaos [59,60]. Another example is a 2D deformed ring with
a line of magnetic flux through the center, where Schrödinger
electrons are localized but Dirac electrons can keep circulating
along the edges of the ring domain, generating a superper-
sistent current in spite of fully developed classical chaos in
the domain [61], a phenomenon that can be exploited for
creating a robust relativistic qubit [62]. Quite recently, the
weakening of the manifestations of chaos in spin-1/2 Dirac
fermion systems was studied [52] using the approach of an
out-of-time-ordered correlator [63]. It has also been revealed
that, for scattering in spin-1 Dirac-Weyl fermion systems, a
class of robust resonant modes can emerge that defy classical
chaos completely [51].

III. MODEL AND METHOD

We place an FMI thin film, e.g., Cu2OSeO3, on top of
a TI with a single magnetic structure at the center of the
thin film, as schematically illustrated in Fig. 1. The motion
of the surface electrons is affected by the structure with the
magnetization vector n(r). The Hamiltonian of the system is

H = vF ( p̂ × σ)z − �sn(r) · σ, (1)

where vF is the Fermi velocity, p̂ = −i∇ is the momentum
operator, σ = (σx, σy, σz ) are the Pauli matrices, and �s (> 0)
is the spin-splitting energy from the exchange interaction be-
tween the electron and the magnetization. In polar coordinates
r = (r, θ ), for a circular structure, the magnetization vector
can be parametrized as

n(r) = [− sin θ

√
1 − n2

z (r), cos θ

√
1 − n2

z (r), nz(r)
]
. (2)

For a deformed magnetic structure, there is swirling spin
texture with magnetic moment points up on the edge and
down in the center [64]. The out-of-plane component of the
magnetic texture nz(r) acts as a Dirac mass term, which opens
a gap in the electronic band structure. The in-plane component

FIG. 1. Schematic illustration of electron scattering from a
skyrmion structure in a thin FMI film deposited on top of a TI.
(a) Band structure of the FMI/TI heterostructure. Outside (inside)
the skyrmion structure, the mass corresponding to the band gap is
positive (negative). (b) Illustration of electron scattering behavior
from the skyrmion structure. The red (up) and blue (down) arrows
represent the magnetization vector n(r). For electronic states outside
and inside the skyrmion, the associated spin direction is different due
to the opposite signs of mass.

n‖ can lead to an emergent magnetic field in the form

B(r) = c�divn‖(r)

eh̄vF
.

For a swirling skyrmion structure, the emergent magnetic field
B is zero and the in-plane component can be gauged away
[33,34]. In this case, the hard-wall approximation nz(r) = ±1
can be invoked [33,34], with the points inside and outside
the skyrmion structure taking on the value of minus one
and one (n1 = 1 and n2 = −1), respectively. In experiments,
such a structure can be realized using materials with a strong
out-of-plane magnetic anisotropy. In our study, we assume
that the magnetic structure is fixed and unaffected by the
interface electrons. Experimentally, a skyrmion structure can
be stabilized via the DM interaction in the FMI [1,2], where
the skyrmion size depends on materials parameters such as
the relative strength of the Heisenberg and DM exchange
interactions [1,2]. Our model is valid for skyrmions with a
vortical magnetic texture as described. However, for hedgehog
skyrmions, the in-plane magnetic field cannot be gauged away
due to the emergent magnetic flux and the structure is not as
stable as vortical skyrmions [1,2].

The energy-momentum dispersion for electrons in free
space with a uniform magnetic texture (constant mass) is
given by

E± = ±
√

h̄2v2
F

(
k2

x + k2
y

) + �2n2
z , (3)

as shown in Fig. 1(a). While the energy dispersion curve in-
side the skyrmion appears similar to that outside the skyrmion,
the spin direction is different for the electronic state due to the
opposite signs of mass. An electron will then go through a
scattering process in this 2D system. Because of the breaking
of the time-reversal symmetry, skew scattering will arise.

For a circular magnetic structure, the scattering wave
function and the related behavior can be solved analytically
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using the partial-wave-decomposition method (Sec. V). For a
deformed skyrmion, analytic solutions of the scattering wave
function are not feasible. We have developed an MMP-based
method, which has its origin in optics [65–69] and has recently
been extended to scattering of pseudospin-1 particles [51].
The basic idea is to assume two sets of fictitious poles along
and in the vicinity of the entire boundary of the magnetic
structure: one outside and another inside the boundary. Each
pole emits a wave in the form of a Hankel function (spherical
wave in the far field). The transmitted wave function at each
point inside the scatterer can be expressed as the superposi-
tion of the waves emitted by the poles outside the scatterer.
Similarly, the refracted wave function at each point outside
the scatterer can be written as the combination of the waves
emitted by the poles inside the scatterer. The incident plane
wave and the reflected and transmitted waves are matched on
the boundary to enable the poles to be determined, and the
expansion coefficients can be obtained by solving the matrix
eigenfunctions. (The details of the MMP method adopted
for scattering from a magnetic structure are given in the
Appendix.) We validate the method by comparing the MMP
solutions with the analytic solution based on partial-wave
expansion for a circular skyrmion. Overall, the MMP method
is effective and efficient for solving both the near- and far-field
scattering problem for a magnetic scatterer of arbitrary shape.

In our calculation, we use the dimensionless quantity ob-
tained via consideration of the scales of the physical quan-
tities involved. In particular, the energy scale in the FMI/TI
heterostructure is on the order of meV. In free space with zero
mass, the wave vector corresponding to the energy of 1 meV
is k ∼ 1 meV/h̄vF = 3.04 × 10−3 nm−1. We take the dimen-
sionless radius of the magnetic structure (circular shape) to be
R = 1, which corresponds to a real structure of size of 100 nm.
We then set the dimensionless energy corresponding to 1 meV
to be kR = 0.304. For � = 10, the corresponding energy gap
is 10/0.304 ≈ 33 meV.

IV. EMERGENCE OF ROBUST RESONANT STATES
IN SCATTERING FROM THE SKYRMION

A. Short-wavelength regime: Resonant vortices and edge modes

We concentrate on a regime where the wavelength of
the incoming Dirac electron is smaller than the size of the
magnetic structure so that the classical dynamics inside the
structure is relevant. We consider a circular structure as well
as a deformed structure that leads to chaos in the classical
limit to identify any effect of chaos on the electron scattering
behavior.

1. Far-field behavior

Far away from the scattering center, for unit incident
density the spinor wave function can be written as

�I = �inc + �ref

≈ C

(
1

i h̄vF k
E−m1

)
eikr cos θ + C

(
e−iθ

i h̄vF k
E−m1

)
f (θ )√

r
eikr, (4)

where C is the normalization factor, k =
√

k2
x + k2

y is the
electron wave vector, m1 = �sn and m2 = �sn′ are the mass

FIG. 2. Skew scattering and transport cross sections versus inci-
dent electron energy in the short-wavelength regime. (a) Skew scat-
tering cross section versus the energy. The red and blue curves cor-
respond to a circular and a stadium-shaped skyrmion, respectively.
The mass values are m1 = 10 and m2 = −10. (b) Backscattering
cross section as a function of electron energy for the two skyrmion
shapes as in (a). In each panel, the red curve has been shifted upward
by an amount specified by the horizontal red dashed line for better
visualization and comparison with the blue curve.

terms outside and inside the magnetic structure, and f (θ )
denotes the 2D far-field scattering amplitude in the direction
defined by the angle θ with the x axis. For a circular structure,
f (θ ) can be obtained analytically. For a chaotic structure, once
the reflection function is calculated from the MMP method,
f (θ ) can be obtained. The differential cross section is

dσ

dθ
= | f (θ )|2. (5)

The transport and skew cross sections are defined, respec-
tively, as

σtr =
∫ 2π

0
dθ | f (θ )|2(1 − cos θ ) (6)

and

σskew =
∫ 2π

0
dθ | f (θ )|2 sin θ. (7)

Figures 2(a) and 2(b) show, respectively, the skew scattering
and transport cross sections as a function of incident electron
energy, for a skyrmion (negative value of m2) of circular shape
(upper panel) and stadium shape (lower panel) of the same
area π in dimensionless units. The stadium shape is chosen
because of its mirror symmetry for the incident plane waves
so as to avoid an unnecessary complication: mixing of skew
scattering and backscattering (or reflection). The aspect ratio
for the stadium shape is set to be 2. For both skyrmion shapes,
there are sharp resonant peaks in the skew cross section in
the lower-energy range close to the gap, an indication of the
emergence of the anomalous Hall effect associated with Dirac
electron scattering from the skyrmion. As the incident energy
is increased, the peak height is reduced but its width becomes
larger, as a higher-energy value corresponds to less distortion
in the energy-momentum dispersion with the mass gap. Note
that there is little difference in the skew scattering cross-
section curves for the two skyrmion shapes, indicating that the
nature of the classical dynamics hardly affects the scattering.
For the curves of the transport cross section, as shown in
Fig. 2(b), its value decreases with increasing energy. For
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FIG. 3. Probability and current density distribution for selected
vortex states. (a) Probability distribution for scattering from a circu-
lar skyrmion for m1 = 10, m2 = −10, and E = 11.225. (b) In-plane
current (marked by arrows) and spin-z component (color coded)
density distribution in the circular skyrmion region. (c) and (d) Cor-
responding probability, current, and spin distribution for scattering
from a stadium-shaped skyrmion for m1 = 10, m2 = −10, and E =
11.42.

low-energy values, the valleys in the transport cross section
correspond exactly to the skew scattering peaks. Sharp peaks
also exist in the backscattering cross-section curve. Similar to
the skew cross section, the nature of the classical dynamics
has no appreciable effect. The results in Fig. 2 indicate that
skyrmion skew scattering is robust against geometric defor-
mations that are so severe as to change the classical behavior
completely: from integrable dynamics to chaos.

2. Near-field behavior

To understand the origin of the deformation- (chaos-)
independent far-field scattering (transport) behavior, we study
the near-field scattering behavior by examining the probability
density and the current density distribution associated with
some specific energy state. In particular, the probability
density is given by P = �†�, where � = (ψ1, ψ2)T is the
wave function, and the probability current operator is Ĵ =
∇pH = vF (σy,−σx ). The current density can be obtained as

J = (Jx, Jy ) = vF [2(iψ1ψ
∗
2 ),−2(ψ1ψ

∗
2 )]. (8)

The probability density distribution of the spin-z component
is given by

〈σz〉 = |ψ1|2 − |ψ2|2.
We choose a representative energy value corresponding to
a skew scattering cross section peak: E = 11.225 for the
circular skyrmion and E = 11.42 for the stadium-shaped
skyrmion, marked as the red and blue stars, respectively, in
Fig. 2(a). The probability and the current density distributions
are shown in Fig. 3. From both skyrmion structures, there are
scattering resonant states, as shown in Figs. 3(a) and 3(c).
The resonant patterns correspond to weak backscattering but
stronger skew scattering cross sections, indicating that these
are effectively quasiconfined states. Further insights into the
contribution of the resonant states to skew scattering can be
gained by examining the current density distribution (marked
by arrows) and the spin-z component density distribution

FIG. 4. Wave-function probability and current density distribu-
tion associated with selected edge states. (a) Probability distribution
for scattering from a circular skyrmion for m1 = 10, m2 = −10, and
E = 11.461. (b) Corresponding in-plane current (marked by arrows)
and spin-z component (represented by colors) density distribution.
(c) and (d) Probability and spin distributions associated with scatter-
ing from a stadium-shaped skyrmion for m1 = 10, m2 = −10, and
E = 10.564.

(color coded) in the 2D skyrmion structure, as shown in
Figs. 3(b) and 3(d). We see that the confined resonant states
form vortices with counterclockwise currents. There is also
an out-of-plane spin component along the positive z direction.
The vortices have an apparent directionality, so they can affect
the skew scattering direction and magnitude. The vortices
are formed by the interference of waves reflected from the
boundary and are robust against boundary deformation. As
a result, the nature of the classical dynamics, integrable or
chaotic, has no significant effect on scattering.

In addition to the confined vortex states inside the skyrmion
structure, another form of confined states arises along the
skyrmion boundary, as shown in Figs. 4(a) and 4(c), for
scattering from a circular and a stadium-shaped skyrmion,
respectively. There is strong confinement of the scattering
wave function near the boundary with clockwise current and a
spin-z component along the negative z axis direction, as shown
in Figs. 4(b) and 4(d). The edge states correspond to sharp
resonant peaks in the backscattering cross section marked by
closed circles in Fig. 2(b). For the circular skyrmion, the edge
states have no corresponding sharp peaks in skew scattering.
For the stadium-shaped skyrmion, the edges states correspond
to sharp valleys in the skew scattering cross section.

B. Long-wavelength regime: Resonant modes
near the boundary

1. Far-field behavior

We consider the regime where the skyrmion size is smaller
than the electronic wavelength: R 
 1/k. This can be realized
by setting the area of the skyrmion structure to be 0.01π

for both circular (R = 0.1) and stadium-shaped skyrmions.
In this long-wavelength regime, for a deformed skyrmion
structure, the MMP method is still effective for calculating
the far-field cross sections and the near-field state distri-
bution. Representative results on the skew scattering and
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FIG. 5. Characteristics of Dirac electron scattering from a mag-
netic skyrmion in the long-wavelength regime. (a) Skew scattering
and (b) backscattering cross sections versus energy. The red and
blue curves correspond to a circular and a stadium-shaped skyrmion,
respectively. The mass values are m1 = 10 and m2 = −10. In each
panel, the red curve has been shifted upward for a proper amount for
better visualization and comparison with the blue curve.

transport cross sections versus the incident energy are shown
in Fig. 5. Different from the scattering behaviors in the short-
wavelength regime, the oscillations of the skew scattering
cross section with energy are weak. For example, in the energy
range 10 < E < 20, only one smooth peak appears. There is
hardly any difference in the scattering characteristics between
the two skyrmion structures, which is understandable as any
structural differences are not resolved in the long-wavelength
regime. Because of a lack of appreciable oscillations, there is
directional skew scattering over a large energy range, a desired
feature in Hall device applications.

2. Near-field behavior

We examine the state associated with the energy value
that leads to the lowest skew scattering cross section: E =
12.072 for the circular and E = 11.46 for the stadium-shaped
skyrmion; the respective probability density distributions are
shown in Figs. 6(a) and 6(c). The states are concentrated in
the vicinity of the boundary, which are different from the
vortex states observed in the short-wavelength regime. The
edge states thus represent a different type of resonant states
with directional current, as shown in Figs. 6(b) and 6(d). It
can be seen that the current direction is downward at the
edge, contributing to skew scattering. The spin-z component
is along the negative z direction.

C. Further demonstration of strong skew scattering
from a skyrmion structure

To further demonstrate the shape-independent skew scat-
tering behavior of Dirac electrons from a magnetic structure,
we study the effects of changing the mass of the skyrmion
texture. To be concrete, we set m1 > 0 and choose a set of pos-
itive and negative m2 values. In this setting, there is a skyrmion
for m2 < 0 but the magnetic structure is a nonskyrmion for
m2 > 0.

We first examine the short-wavelength regime to probe into
the origin of the emerged confined vortex states. Figures 7(a)
and 7(b) show the skew scattering cross sections for the
circular and stadium-shaped magnetic structures, respectively,
for m1 = 10 and m2 = −9,−5, 0, 5, 9. It can be seen that,

FIG. 6. Wave-function probability and current density distribu-
tions for selected states for scattering in the long-wavelength regime.
(a) Probability distribution and (b) in-plane current together with the
spin-z component density distributions, for scattering from a circular
skyrmion for m1 = 10, m2 = −10, and E = 12.072. (c) and (d) Cor-
responding results for scattering from a stadium-shaped skyrmion for
m1 = 10, m2 = −10, and E = 11.46.

among the five cases, the resonant oscillations of the cross
section with energy last longer for m2 = −9. On the contrary,
for m2 = 9 (nonskyrmion), the oscillations diminish rapidly
as the energy is increased. These behaviors hold regardless
of whether the underlying classical dynamics is integrable
or chaotic. Overall, a large difference between the masses
inside and outside the magnetic structure can lead to stronger
and long-lasting resonant modes and consequently to more
pronounced skew scattering. Figures 8(a) and 8(b) show the
probability density distribution for m2 = 9 and m2 = −9,

FIG. 7. Effects of varying mass on Dirac electron scattering in
the short-wavelength regime. The area of the magnetic structure is
π . (a) Skew scattering cross section versus the electron energy for a
circular structure for mass values m2 = −9, −5, 0, 5, 9, represented
by the red, orange, green, blue, and purple solid curves, respectively.
In each panel, the curves have been shifted upward for better visual-
ization and comparison, where each horizontal dashed line denotes
the zero reference point. The mass outside the magnetic structure
is m1 = 10. (b) Corresponding curves for a stadium-shape structure
with the same mass values as in (a).
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FIG. 8. Probability density distribution for selected states in the
circular and stadium-shaped structures for different masses in the
short-wavelength regime. (a) Circular skyrmion structure (m2 = −9)
for E = 10.349, (b) circular nonskyrmion structure (m2 = 9) for E =
10.234, (c) stadium-shaped skyrmion (m2 = −9) for E = 10.552,
and (d) stadium-shaped structure (m2 = 9) for E = 10.514.

respectively, for the circular magnetic structure. The corre-
sponding results for the stadium-shaped structure are shown
in Figs. 8(c) and 8(d). For both structures, there are resonant
modes for m2 = −9 (when the magnetic structure is of the
skyrmion type) but not for the case of m2 = 9.

In the long-wavelength regime, regardless of the shape of
the magnetic structure (circular or stadium shaped), the skew
scattering cross section decreases as the relative mass differ-
ence is reduced, as shown in Fig. 9 for m2 = −9,−5, 0, 5, 9.
Figure 10 shows representative resonant states for the circular
and stadium-shaped structures for m2 = ±9. Again, when the
magnetic structure is of the skyrmion type, skew scattering is
strong, making the scattering electrons directional. However,
when the structure is not of the skyrmion type, skew scattering
is weak.

V. PARTIAL-WAVE-DECOMPOSITION-BASED ANALYSIS

Numerically, we have observed strong skew scattering of
Dirac electrons from a skyrmion structure, which is robust
against geometric deformation. We now provide an analytic
understanding of skew scattering based on the method of
partial-wave decomposition. Consider a circular skyrmion.
Key to pronounced skew scattering is the resonant modes
emerged from the scattering process. In the short-wavelength
regime, a large number of angular momentum components
are involved in the scattering, leading to a large number
of resonant modes as the result of various combinations of
the angular momentum components, which are manifested
as peaks in the curve of the cross section with the en-
ergy. In the long-wavelength regime, typically only a single
resonant mode is dominant, implying the involvement of
only the several lowest angular momentum components. The
asymmetric contribution from different angular momentum
channels leads to the observed pronounced skew scattering.

FIG. 9. Skew scattering for different mass values of the magnetic
structure in the long-wavelength regime. The area of the structure is
π/100 and the mass outside the structure is m1 = 10. (a) For a circu-
lar structure, skew scattering cross section for m2 = −9, −5, 0, 5, 9,
represented by the red, orange, green, blue, and purple solid curves,
respectively. In each panel, the curves have been shifted upward for
better visualization and comparison, with the horizontal dashed lines
denoting the zero reference point. (b) Corresponding results for a
stadium-shaped magnetic structure.

Because the circular and stadium-shaped skyrmion structures
generate similar scattering behavior, the analytic results from
the circular skyrmion case also provides an understanding of
the emergence of strong skew scattering in the stadium-shaped
skyrmion.

For a circular skyrmion, the rotational symmetry stipulates
conservation of the total angular momentum Ĵz, [Ĵz, H] = 0,

FIG. 10. Probability density distribution for the states corre-
sponding to the minimum of the skew scattering cross section
in circular and stadium-shaped magnetic structures in the long-
wavelength regime: (a) a circular skyrmion structure for m2 = −9
and E = 12.152, (b) a circular nonskyrmion structure for m2 = 9 and
E = 12.317, (c) a stadium-shaped skyrmion structure for m2 = −9
and E = 11.53, and (d) a stadium-shaped nonskyrmion structure for
m2 = 9 and E = 11.72.
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and the partial-wave component with total angular momen-
tum j (= ±1/2,±3/2, . . .) in polar coordinates (r, θ ) can be
written as

ψ j (r) =
(

u j (r)ei( j−1/2)θ

v j (r)ei( j+1/2)θ

)
. (9)

The Hamiltonian in the polar coordinates is

H = h̄vF

(
−�sn

h̄vF
−e−iθ ∂

∂r + e−iθ i∂
r∂θ

eiθ ∂
∂r + eiθ i∂

r∂θ
�sn
h̄vF

)
. (10)

Substituting the partial-wave form from Eq. (9) into the
Hamiltonian (10) leads to an eigenvalue problem and conse-
quently to the explicit expression for the partial waves.

The transmitted wave inside the skyrmion structure (r < R)
can be expanded in terms of the partial waves as

ψT (r, θ ) = C
∞∑

l=−∞
il−1Bl

(
Jl−1(k′r)ei(l−1)θ

− h̄vF k′
E−�sn′ Jl (k′r)eilθ

)
(11)

and the reflected wave outside the skyrmion (r > R) can be
written as

ψR(r, θ ) = C
∞∑

l=−∞
il−1Al

(
Hl−1(kr)ei(l−1)θ

− h̄vF k
E−�sn

Jl (kr)eilθ

)
, (12)

where C is a normalization factor and l = j + 1 = 2, Al and
Bl are the partial-wave expansion coefficients, Jl is the Bessel
function of the first kind, and Hl is the Hankel function of the
first kind of integer order l . We denote by m1 = �sn(m2 =
�sn′) the mass term and by k =

√
E2−�2

s n2

h̄2v2
F

(k′ =
√

E2−�2
s n′2

h̄2v2
F

)

the wave vector outside (inside) the skyrmion structure. For
the incident electron in the free region outside the skyrmion
structure, the wave function is

ψ I = C

(
1

i h̄vF k
E−�sn

)
eikr cos θ . (13)

Using the Jacobi-Anger identity

eiz cos θ ≡
∞∑

l=−∞
il Jl (z)eilθ , (14)

we can expand the plane wave in the form

ψ I = C
∑

l

il−1

(
Jl−1ei(l−1)θ

− h̄vF k
E−�sn

Jl (kr)eilθ

)
. (15)

Matching the waves at the skyrmion boundary (r = R)

ψ I (R) + ψR(R) = ψT (R), (16)

we get, after some algebraic manipulation,

Al = Jl−1(kR)Jl (k′R) − τ
τ ′ Jl (kR)Jl−1(k′R)

τ
τ ′ Hl (kR)Jl−1(k′R) − Hl−1(kR)Jl (k′R)

(17)

and

Bl = Jl−1(kR)Hl (kR) − Jl (kR)Hl−1(kR)

Hl (kR)Jl−1(k′R) − τ ′
τ

Hl−1(kR)Jl (k′R)
, (18)

FIG. 11. Partial-wave-decomposition coefficients as a function
of total angular momentum for a circular magnetic structure in the
short-wavelength regime. Among the quantities plotted, the Al ’s are
the coefficients for the reflected waves outside the structure and
the Bl ’s are the transmitted wave coefficients. For a skyrmion struc-
ture (m1 = 10 and m2 = −9), (a) |Al |2 and (b) |Bl |2 are plotted as a
function of j, where the corresponding state is shown in Fig. 8(a).
For a nonskyrmion structure (m1 = 10 and m2 = 9), (c) |Al |2 and
(d) |Bl |2 are plotted versus j, where the corresponding state is shown
in Fig. 8(b).

where

τ = − h̄vF k

E − �sn
, τ ′ = − h̄vF k′

E − �sn′ .

Using the explicit formulas for Al and Bl as given in
Eqs. (17) and (18), respectively, we obtain the decomposition
coefficients versus the total angular momentum for R = 1.
Figures 11(a) and 11(b) show, for the case of scattering
from a skyrmion structure (m1 = 10 and m2 = −9), the ex-
pansion coefficients versus the total angular momentum j.
Figures 11(c) and 11(d) show the corresponding results for
the nonskyrmion case (m1 = 10 and m2 = 9). It can be seen
that several angular momentum components contribute to the
reflected wave component Al and the asymmetric distribution
of the angular momentum components about zero leads to
skew scattering. For the transmitted wave components, the
distribution of the angular components is asymmetric as well,
leading to the emergence of resonant vortices. For the Bl

coefficients, their values for the nonskyrmion case are much
smaller than those for the skyrmion case, indicating that
the skyrmion structure can confine the electrons much more
effectively than the nonskyrmion structure.

Setting R = 0.1 lands the scattering system in the long-
wavelength regime. Figures 12(a) and 12(b) and Figs. 12(c)
and 12(d) show the coefficients associated with different
angular momentum components for the skyrmion (m1 = 10
and m2 = −9) and nonskyrmion (m1 = 10 and m2 = 9) cases,
respectively. In both cases, only a single angular momentum
component contributes to the coefficient Al , i.e., j = −1/2,
giving rise to the directionality in the scattering and a slow
change in the resonant cross section with the energy. The value
of Al for the nonskyrmion case is much smaller than that of the
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FIG. 12. Transmitted and reflected partial-wave coefficients as
a function of the total angular momentum for a circular magnetic
structure in the long-wavelength regime. The radius of the structure
is R = 0.1. (a) |Al |2 and (b) |Bl |2 are plotted versus j for m1 = 10
and m2 = −9 (skyrmion case), respectively, where the state is the
one shown in Fig. 10(a). (c) |Al |2 and (d) |Bl |2 are plotted versus j
for m1 = 10 and m2 = 9 (nonskyrmion case), respectively, where the
corresponding state is shown in Fig. 10(b).

skyrmion case. For the transmitted coefficient Bl , the angular
momentum component j = −3/2 dominates the skyrmion
case and a number of components including j = −1/2 have
contributions in the nonskyrmion case, and the values of Bl

are much larger in the skyrmion case than in the nonskyrmion
case, again implying stronger confinement by resonance and
better directionality of scattering in the skyrmion structure as
compared with those in the nonskyrmion structure.

VI. DISCUSSION

We have investigated relativistic quantum scattering of
Dirac electrons from a closed magnetic structure embedded
in the top surface of a 3D TI. Outside the structure, there
is a uniform FMI layer, leading to a finite but positive mass
for the Dirac electron. The mass of the structure itself can be
engineered to be negative or positive, where a skyrmion and
a nonskyrmion structure arise in the former and latter cases,
respectively. In the short-wavelength regime, the nature of the
classical dynamics in the closed structure should be relevant to
the quantum scattering dynamics, according to conventional
wisdom from the study of quantum chaos [49,50]. For a per-
fectly circular structure, the classical dynamics is integrable.
For a deformed structure such as one with the stadium shape,
there is fully developed chaos in the classical dynamics.
We have two main findings. First, in the short-wavelength
regime, classical chaos hardly has any effect on the scattering
dynamics. In fact, similar behaviors in the scattering charac-
teristics at a quantitative level, such as the skew scattering
and backscattering cross sections, arise for the circular and
stadium-shaped structures. The diminishing effects of classi-
cal chaos on relativistic quantum scattering from a magnetic
structure are consistent with previous results on weakened
manifestations of chaos in relativistic quantum systems in

general [51,52,59–61]. Second, strong skew scattering can
arise when the magnetic structure is a skyrmion, regardless of
the nature of the classical dynamics. In the short-wavelength
regime, the pronounced skew scattering is associated with
resonant modes manifested as confined vortices inside the
skyrmion structure, which are originated from the sign change
in the mass when the Dirac electrons travel from outside
to inside the skyrmion structure. A partial-wave analysis for
scattering from a circular skyrmion has revealed that a large
number of angular momentum channels contribute to the
resonant modes. We have also studied the long-wavelength
regime, where the geometric details of the magnetic structure
are unresolved, so naturally the scattering process is expected
to be independent of the nature of the classical dynamics. In
this regime, resonant states can still emerge as confined edge
states inside the magnetic structure, to which only a single
angular momentum channel contributes, leading to highly
directional skew scattering.

In the short-wavelength regime, the resonant states mani-
fested as confined vortices inside the skyrmion structure can
be exploited for electrically charging the skyrmion structure
[32,33], enabling the surface electrons on the TI to drive
skyrmion motion with a low current and high thermal effi-
ciency. In the long-wavelength regime, the strong and robust
directionality for skew scattering may be exploited for device
application based on the anomalous Hall effect.

Regarding experimental realization of a skyrmion struc-
ture, we note that there is recent evidence of a mag-
netic skyrmion at the interface of the ferromagnet/TI
(Cr2Te3/Bi2Te3) heterostructure [70]. In addition, inhomoge-
neous Zeeman coupling can be tuned for a ferromagnetic strip
with strong out-of-plane magnetic anisotropy [33]. For exper-
imental control of electron scattering over a skyrmion struc-
ture, a quantum-dot type of configuration with a skyrmion
structure in a finite scattering region as well as with leads and
contacts is necessary. The scattering configuration employed
in our work is mainly for theoretical convenience with the goal
to gain insight into the physics of electron scattering over the
skyrmion structure with classical integrable or chaotic dynam-
ics. For this purpose, the geometrical structure of the skyrmion
is chosen to be either circular, for which the scattering cross
sections can be calculated analytically, or deformed, for which
the numerical method of multiple multipoles can be used to
calculate the scattering wave function and consequently the
resonant states, cross sections, current, and spin distribution.
Our results provide useful hints about the scattering of spin-
1/2 fermion over a skyrmion structure. If the device size is
significantly larger than the electron wavelength, we expect
the main results to hold.

A number of open issues are worth studying, such as using
spin transfer torque of the electrons to drive the skyrmion mo-
tion, exploitation of skyrmion-related switches or oscillators,
and scattering from multiple skyrmions that are themselves
dynamic with possible phase-locking or antiphase-locking
behavior.
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APPENDIX: MULTIPLE MULTIPOLE METHOD FOR
SCATTERING OF DIRAC ELECTRONS ON TOP OF A TI

FROM A MAGNETIC STRUCTURE

We denote the area outside and inside the skyrmion struc-
ture as regions I and II , respectively (see Fig. 13). The wave
function in region II can be written as

�II (r) ≡
(

ψ I
1

ψ II
2

)
=

∑
mI

∑
l

CmI
l√
2

(
H (1)

l−1(kII dmI )e−iθmI

τII H
(1)
l (kII dmI )

)
eilθmI ,

(A1)

where

kII =
√

E2 − �2n2
II/h̄vF ,

τII = −h̄vF kII/(E − �nII ),

dmI = ∣∣r − rmI

∣∣,
θmI = ϕ

(
r − rmI

)
,

where φ(v) represents the angle of vector v,CmI
l are the

expansion coefficients, and H (1)
l is the Hankel function of the

first kind of order l . The scattered wave function in region I is

�I (r) ≡
(

ψ I
1

ψ I
2

)
=

∑
mII

∑
l

CmII
l√
2

(
H (1)

l−1(kI dmII )e−iθmII

τI H
(1)
l (kI dmII )

)
eilθmII ,

(A2)

where

kI =
√(

E − �2n2
I

)
/h̄vF ,

τI = −h̄vF kI/(E − �nI ),

dmII = ∣∣r − rmII

∣∣,
θmII = ϕ

(
r − rmII

)
,

FIG. 13. Schematic illustration of the basics of the MMP
method. The placement of poles (fictitious sources) is shown inside
and outside a magnetic structure of arbitrary shape. The scattering
spinor wave functions inside (outside) the structure are determined
by the poles outside (inside) the structure.

and CmII
l are the expansion coefficients. The incident plane

wave propagating along the direction defined by an angle β

with the x axis in region I is given by

� in(r) ≡
(

ψ in
1

ψ in
2

)
= 1√

2

(
1

−iτI eiβ

)
ei(kxr cos θ+kyr sin θ ). (A3)

Matching the boundary conditions(
ψ I

1 + ψ in
1

)∣∣
r j∈

= ψ II
1

∣∣
r j∈

, (A4)(
ψ I

2 + ψ in
2

)∣∣
r j∈

= ψ II
2

∣∣
r j∈

, (A5)

we get∑
mII

∑
l

CmII
l

1√
2
τI H

(1)
l

(
kI

∣∣r j − rmII

∣∣)eilθmII

−
∑
mI

∑
l

CmI
l

1√
2
τII H

(1)
l

(
kII

∣∣r j − rmI

∣∣)eilθmI

= i√
2
τI e

iβeikI r (A6)

and ∑
mII

∑
l

CmII
l

1√
2

H (1)
l−1

(
kI

∣∣r j − rmII

∣∣)ei(l−1)θmII

−
∑
mI

∑
l

CmI
l

1√
2

H (1)
l−1

(
kII

∣∣r j − rmI

∣∣)ei(l−1)θmI

= − 1√
2
τI e

iβeikI r, (A7)

which can be cast in a compact form as∑
mII

∑
l

jAI
lmII

CmII
l −

∑
mI

∑
l

jAII
lmI

CmI
l = − jψ in

2 , (A8)

∑
mII

∑
l

jBI
lmII

CmII
l −

∑
mI

∑
l

jBII
lmI

CmI
l = − jψ in

1 , (A9)

where

jAI
lmII

= 1√
2
τI H

(1)
l

(
kI

∣∣r j − rmII

∣∣)eilθmII , (A10)

jAII
lmI

= 1√
2
τII H

(1)
l

(
kII

∣∣r j − rmI

∣∣)eilθmI , (A11)

jBI
lmII

= 1√
2

H (1)
l−1

(
kI

∣∣r j − rmII

∣∣)ei(l−1)θmII , (A12)

jBII
lmI

= 1√
2

H (1)
l−1

(
kII

∣∣r j − rmI

∣∣)ei(l−1)θmI (A13)

and

jψ in
2 = − i√

2
τI e

iβeikI r j , (A14)

jψ in
1 = 1√

2
eikI r j . (A15)

In principle, the set consists of an infinite number of equations
with an infinite number of undetermined expansion coeffi-
cients CmII

l and CmI
l . To solve the system numerically, finite

truncation is necessary. We set the total number of boundary
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points to be J with MI and MII poles in regions I and II ,
respectively, and l → [−L, L] for all the multipoles. The
process leads to the finite-dimensional matrix equation

M2J×N · CN×1 = −Y2J×1, (A16)

where N = (2L + 1) × (MI + MII ) = NI + NII ,

CN×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1II
−L
...

C1II
l

C2II
l
...

CMII
l
...

CMII
L

C1I
−L
...

C1I
l

C2I
l
...

CMI
l
...

CMI
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×1

, Y2J×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1ψ in
2

...
jψ in

2
...

Jψ in
2

1ψ in
1

...
jψ in

1
...

Jψ in
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2J×1

, (A17)

and

M2J×N =
(

A(I ) −A(II )

B(I ) −B(II )

)
, (A18)

with

A(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1A(τ )
−L1τ

· · · 1A(τ )
l1τ

1A(τ )
l2τ

· · · 1A(τ )
lMτ

· · · 1A(τ )
LMτ

2A(τ )
−L1τ

· · · 2A(τ )
l1τ

2A(τ )
l2τ

· · · 2A(τ )
lMτ

· · · 2A(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jA(τ )
−L1τ

· · · jA(τ )
l1τ

jA(τ )
l2τ

· · · jA(τ )
lMτ

· · · jA(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JA(τ )
−L1τ

· · · JA(τ )
l1τ

JA(τ )
l2τ

· · · JA(τ )
lMτ

· · · JA(τ )
LMτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A19)

B(τ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1B(τ )
−L1τ

· · · 1B(τ )
l1τ

1B(τ )
l2τ

· · · 1B(τ )
lMτ

· · · 1B(τ )
LMτ

2B(τ )
−L1τ

· · · 2B(τ )
l1τ

2B(τ )
l2τ

· · · 2B(τ )
lMτ

· · · 2B(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jB(τ )
−L1τ

· · · jB(τ )
l1τ

jB(τ )
l2τ

· · · jB(τ )
lMτ

· · · jB(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JB(τ )
−L1τ

· · · JB(τ )
l1τ

JB(τ )
l2τ

· · · JB(τ )
lMτ

· · · JB(τ )
LMτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A20)

Here we denote τ = I (II ) and τ̄ = II (I ) the complement
of τ . As the expansions are generally nonorthogonal, more
equations are required than the number of unknowns to enable
reduction of an overdetermined matrix system with 2J � N ,
which can be solved by the pseudoinverse algorithm C =
−pinv(M) ∗ Y .
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