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The ability to manipulate pseudospin can find applications in Dirac-material based spintronics. Unlike the
transport of real spin that can be modulated by a magnetic field, some form of magnetization, or a spin-transfer
torque, pseudospin does not respond to a magnetic field, making modulating pseudospin transport a challenging
task. We articulate an asymmetrically coupled cavity-waveguide configuration in graphene and uncover a
phenomenon: making the classical dynamics of the cavity deformed can effectively modulate and enhance
pseudospin polarization in the waveguide. The underlying mechanism of this remarkable phenomenon can be
attributed to chaos-assisted tunneling, which has been well documented in nonrelativistic quantum systems but
not yet in Dirac material systems. The finding establishes the feasibility to develop pseudospin modulators for
graphene systems through externally applied electrical potential only, with fidelity over 10% at the effective
distance of several cavity sizes along the waveguide.
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I. INTRODUCTION

Graphene and two-dimensional (2D) Dirac materials pos-
sess a unique quantum number—pseudospin [1–5]. In each
unit cell, there are two nonequivalent atomic sites, so the
entire honeycomb lattice can be regarded as constituting two
triangular lattices: A and B, giving rise to two independent
possibilities of quasiparticle motions: those confined to A and
B, respectively. Because of the existence of the two alter-
natives, the quasiparticles are said to have pseudospin-1/2,
where two spinor components governed by the Dirac equation
are required to describe the quasiparticles. The band structure
of the low energy excitations consists of a pair of vertex-
touching Dirac cones. The pseudospin quantum number can
be exploited for storing and transferring information with
applications in Dirac material based spintronics [6–9].

Pseudospin, after all, is not the real spin. Usually, the
transport of an electron’s real spin can be modulated by a
magnetic field [10] or some form of magnetization [11,12].
The degree of real spin polarization can also be modulated
through the generation of a spin-transfer torque [13,14]. How-
ever, pseudospin does not respond to a magnetic field. For
graphene, one approach to modulating pseudospin is through
mechanical deformation that generates a “pseudomagnetic”
field [9,15,16]. In another method, an electrical potential
induced mass type of perturbation in bilayer or monolayer
graphene [6,17–19] leading to an energy gap was used to
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break the sublattice symmetry and induce pseudospin polar-
ization. To uncover alternative methods and physical mecha-
nisms to induce/modulate/control the pseudospin degree of
freedom can be of considerable applied value to spintronics.

In this paper, we uncover a mechanism to modulate pseu-
dospin. Focusing on graphene, we exploit the principle of mu-
tual coupling between a waveguide and a nearby cavity. The
idea is originated from optics, where the asymmetric config-
uration of coupled waveguide and microcavity is commonly
used to induce Fano resonances in various optical devices
[20–23]. Figure 1 illustrates such a transport system, where
the graphene waveguide, a channel-like structure through
which pseudospin-1/2 quasiparticles propagate, can be fabri-
cated by applying some properly designed electrical potential
[24–27] and has been experimentally realized [28,29]. Exper-
imentally, a dielectric cavity in graphene can also be created
through an external gate potential [30–34], as in scattering
[35–38]. In our work, both circular and deformed cavities
are considered, where for the latter, the shape of Africa is
chosen [39,40]. Due to the proximity of the waveguide and
cavity, there is an interaction between them, forming bonding
and antibonding states and effectively generating an artificial
molecular structure on graphene [41,42].

Due to the presence of the cavity, in the plot of the trans-
mission coefficient through the waveguide versus the electron
energy, there are dips, which are the manifestations of Fano
resonances. Associated with a resonant mode in the cavity,
pseudospin polarization of quasiparticles in the waveguide can
emerge. The difficulty with a circular cavity is that the Fano
resonances are pronounced, thereby diminishing the transmis-
sion through the waveguide. However, we find that, for the
deformed cavity, not only can strong pseudospin polarization
arise, but large transmission can also be achieved, thanks to
the mechanism of chaos-assisted tunneling. Two issues, the
fidelity versus the input energy and the effect of distance
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FIG. 1. Coupled cavity-waveguide system in graphene. The up-
per boundary of the waveguide and the boundary of the cavity divide
the relevant space into three regions: I, II, and III. The cavity has the
shape of Africa. A beam of pseudospin unpolarized quasiparticles is
injected from the right. After passing the interacting region with the
cavity, a pseudospin polarized current will emerge.

between the cavity and waveguide, are also addressed, which
are relevant to the experimental quantities of spin injection
efficiency and diffusion length [8], respectively. We stress
that, while the phenomenon of chaos-assisted tunneling has
been well documented in nonrelativistic quantum and optical
systems [43–56], prior to our work, it had not been uncovered
in relativistic quantum transport systems. The overall message
is that a deformed cavity geometry can play a beneficial role
in modulating pseudospin.

Qualitatively, the mechanism for pseudospin modulation
can be understood, as follows. In an integrable cavity, differ-
ent modes carry different angular momentum. The coupling
between the waveguide eigenmode and the cavity becomes
strong only for some discrete energy values, so the momentum
transfer rate is low for most frequencies. At the resonance
frequencies, the symmetry possessed by the integrable cavity
would weaken the polarization through some cancellation
effect. In addition, the strong confinement in the cavity means
weak transmission in the waveguide. For a deformed cavity,
the Fano resonances are associated with angular momentum
in a broad range, and momentum transfer is the result of both
spatial coupling and deformation-induced broadening of the
resonances. The collective influences of these factors lead to
strong transmission in the waveguide with enhanced pseu-
dospin polarization. A similar phenomenon occurred with
chaos assisted momentum transfer in optics [57].

II. COUPLED WAVEGUIDE-CAVITY GRAPHENE SYSTEM
AND FANO RESONANCES

A. System description and solution method

The structure of coupled cavity and waveguide is common
in optics [20–23], which can be realized through lattice impu-
rities or differential dielectric materials with different values
of the refractive index [57,58]. In Dirac material systems,
a coupled cavity-waveguide system can be realized with a
graphene-metal or graphene-silicon hybrid structure [59,60].

We focus on the graphene based, coupled cavity-
waveguide systems as illustrated in Fig. 1, which can be
realized by applying an external potentials in different regions
of the graphene sheet. To create a waveguide, one can apply an

electrical [24] or a magnetic [26] potential. Mathematically,
the potential can be smooth, with its profile being some
kind of special functions [25,27]. Let x be the direction of
propagation of pseudospin-1/2 quasiparticles in the graphene
waveguide. Effectively, the waveguide is a potential well of
finite size in the y direction and infinite in the x direction.
For high incoming energy (large wave vector inside), mul-
tiple confinement modes inside the waveguide can arise, as
has been studied experimentally [28,29]. In the low-energy
regime, single mode operation of the graphene waveguide
can be realized [61], on which our present study focuses.
Likewise, a cavity in a graphene sheet acts as a quantum dot
with quantized energy levels. The case of a circular cavity
has been previously studied [35–38], which can be realized
experimentally with scanning tunneling microscope (STM)
tips or through substrate engineering [30–32,34].

For a single valley, the Hamiltonian for the coupled cavity-
waveguide system is

H = vgσ · p + UII(r) + UIII(r), (1)

where vg is the Fermi velocity, UII and UIII are the cavity and
waveguide potential functions, respectively. For simplicity, we
assume that the potential profiles are described by the step
functions:

UII(r) =
{

h̄vgV2, r ∈ DII

0. r /∈ DII
,

UIII(r) =
{

h̄vgV3, r ∈ DIII

0. r /∈ DIII
,

(2)

where V2 and V3 are the heights of the potential applied to
regions II and III, respectively. Due to the presence of the
waveguide, even for a circular cavity, the pseudospin-1/2
wave scattering problem cannot be solved analytically. To
calculate the basic quantities characterizing the transport, e.g.,
the transmission and reflection coefficients, we exploit the
multiple multipole (MMP) method originated from optics
[62–66] and adopted to photonic crystal waveguides [67] and
more recently to Dirac-Weyl spinor systems under various cir-
cumstances [68–70]. Specifically, without the waveguide, for
a single circular cavity on a graphene sheet, associated with
various resonant states the angular momenta are conserved,
which can be calculated analytically (Appendix A). Likewise,
without the cavity, transport through an infinite graphene
waveguide can also be solved analytically [24] (Appendix B).
For propagation in a given direction inside the graphene
waveguide of a finite length, the confinement modes can be
obtained with the MMP method. The main source of error
is the finite waveguide cutoff in the propagation direction,
which can be reduced by increasing the length. For the full
system of graphene cavity and waveguide, distinct sets of
fictitious poles can be placed inside and outside the cavity
and waveguide, and the scattering wave function is given by
a linear combination of the contributions from corresponding
sets of poles, which can be solved as a pseudoinverse problem
(Appendices C and D).
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FIG. 2. Wave function patterns in a system where a waveguide is
coupled to a circular cavity. (a) For a waveguide of width 2a coupled
with a circular cavity of radius R, color coded value of the real part
of the first spinor component ψ1. The distance between the center
of the circle to the waveguide is d . The dimension of the system is
a = 0.1R and d = 1.4R. The applied electrical potentials are V2R =
10 and V3R = 8. For wave vector of the incoming quasiparticles set
as kxR = 8.4, the system is near a resonance mode in the cavity
with quantum numbers l = 7 and m = 2, where l is the angular
momentum index and m is the quantum number associated with the
wave function in the radial direction. (b) Color-coded plot of the real
part of the second spinor component ψ2, where there are more nodes
in the angular direction, due to the two-component spinor structure
for Dirac fermions.

B. Fano resonances

The energy spectrum of the waveguide is continuous while
that of the cavity is discrete. When the two systems are
coupled together, Fano resonances [71] can arise [21,72]. For
strong coupling, energy loss from the incident wave in the
waveguide can occur due to the excitation of the resonant
modes in the cavity, reducing the transmission. Two examples
of the wave function profiles for the coupled system are
shown in Figs. 2(a) and 2(b), respectively. The transmission
coefficient T0 of the waveguide can be obtained from these
wave functions, which can be defined in terms of the current
passing through the interaction region. In particular, we have

T0 ≡ Jout
x /Jout-Free

x ,

where

Jout
x =

∫∫
jxdxdy and j = 〈�|σ|�〉.

The integration for Jout is over the waveguide domain beyond
the coupling region directly below the cavity. Due to particle
conservation, a higher concentration of the wave function in
the cavity means a smaller current in the waveguide and, con-
sequently, smaller transmission T0. For simplicity, we focus
on the regime of a single transverse mode in the waveguide
which, for the specific parameter setting V3R = 8 in our
computations, is given by kxR < 11.

Figure 3 shows, for V2R = 10 and V3R = 8, the transmis-
sion coefficient T0 of the waveguide versus the normalized
dimensionless wave vector kxR. In the range of kxR values
plotted, two Fano resonances arise, as characterized by the
two dips in the transmission curve. The resonance profile is
approximately symmetry with respect to the center of the dip,
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FIG. 3. Representative behavior of transmission T0 vs the input
wave vector. The parameter setting is V2R = 10 and V3R = 8. (a) Two
resonant modes as indicated by the corresponding dips in the trans-
mission curve. As the propagating direction in the waveguide is from
right to left, the evanescent wave generated leads to a strong coupling
with the modes in the cavity with positive angular momentum values
(l > 0, clockwise) only. The two resonant modes are associated with
angular momentum quantum numbers (l, m) = (10, 1) and (l, m) =
(7, 2), respectively. [(b) and (c)] For the two resonant modes, respec-
tively, effect of the distance between the waveguide and cavity on the
resonance profile. As the distance is increased so that the coupling is
weakened, the profile narrows.

signifying its association with a single, distinct mode in the
cavity [42,73]. The coupling between the propagating mode
in the waveguide and a confinement mode in the cavity is
enabled through evanescent wave coupling. In the coupling
region, the evanescent wave can be expressed in terms of
the angular momentum eigenmodes through the Jacobi-Anger
expansion as

χ = exp [−α2(y + d + a)] exp(ikxx),

=
∑

l

nlJl (εr) exp(ilθ ), (3)

where the geometric parameters d and a are specified
in Figs. 1 and 3, nl = exp(−α2(d + a)) exp(ilφ) with
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sin φ = kx/|ε|, cos φ =
√

k2
x − ε2/(i|ε|) and α2 =

√
k2

x − ε2 ,
and ε is the total wave vector. As d increases, the exponen-
tially decaying evanescent wave χ will diminish. The quantity
φ is the angle between ε and the propagating wave vector kx,
which is imaginary because of the inequality kx > |ε|. From
the Jacobi-Anger identity, for each momentum value, when φ

is imaginary, the second factor in nl will grow exponentially
for positive or negative values of l , depending on the sign
of Im{φ}, thereby generating a bias in the current. In our
setting, the resonant modes in the cavity have l > 0, which
are different from those in elastic scattering where the incident
wave is a plane wave (Appendix A).

Intuitively, for a given value of kx, the coupling strength
between the cavity and waveguide can be defined as [22,73]
Cs ≡ 1 − T0. As kx varies, a Fano resonance can arise, where
the transmission reaches minimum for certain value of kx.
Associated with the resonance, coupling is greatly enhanced.
The resonance strength can be conveniently characterized by
the maximum value of Cs, which we define as the coupling
efficiency for this specific resonance. The width of the reso-
nance is 	kx ≡ k2

x − k1
x , where k1,2

x are the pair of kx values at
which Cs is half of its maximum. Another quantity of interest
is the frequency shift as induced by the coupling between
the cavity and waveguide [74,75], defined as δk ≡ kmax

x (Cs) −
kmax

x (σ ), where kmax
x (Cs) is the frequency at the center of the

resonance in terms of Cs and kmax
x (σ ) is the corresponding

quantity in terms of the total scattering cross section σ . The
dimensionless frequency shift is δkR.

From the results in Fig. 2, we can assess how the charac-
teristics of Fano resonance depend on the cavity-waveguide
distance. Intuitively, as the distance increases, the coupling
should be weakened. Two representative examples are shown
in Fig. 4. For the (l, m) = (7, 2) resonance, for small distances
the coupling efficiency is large and it decays for large dis-
tances, as shown in Fig. 4(a), agreeing with intuition. How-
ever, unexpectedly, for the (l, m) = (10, 1) mode, the value
of the coupling efficiency maintains at unity even for large
distances. To understand this surprising behavior, we seek
insights from optics, where an optical resonance corresponds
to a quasibound state, regardless of the nature of the resonance
(e.g., generated by plane wave or through a Fano type of
mechanism) [22,76]. Associated with a quasibound state, the
wave function is characteristically different from that associ-
ated with a confinement mode in the cavity which, in fact, can
even diverge [23] for r → ∞ but with an imaginary energy
that indicates energy loss. As a result, confinement cannot
be maintained indefinitely, which can be characterized by the
quality factor Q defined as the ratio of the real and imaginary
parts of the energy. However, in graphene systems described
by the Dirac equation, the spinor nature of the wave function
and Klein tunneling rule out the possibility of any optical-like
quasibound states. The discrete modes in the cavity, when
the waveguide is absent or present, correspond to scattering
resonances or Fano resonances, respectively. For a scattering
resonance, its width is inversely proportional to the average
lifetime of the quasiparticles in the cavity. For the (l, m) =
(10, 1) mode, in the absence of the waveguide, the scatter-
ing cross section exhibits a quite sharp peak (Appendix A),
indicating a long lifetime and high quality confinement. As
a result, when the waveguide is present, the corresponding
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FIG. 4. Dependence of the characteristics of Fano resonance
on the cavity-waveguide distance. [(a)–(c)] Coupling efficiency,
resonance width, and frequency shift vs the normalized distance,
respectively, for the two Fano resonances in Fig. 2.

Fano resonance is also sharp, which has little dependence on
small variations in the distance between the cavity and the
waveguide.

C. Pseudospin polarization

To further understand the emergence of the distance in-
dependent resonant modes, we examine the behavior of the
pseudospin current in the waveguide and cavity at the critical
coupling, which is calculated through the local expectation
value of the Pauli matrices σ, where j = 〈�|σ|�〉 is the
pseudospin current density. The output pseudospin current in
the waveguide can be obtained as the integration of the density
as

Jx,y,z(x) =
∫ −d

−d−2a
jx,y,z(x, y)dy. (4)

We impose the following normalization of the input current:
Jx(x = ∞) = 1, so a unity current magnitude corresponds to
the case of perfectly pseudospin polarization. Figures 5(a)
and 5(b) show both the in-plane and out-of-plane current
distributions in the coupling region, for the resonant modes
(l, m) = (10, 1) and (l, m) = (7, 2), respectively, where the

033406-4



PSEUDOSPIN MODULATION IN COUPLED GRAPHENE … PHYSICAL REVIEW RESEARCH 2, 033406 (2020)

FIG. 5. Distinct behaviors of pseudospin currents associated
with different types of resonant modes. (a) Current in the waveguide
for the (l, m) = (10, 1) mode for critical coupling kxR = 8.1906.
The black arrows represent the in-plane pseudospin current density
given by the local expectation values of σx and σy. The color
represents the out-of-plane pseudospin current density given by the
expectation value of σz. Associated with a resonance, the pseudospin
current traveling directly from right to left dominates, in spite of the
deviations near the waveguide and cavity boundaries in the coupling
region. (b) Same picture for the resonant mode (l, m) = (7, 2), where
both the in-plane and out-of-plane pseudospin currents exhibit large
deviations from the propagation direction. [(c) and (d)] Integrated
pseudospin currents over the y direction for the (l, m) = (10, 1)
and (l, m) = (7, 2) modes, respectively. (e) In the absence of the
waveguide, pseudospin current profile near y = −d for the scattering
resonance corresponding to the (l, m) = (10, 1) mode, for which the
quasiparticles have a long lifetime and the wave outside the cavity
is dominantly outgoing. For this mode, the pseudospin polarization
current is nonzero only near the cavity boundary. (f) A similar plot
for the scattering resonance associated with the (l, m) = (7, 2) mode.
The current in the y direction exhibits an oscillation structure even at
large distance from the coupling region.

input current from the right side is not pseudospin polarized.
It can be seen that, for the (l, m) = (10, 1) mode [Fig. 5(a)],
there are distortions in the current pattern near the cavity
and waveguide boundaries in the coupling region but the
current remains to be pseudospin unpolarized after passing
through the region. In contrast, for the (l, m) = (7, 2) mode
[Fig. 5(b)], the current structure is disturbed and exhibits
oscillations even after passing through the cavity region and
at a distance of a few cavity sizes. Further illustration of
the distinct behaviors in the current can be seen by the
integrated current (in the y direction) as shown in Figs. 5(c)

and 5(d), with the normalization convention Jx(x = ∞) = 1.
Comparing with Fig. 5(c), the oscillations of the integrated
pseudospin current even at large propagating distances in
Fig. 5(d) are pronounced. Figures 5(e) and 5(f) show the
current profiles for the corresponding scattering resonances
when the waveguide is absent. The wave function associated
with the mode (l, m) = (10, 1) is dominated by an outgoing
wave described by the Hankel function of the first kind, but
for the mode (l, m) = (7, 2), the wave function is a mix-
ture of the Hankel functions of the first and second kind,
signifying a scattering state. The results in Figs. 5(e) and
5(f) are similar to those in Figs. 5(a), 5(c) and 5(b), 5(d)
respectively, indicating the role of cavity in inducing pseu-
dospin polarization and the applicability of the mode coupling
theory.

The phenomenon that the pseudospin current after passing
the cavity becomes polarized is the result of the asymmetric
potential applied. In fact, pseudospin polarization associated
with a resonant mode depends on the properties of the
corresponding scattering resonance. As shown in Fig. 5(e),
when the scattering resonance has a long lifetime, outside
the cavity the wave function is dominated by outgoing waves
and the pseudospin polarized current is diminishingly small
except near the coupling region. However, when the lifetime
associated with a scattering resonance is short, a mixture
of incoming and outgoing waves arises outside the cavity,
making the pseudospin polarized current large, as shown in
Fig. 5(f). Note that there is no relation between the quantum
number m and the type of scattering state. In general, if
the potential height is much larger than the electron energy,
scattering resonances with m > 1 can exhibit a long lifetime.

III. EXPLOITING DEFORMED CAVITY TO MODULATE
PSEUDOSPIN

As demonstrated in Sec. II, the presence of a cavity in
the vicinity of a waveguide can have affect the pseudospin
polarized current in the waveguide in a not-so-insignificant
way. The effect can be quite dramatic when a Fano resonance
emerges in the cavity. In particular, a beam of pseudospin un-
polarized particles, after passing through the coupling region,
can gain certain degree of pseudospin polarization. A specific
example is presented in Figs. 5(c) and 5(d), where the inte-
grated pseudospin polarization current along the y direction is
shown. The degree of polarization is position dependent and
exhibits oscillations with a decaying amplitude away from the
coupling region. The ability for a Fano resonance in the cavity
to affect the pseudospin polarization of the quasiparticles in
the waveguide suggests the possibility to use coupled cavity-
waveguide system as a pseudospin modulator.

In spintronics applications [6,8], it is desired to generate
a strong, highly pseudospin polarized current. However, for
a Fano resonance based pseudospin modulator, a trade off
is inevitable: to achieve a high degree of pseudospin polar-
ization, a strong coupling between the cavity and waveguide
is required, but this leads to weak transmission through the
waveguide. Does there exist a configuration that minimizes or
even eliminates the trade off, i.e., is it possible to articulate a
system that can generate both strong pseudospin polarization
current and large transmission? Our answer is affirmative.
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Especially, in graphene systems, it has been demonstrated pre-
viously that geometrical deformation can enhance emission
and tunneling [52]. Our idea is then to exploit a deformed
cavity for pseudospin modulation.

For the waveguide-cavity coupled system, to generate geo-
metrical deformation is experimentally feasible because all it
takes is to modify the geometrical shape of the cavity from a
perfect circle to, e.g., a stadium or the shape of Africa [40]. We
note that, in optics, introducing appropriate geometric defor-
mations to a microlasing cavity has the benefits of achieving
both a high quality factor and strong directionality of emission
[23]. In transport through a quantum dot or cavity scattering
systems, utilizing a deformed cavity can also be advantageous
[52,57,68,70,77–79].

To be concrete, we study a cavity with the shape of
Africa [39,40], which can be conveniently generated through a
conformal mapping. In particular, defining z = eiθ where θ ∈
[0, 2π ] for a circular cavity of unit radius in the z plane, we
obtain a deformed cavity in the w plane through the following
conformal mapping:

w(z) = z + δ1z2 + δ2 exp(iδ3)z3√
1 + 2δ2

1 + 3δ2
2

, (5)

where the geometry defined by the real and imaginary parts of
w has the same area as the original circle in the z plane, and the
choices of the parameters δ1 = δ2 = 0.2 and δ3 = π/3 lead to
a cavity of the shape of Africa. Note from Eq. (5) that the
conformal mapping does not change the center of circle, so
the distance between the deformed cavity and the waveguide
can still be measured by d , the original distance between the
circle and the waveguide.

We examine the transmission for the Africa cavity. For
comparison, we also include the corresponding result for case
of a circular cavity of the same area. The results are shown
in Fig. 6, where the transmission T0 versus the normalized
input energy in the interval kxR ∈ [8, 10] for the two cases
is presented. For the circular cavity, in the energy interval
displayed, there are four Fano resonances, as indicated by
the four sharp and significant dips in the transmission curve.
In contrast, for the deformed cavity, no such dip exists. The
resonances can also be seen from the behavior of the total
density of states (DOS) inside the cavity defined as

DOS =
∫∫

r∈DII

�†(r)�(r)dr, (6)

where it exhibits four sharp peaks in the pertinent energy
interval for the case of a circular cavity, each corresponding to
a dip in the transmission, as shown in the inset of Fig. 6. The
total DOS for the deformed cavity is nearly zero in the energy
interval, except for a small and broad peak near the middle
of the interval, indicating the emergence of only a weakly
confined state at that energy. Apparently, chaos has removed
all sharp Fano resonances, which also occurs with elastic
scattering in graphene systems [68,77] and in the general
context of quantum scattering (or transport) [52,57,68,70,77–
79].

While the results in Fig. 6 indicate that the presence of a
deformed cavity near the waveguide has little effect on the
transmission, is there any advantage to have such a cavity
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FIG. 6. Broadening of Fano resonances through geometrical de-
formation. Shown is the waveguide transmission vs the input nor-
malized energy for the two cases where the coupled cavity is circular
and has the shape of Africa, respectively. For the circular cavity (blue
curve), four sharp Fano resonances arise, associated with which the
transmission is significantly reduced. In contrast, for the deformed
cavity, no such resonance exists and the value of the transmission
maintains at near unity. These behaviors can also be seen from the
plot of the total DOS inside the cavity vs the input energy, as shown
in the inset, where a Fano resonance corresponds to a sharp peak in
the total DOS.

from the point of view of pseudospin polarization? To answer
this question, we examine how a particular resonant mode,
e.g., the (l, m) = (7, 2) mode, is removed when the circular
cavity is replaced by a deformed cavity.

We first study the case of a circular cavity. Figure 7(a)
shows the pseudospin polarization current in the whole cou-
pled system, where the length of the black arrows and the
brightness of the color represent the relative magnitude of the
pseudospin polarization current. Because of the resonant con-
finement in this case, the wave function is strongly localized in
the cavity, giving rise to small transmission in the waveguide.
Figure 7(b) shows the combined pseudospin polarization cur-
rent in the (y, z) plane in the propagation direction (thick green
arrow), where the negative Jx component is not included here
for clarity. In the absence of the cavity, we have Jy = Jz = 0
due to the symmetry of the applied potential that defines
the waveguide. The interaction with the cavity causes the
pseudospin polarization current to possess a component in the
(y, z) plane, and the current persists even at some distance
passing through the coupling region, which can be better seen
from the plot of Jz versus x, as shown in Fig. 7(c). This
behavior resembles that of electron scattering from a magnetic
domain wall [80].

We next investigate the case of a deformed cavity of the
Africa shape. Figure 7(d) shows the behavior of the pseu-
dospin polarization current through the coupling region. For
a meaningful comparison with the case of the circular cavity,
we use the same input energy as that in Figs. 7(a)–7(c). Due
to the weak coupling and removal of the Fano resonance by
chaos, the current concentrates in the waveguide. The weak
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FIG. 7. Direct evidence of chaos assisted tunneling and pseu-
dospin polarization enhancement. (a) For the case of a circular
cavity, for kxR = 8.4231 so that the (l, m) = (7, 2) resonant mode
is excited, distribution of the pseudospin polarization current density
in the whole coupled system. The black arrows indicate the in-plane
current and the color represents the out-of-plane current jz. The
direction of the in-plane current in the waveguide is dominated by
the input direction (from right to left), see Fig. 5(d). (b) The current
components Jy and Jz along the waveguide, where the thick green
arrow indicates the direction of the input spinor wave. (c) Integrated
out-of-plane pseudospin polarization current Jz vs x, which exhibits
oscillations even away from the coupling region at distances of
several times of the cavity size. [(d)–(f)] Results corresponding to
those in (a)–(c) but for a deformed cavity of the same area for kxR =
8.9623. In (d), the DOS inside the cavity is much less pronounced
than that in (a), with the inset depicting the in-plane current. [(e) and
(f)] A relatively strong pseudospin polarization current.

current inside the cavity, however, is clockwise, indicating
that only modes with l > 0 in the cavity are activated through
the coupling with the waveguide. Figures 7(e) and 7(f) show,
respectively, the pseudospin polarization current in the (y, z)
plane and the z component versus x. Comparing with the
corresponding results for the case of circular cavity [Figs. 7(b)
and 7(c)], we wee that the magnitude of the pseudospin

polarization current is almost doubled. Thus not only is geo-
metrical deformation able to suppress the Fano resonance and
significantly enhances transmission through the waveguide,
but it also has the benefit of producing stronger pseudospin
polarization.

Another feature of geometrical deformation enhanced
pseudospin polarization is that, in comparison with the case of
a circular cavity, the oscillation frequency of the pseudospin
polarization current is larger, as can be seen from Fig. 7(f).
From the point of view of mode coupling, the oscillation
frequency is determined by the scattered radial wave. For
a deformed cavity, waves associated with different angular
momentum quantum numbers are effectively mixed, giving
rise to a wider scattering profile in comparison with the case
of a circular cavity where only a single mode is instigated for
a given input energy value [81]. In general, for a circular or
a deformed cavity, a large number of resonances can arise for
different amount of coupling, each generating a certain degree
of pseudospin polarization.

For spin modulation in graphene, there were experimental
characterizations for gate controlled devices in terms of the
spin injection efficiency (or fidelity) and the spin diffusion
length [6,8], where the former measures the percentage of the
spin polarized current and the latter quantifies the effective
spatial region in which the spin polarized current can sustain.
The value of fidelity [82] can be larger than 60% and the
diffusion length can be several μm [83]. Motivated by the
experimental results on characterization of the real spin po-
larization, we define the pseudospin fidelity for our coupled
cavity-waveguide system in terms of the y and z components
of the pseudospin polarization vector as

F =
√

J2
y + J2

z

|Jx| , (7)

which depends on the input energy and the distance between
the cavity and the waveguide. Intuitively, in the weak coupling
regime, the value of F is small, as the modes in the cavity do
not have a significant impact on the pseudospin polarization
current in the waveguide. Associated with a Fano resonance,
the fidelity value can be (locally) maximized. Away from
the coupling region along the waveguide, the fidelity should
exhibit an oscillatory behavior with an decreasing amplitude,
as implied by the results in Figs. 7(b) and 7(e). Along the
waveguide, at locations near the coupling region, on average
the fidelity value is large, facilitating experimental observa-
tion.

When calculating the fidelity, a technical difficulty is that
the numerically required truncation of the waveguide in the
propagation direction can make the transmission in the ab-
sence of any cavity deviate from unity (Appendix B). If the
distance d between the waveguide and cavity is small, the
cavity effectively serves as a barrier, generating large errors in
the calculation of the transmission and reflection coefficients.
However, when d is reasonably large, the fidelity value is not
affected by the finite truncation (Appendix D). Figure 8(a)
shows, at a fixed location, the F value versus the input
energy for the circular and deformed cavities. We see that
F reaches a local maximum when a Fano resonance arises.
For the integrable cavity, this occurs for the (l, m) = (7, 2)
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FIG. 8. Fidelity and diffusion length characterizing pseudospin
polarization. (a) For the circular cavity (blue trace), fidelity for kxR ∈
[8, 10] measured at x = −2R. Associated with a Fano resonance, the
fidelity reaches maximum. The red curve is the fidelity plot for the
deformed cavity, where a local maximum also arises. (b) Fidelity vs
distance for the input energy value indicated by the downward arrows
in (a). The gray region illustrates the cavity size. For the deformed
cavity, the fidelity maintains at some large value even at distances of
several cavity sizes.

mode. For the deformed cavity, the maximum F value occurs
for kxR ≈ 8.95. Figure 8(b) shows, for this value of kxR,
F versus the testing location along the waveguide, which
exhibits an oscillatory behavior with a decreasing magnitude
on average. Even at location several times of the cavity size
away from the coupling region, the fidelity value is still quite
appreciable, indicating a similar value for the pseudospin
diffusion length and rendering feasible an experimental study
of our coupled cavity-waveguide system as a pseudospin
modulator.

IV. NULL PSEUDOSPIN POLARIZATION IN A
SYMMETRICALLY COUPLED CAVITY-WAVEGUIDE

CONFIGURATION

Pseudospin polarization arises from the asymmetry in the
applied electrical potential, i.e., a waveguide side-coupled
with a cavity. It is useful to consider the symmetrical coupled
system of two identical cavities coupled to the waveguide, one
on each side. The expectation is that, because of the symmetry,
pseudospin polarization vanishes.

FIG. 9. Disappearance of pseudospin polarization current in a
symmetrically coupled cavity-waveguide system. (a) Distribution of
the real part of the first spinor component for a symmetric system of
two circular cavities, one on each side of the waveguide. The input
spinor wave is the same as that in Fig. 7(a). The nodal numbers in the
upper and lower cavities are different, due to the degeneracy of the
modes (l, m) = (7, 2) and (l, m) = (−8, 2), as reflected by the sign
of φ in Eq. (3). (b) The corresponding wave-function distribution for
the deformed cavity of the Africa shape. [(c) and (d)] Distributions
of the z component of the pseudospin polarization current density jz

in the waveguide for the integrable and chaotic cavity, respectively.
The density distribution is perfectly antisymmetric with respect to
the central axis of the waveguide, giving rise to Jz = 0.

We generalize the MMP method to calculate the wave
functions and the pseudospin polarization current for the
symmetrically coupled system by placing two additional sets
of poles: one inside and another outside of the second cavity
domain (Appendix C). The procedure to construct the wave
function is similar to the case of asymmetrically coupled
system, where the wave function outside the two cavities
and waveguide is determined by all the poles inside those
domains. The poles outside but near each domain gives the
wave function inside that domain.

Figure 9 shows the results on the pseudospin polarization
current of the symmetrically coupled cavity-waveguide sys-
tem. In particular, Fig. 9(a) shows the real part of ψ1 for the
circular cavity associated with a Fano resonance. Note that the
numbers of nodes in the upper and lower cavities are different,
due to the opposite signs of the angular momentum in the
cavities. The corresponding result for the case of deformed
Africa cavity is shown in Fig. 9(b). Figures 9(c) and 9(d)
show the pseudospin polarization current density inside the
waveguide for the circular and deformed cavities, respectively.
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Comparing with the results of the asymmetrically coupled
system in Figs. 7(a) and 7(d), we see that the pseudospin
polarization current density is now perfectly asymmetrically
distributed in the space with respect to the central axis of
the waveguide, regardless of whether the cavity is circular or
deformed. This leads to Jz = 0.

V. DISCUSSION

To effectively manipulate pseudospin polarization is key to
spintronics. We have articulated a device configuration and
studied scenarios to generate and enhance pseudospin po-
larization in graphene. Especially, for propagation through a
graphene waveguide, placing a cavity nearby can generate cer-
tain degree of pseudospin polarization for initially unpolarized
quasiparticles. For a circular cavity, sharp Fano resonances
can arise. For some specific incident energy that induces a
Fano resonance, a high degree of pseudospin polarization can
be achieved. However, the energy interval to achieve such an
enhancement is quite narrow because of the sharpness of the
Fano resonance.

There are thus two difficulties to exploit Fano resonances
in a circular cavity to realize strong pseudospin polarization.
Firstly, the resonances are typically sharp, making tuning
to it practically difficult. Secondly, associated with a Fano
resonance, transmission through the waveguide can be sig-
nificantly reduced. It is infeasible to achieve high transmis-
sion and a sizable pseudospin polarization at the same time.
Our central idea to overcome the difficulties is to exploit
geometrical deformation. In this case, Fano resonances are
broadened. The remarkable phenomenon is that a deformed
cavity can enhance pseudospin polarization in a wide energy
interval and is thus more experimentally feasible. Because
of the weakening of the Fano resonance, high transmission
can be achieved simultaneously. Using a deformed cavity to
generate and modulate pseudospin polarization is thus desired
spintronics device applications.

We discuss a few pertinent issues. (1) Effect of simulta-
neous presence of two valleys on pseudospin polarization.
In our cavity-waveguide coupled system, there is no inver-
sion symmetry about the y axis (note that x is the prop-
agation axis in the waveguide). The result that pseudospin
unpolarized incoming electrons from the right gain certain
degree of pseudospin polarization after passing through the
coupling region was obtained for one valley, as demonstrated
in Figs. 7(a) and 7(d), where the asymmetric wave function
makes the pseudospin polarized. The presence of the other
nonequivalent valley can lead to cancellation of pseudospin
polarization in some directions, but not in all directions,
depending on the orientation of the lattice structure. For
example, say the Hamiltonian for one valley is written as
HK = vg(σx px + σy py). If the orientation in the x direction
is of the armchair type, the Hamiltonian associated with the
other valley (K) is [3] HK ′ = vg(−σx px + σy py). If the spinor
wave function for the K valley is written as ψ = [ψA, ψB]T ,
then the solution for the K ′ valley is ψ = [ψB,−ψA]T . The
relations between the pseudospin current components of the
two valleys are jx = − j′x, jy = j′y and jz = − j′z. That is, the y
component of pseudospin polarization associated with K ′ has
the same sign as that with the K valley, but the signs of the
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FIG. 10. An illustrative example of confinement conditions and
wave function in a graphene waveguide in the single mode operation
regime. (a) Dispersion relationship for a graphene waveguide with
V3a = 0.8. For kx small, only a single mode exists. The shaded region
is associated with the confinement condition |ε| < |kx|. The green
pentagram denotes kxa = 1. (b) Wave function for kxa = 1.

pseudospin polarization in the x and z directions associated
with the two valleys are opposite. There is thus a time reversal
symmetry: pseudospin unpolarized current associated with
valley K coming from the right to the left becomes polarized
after passing through the coupling region, and pseudospin
polarized current associated with K ′ coming from the left will
emerge pseudospin unpolarized on the right. Overall, in the
direction from right to left, coupling with the cavity can still
generate pseudospin polarization in the y direction.

(2) Experimental detection of pseudospin. Experimentally,
directly detecting the pseudospin can be challenging [7], but
it is not infeasible. In particular, the methods of sublattice
resolved LDOS mapping [9] and polarization resolved photo-
luminescence spectroscopy [84] have been used to investigate
the sublattice pseudospin dynamics, based on the physical
principle that the sublattice pseudospin alignment/texture will
affect the carrier optical properties. We are thus hopeful that
the results in this paper can be tested experimentally.

(3) Multimode operation of waveguide. Multimode
graphene waveguides have been previously studied [28,29],
which arises if kx is sufficiently large. The conductance is
proportional to the number of modes. The dispersion relation-
ship shown in Fig. 10 stipulates that the energies associated
with different modes are different. This means that, if one
mode in the waveguide is already coupled to the cavity at
some value of kx, then the coupling between other modes
and the cavity must necessarily be much weaker and can
be ignored. That is the reason that we focus on the single
mode case. However, a guiding mode can couple to multiple
modes in the cavity, which occurs when the confinement of the
cavity is sufficiently strong so that different scattering reso-
nances are simultaneously present inside the cavity. A similar
phenomenon has been observed in optics, which leads to an
asymmetric transmission profile [73]. In this case, pseudospin
polarization is mainly determined by coupling with the mode
associated with the strongest confinement.

(4) Development of a semiclassical theory. Classically, a
deformed cavity generates chaos. In the study of quantum
chaos, semiclassical theory has played an important role
[51,85–92]. The question is whether a semiclassical theory
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can be developed to understand pseudospin modulation in the
coupled cavity-waveguide system.

In the semiclassical regime, the Planck constant is in-
finitesimal: h̄ → 0. In this regime, there is a correspondence
between the quantum and classical statistical properties of the
system. There are three difficulties in developing a semiclas-
sical theory for the coupled cavity-waveguide system.

The first difficulty is to develop a Green’s function formal-
ism. This can be done when the system configuration is of
the quantum-dot type [93,94]: a cavity plus two leads, where
semiclassical transport can be studied by the standard Green’s
function method. Even though the leads are semi-infinite, the
whole quantum dot system can be regarded as a single entity.
Our system involves three regions: the infinite waveguide that
cannot be treated as a lead, the finite cavity, and the semi-
infinite space between the cavity and waveguide. The input
wave function propagates in the waveguide. When it arrives
at the coupling region, it interacts with the cavity through
evanescent waves, induces resonances in the cavity, and scat-
ters back into the waveguide. This process continues until an
equilibrium is reached. While this kind of configurations has
been studied recently in optics [73], to calculate the total wave
function for the coupling system, whether a Green’s function
formalism can be developed and whether the formalism, if
feasible, can be extended to Dirac spinor systems remain to
be open questions.

The second difficulty lies in calculating the averages over
the energy, as is required for establishing a correspondence
between quantum and classical calculations, e.g., level spac-
ing statistics in a closed system and the average conductance
through a quantum dot. The physical reason is that the energy
is always specified within a small interval 	E that is classi-
cally small but quantum mechanically large (in comparison
with the average level spacing). For our two-body coupled
system, it is necessary to take the energy average for both
the cavity and waveguide. It is not clear how this average
can be done in a computationally feasible manner, especially
in the case where the waveguide permits multiple modes of
propagation.

The third difficulty is the determination of the classical
periodic orbits. For a single closed cavity, classical periodic
orbits can be defined straightforwardly. For a quantum dot
system, this can also be done for the dot region. In our
case, the cavity is defined by some electrical potential. At the
boundary of the cavity, reflection and transmission through the
mechanism of Klein tunneling can occur. An optical analogy
is light traveling a medium with different refractive indices
[95]. It is not clear at the present how closed classical orbits
can be defined in our system where scattering occurs in the
two-dimensional semi-infinite region between the cavity and
the waveguide.
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APPENDIX A: SCATTERING SOLUTIONS OF A CAVITY
IN GRAPHENE

To solve the transport/scattering problem with the cou-
pled cavity-waveguide system, it is necessary to obtain the
solutions of the cavity and waveguide separately. Consider a
single cavity in a graphene sheet generated by the following
electrical potential:

UII(x, y) =
{
vgh̄V2, r < R,

0, r > R,
(A1)

with the corresponding wave vectors k2 = |ε − V2| and k1 =
|ε|, respectively. The band indices inside and outside the cav-
ity are τ2 = sign(ε − V2) and τ1 = sign(ε), respectively. For
our coupled cavity-waveguide system, the resonant states in
the cavity are of particular importance. We use three different
methods to calculate and compare the cavity resonant states.

1. Cavity resonant states generated by a plane wave in the
setting of elastic scattering

Let the incident wave be

χ in = exp(iεx)

(
1

i

)
. (A2)

Using the Jacobi-Anger identity [96]

eix ≡
∞∑

l=−∞
il Jl (r)eilθ , (A3)

we expand the plane wave into spherical waves:

χ in = exp(iεx)

(
1

i

)
=

∑
l

il

(
Jl (k1r)

iτ1Jl+1(k1r)

)
eilθ , for r > R.

(A4)
The wave functions outside the cavity can be written in terms
of the Bessel functions as

� (I) =
∑

l

ilgl

(
H (1)

l (k1r)

iτ1H (1)
l+1(k1r)

)
eilθ , for r > R. (A5)

Similarly, the wave function inside the cavity can be expressed
as

� (II) =
∑

l

il pl

(
Jl (k2r)

iτ2Jl+1(k2r)

)
eilθ , for r < R. (A6)

Matching the boundary condition at r = R:(
χ in + � (I)

)
r=R

= (
� (II)

)
r=R

, (A7)

we get

Jl (k1R) + glH
(1)
l (k1R) = plJ1(k2R),

Jl+1(k1R) + gl H
(1)
l+1(k1R) = τ1τ2 plJl+1(k2R),

(A8)

with the solutions:

gl = − Jl (k2R)Jl+1(k1R) − τ1τ2Jl (k1R)Jl+1(k2R)

Jl (k2R)H (1)
l+1(k1R) − τ1τ2Jl+1(k2R)H (1)

l (k1R)
,

pl = Jl (k1R)H (1)
l+1(k1R) − H (1)

l (k1R)Jl+1(k1R)

Jl (k2R)H (1)
l+1(k1R) − τ1τ2Jl+1(k2R)H (1)

l (k1R)
. (A9)
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The circular symmetry stipulates gl = g−l−1 and pl =
τ1τ2 p−l−1, i.e., every resonance contains equal contributions
from the lth and −(l + 1)th states. Note that gl and pl share
the same denominator that can be zero, corresponding to an
infinitely sharp resonance. For these states, the outside the
cavity is dominated by outgoing waves.

2. Cavity resonant states generated by evanescent waves

Because the modes in the cavity and in the waveguide are
coupled through evanescent waves, only angular momentum
with l > 0 will appear. This is different from plane-wave
scattering where a resonance couples the states with angular
momentum l and −l − 1 on the equal footing. See Sec. II for
details, where the expansion in terms of the evanescent waves
is given by Eq. (3).

3. Cavity resonant states generated through an optical approach

Recall that, in optics, the quality factor of the cavity is
given by the real and imaginary parts of the energy as Q =
−Re(ω)/2Im(ω), where ω = ck and each mode corresponds
to a scattering resonance (a quasibound state) [23,76]. In Dirac
systems, such resonant states can be generated by imposing
outgoing waves only outside the cavity. Specifically, the wave
functions outside and inside the cavity can be written as

� (I)(r, θ ) = al

(
H (1)

l (k2r)

iH (1)
l+1(k2r)eiθ

)
eilθ , for r > R, (A10)

and

� (II)(r, θ ) = bl

(
Jl (k1r)

iJl+1(k1r)eiθ

)
eilθ , for r < R, (A11)

respectively, where al and bl are coefficients that can be
determined by the boundary conditions and normalization. Let

Cl = Jl (k1R)

Jl+1(k1R)
and Dl = H (1)

l (k2R)

H (1)
l+1(k2R)

. (A12)

The continuity of the wave function at the boundary is guar-
anteed when, for a given angular momentum quantum number
l , the following holds:

Fl ≡ |Cl − Dl |
|Cl | + |Dl | = 0, (A13)

where the denominator is the normalization factor.
There are two major differences between resonant states

in optics and in Dirac systems. Firstly, for a microcavity
in optics [23,76], the resonances correspond to solutions in
k ∈ C. For an imaginary value of k, due to the dispersion
ω = ck, the energy is also imaginary, which physically means
loss of energy in time. The quality factor characterizing the
confinement is thus given by Q = −Re(ω)/2Im(ω). However,
in Dirac systems, some states can appear for k ∈ R, which
corresponds to a real energy and does not decay with time.
Secondly, in optics, associated with each resonant state, there
is a peak in the scattering cross section with its width inversely
proportional to the lifetime. In a Dirac scattering system, Fl

has a minimum value that is not zero. Quasibound states
similar to those in optics are thus not well defined in Dirac
systems.

FIG. 11. Comparison of representative graphene cavity resonant
states obtained from three methods: [(a1) and (a2)] elastic plane
wave scattering, [(b1) and (b2)] evanescent waves, and [(c1) and
(c2)] optical analogy. The normalized potential is V2R = 8. (a1)
Scattering cross section vs the incident energy (or the wave vector
kx), where the yellow pentagram specifies a sharp resonance mode.
(a2) Wave -function profile associated with the resonance mode at
εR = −4.2125, where the black arrows indicate the in-plane current
and the color represents the local expectation value of σz. As the
scattering process involves simultaneously the angular momentum
modes l and −l − 1, there is no net current. (b1) Transmission vs the
input energy, where the system is identical to that in Fig. 5(a) and
the pink pentagram indicates a Fano resonance mode. (b2) The
wave-function profile of the Fano resonance mode in (b1), where
the arrow and color legends are the same as those in (a2). A
clockwise current appears. (c1) The quantity F in Eq. (A13) vs
energy. A solution for l = 10 exists but not for l = 7, indicating that
a quasibound mode with outgoing wave only can emerge for l = 10.
The blue pentagram represents one quasibound state solution. (c2)
The corresponding wave-function profile for the quasibound mode
for (l, m) = (10, 1).

4. Comparison of cavity resonant states obtained
from the three methods

Figure 11 shows some representative resonant modes ob-
tained from the three methods, where the top (panels a1 and
a2), middle (panels b1 and b2), and bottom (panels c1 and c2)
rows show two resonant states generated by the elastic plane
wave scattering, evanescent waves, and the optical method,
respectively. As shown in Figs. 11(a1), 11(b1), and 11(c1), the
modes emerge at the same energy (or wave vector kx) value.
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The profile of the corresponding wave function indicates that
the elastic scattering state has local current only (a2), but the
Fano resonance generated by evanescent wave coupling (b2)
and the optical method (c2) have a biased global current.

For another resonant mode with (l, m) = (7, 2), Fl is small
but not zero, indicating that a quasibound solution with out-
going wave only does not exist. However, there is still a
scattering resonance.

APPENDIX B: GRAPHENE WAVEGUIDE

We calculate the wave-function solutions for a graphene
waveguide in the absence of cavity. The electrical potential
that defines a waveguide is

UIII(x, y) =
{
vgh̄V3, |y| � a,

0, |y| > a,
(B1)

where the traveling mode is along the x direction and confine-
ment occurs in the y direction with y = 0 being the central
axis. The eigenequation is

H

(
ψ1(y)

ψ2(y)

)
eikxx = Eeikxx

(
ψ1(y)

ψ2(y)

)
. (B2)

Introducing E ≡ vgh̄ε, we have

(V3 − ε)ψ1 +
(

kx − d

dy

)
ψ2 = 0,

(
kx + d

dy

)
ψ1 + (V3 − ε)ψ2 = 0. (B3)

Letting ψA ≡ ψ1 − ψ2 and ψB ≡ ψ1 + ψ2, we get

(V3 − ε + kx )ψB + d

dy
ψA = 0,

(V3 − ε − kx )ψA − d

dy
ψB = 0. (B4)

Since V3 is a constant except at the boundary, we can decouple
Eq. (B4) as

d2

dy2
ψA + [

(V3 − ε)2 − k2
x

]
ψA = 0. (B5)

The solution for ψA is given by

ψA =
⎧⎨
⎩

αeiα1y + βe−iα1y, |y| � a,

γ e−α2y, y > a,

ηeα2y, y < −a,

(B6)

where α1 ≡ √
(V3 − ε)2 − k2

x and α2 ≡ √
k2

x − ε2. For a con-
finement mode, α2 must be a real positive number. The
confinement region can then be defined as |ε| < |kx|. For ψA

with an even (odd) symmetry, we have α = β (α = −β).
The boundary condition for the Dirac equation is that the

two spinors must be continuous at the boundary, stipulating
that ψA and ψB must be continuous at y = ±a. We can then

FIG. 12. Test and validation of the MMP method for an isolated
graphene waveguide. For convenience, the width of the waveguide
is chosen to be a = R/10, where R is the radius of the circular
cavity in the coupled system. (a) For given kxR = 10, a bound
state exists for ε ∈ (−kx, kx ). The free-space average DOS, as de-
fined in Eq. (C6), exhibits a peak for εR ≈ −7, regardless of the
truncation length of the waveguide insofar as it is much larger
than the width. (b) Free-space transmission T0 = Jx (x = −R)/Jx (x =
R) vs the relative truncation length. [(c1) and (c2)] Real part of
ψ1 and ψ2, respectively, calculated from the MMP method. (c3)
The relative error δ� = ‖� − �0‖, which is exceedingly small,
attesting to the applicability of the MMP method to the graphene
waveguide.

determine the coefficients in Eq. (B6). An example is shown
in Fig. 10, which illustrates that, for small values of kx, the
waveguide is in single mode operation. For V3a = 0.8, this
occurs for kxa < 1.1. Our central task is to treat the coupled
cavity-waveguide system, for which no analytic method is
available to calculate the wave function. As discussed in the
main text, a viable approach is the MMP method [62–66]
adopted to relativistic quantum spinor systems [68–70]. To
test the applicability of the MMP method as applied to the
coupled system, it is useful to examine its ability to calculate
the wave function of the single traveling mode inside the
waveguide that decays exponentially in the y direction. To
do this, we truncate the waveguide to a finite length 2b,
which is much larger than its width: b � a. An example
of the eigenstate is shown in Fig. 12(a). For an appropriate
value ε of the input energy, a resonance can arise, the peak
of which increases with b. Figure 12(b) shows the trans-
mission versus the truncation length in the free space. It
can be seen that, as the length of the waveguide increases,

033406-12



PSEUDOSPIN MODULATION IN COUPLED GRAPHENE … PHYSICAL REVIEW RESEARCH 2, 033406 (2020)

(a) (b)

FIG. 13. Generalization of the MMP method to coupled
graphene cavity-waveguide system. (a) Illustration of the MMP
method, where two sets of boundaries, one of the cavity and another
of the waveguide, divide the whole space into three regions: I, II, and
III, corresponding to free space, cavity, and waveguide, respectively.
Poles inside a domain are labeled with α and the outside poles are
labeled with β. The cavity and waveguide boundaries are labeled
as �C and �W , respectively. (b) An MMP generated wave function,
corresponding to the square root of |χ1|.

the transmission approaches the unity value. Figure 12(c1)
shows the real part of ψ1 calculated from the MMP
method after normalization. The real part of ψ2 is shown in
Fig. 12(c2). The agreement is remarkable with small errors
[Fig. 12(c3)], suggesting the reliability and accuracy of the
MMP method as applied to an isolated graphene waveguide.
While the calculation is illustrated for single mode opera-
tion, we have tested multimode operation and found that the
MMP method is also applicable, albeit with slightly larger
errors.

APPENDIX C: MMP METHOD FOR THE COUPLED
CAVITY-WAVEGUIDE SYSTEM

For the simple situation where an electrical potential is
applied to a single domain in the free space, by the MMP
method [62–66], one distributes two sets of fictitious poles:
one inside the domain another outside, where the wave
function inside (outside) the domain is calculated as the
contributions of all the poles outside (inside). Our coupled
cavity-waveguide system is more complicated, as it con-
tains two electrically generated, separate domains in the free
space. Here we generalize the single domain MMP method
to our coupled system, where the general setting is shown
Fig. 13.

Similar to the setting of scattering from a single domain,
we let k1 = |ε|, k2 = |ε − V2|, and k3 = |ε − V3|, with the
respective band indices τ1 = sign(ε), τ2 = sign(ε − V2), and
τ3 = sign(ε − V3). There are two boundaries: �C and �W ,
each enclosing a domain, and multiple sets of poles are placed
both inside and outside each domain. As shown in Fig. 13,
altogether there are four types of poles: αC , βC , αW , and βW ,
with the respective numbers NαC , NβC , NαW , and NβW . We use
the label mαC ∈ [1, NαC ] to denote each set of poles.

In free space, the wave function is determined by all the
poles inside the waveguide and cavity domain:

� (I)(r) =
∑
mαC

∑
l

G
mαC
l

(
H (1)

l

(
k1dmαC

)
iτ1H (1)

l+1

(
k1dmαC

)
)

eilθmαC

+
∑
mαW

∑
l

G
mαW
l

(
H (1)

l

(
k1dmαW

)
iτ1H (1)

l+1

(
k1dmαW

)
)

eilθmαC , (C1)

where

dmτ
≡ |dmτ

| = |r − rmτ
| and θmτ

= Angle(r − rmτ
),

τ ∈ {αC, βC, αW , βW },
mτ ∈ [1, Nτ ],

(C2)

Gmτ

l is the expansion coefficient for the mτ th pole with the mo-
mentum index l , rαC denotes the position for a pole inside the
cavity, and dmαW

and θmαW
are the similarly defined quantities

for the waveguide.
In the cavity (region II), the wave function is given by one

subset of poles in free space (those near the cavity) as

� (II)(r) =
∑
mβC

∑
l

GβC

l

(
H (1)

l

(
dmβC

)
H (1)

l+1

(
dmβC

)
)

eilθmβC . (C3)

Similarly, in the waveguide (region III), the wave function is
given by another subset of nearby poles in free space as

� (III)(r) =
∑
mβW

∑
l

G
mβW
l

(
H (1)

l

(
dmβW

)
H (1)

l+1

(
dmβW

)
)

eilθmβW . (C4)

With χ being the incident wave, inside the cavity we have

χ (r) = Nχ

(
1

τ3

)
exp(ikxx) exp(−α2|y + d + a|)∣∣r∈�C

. (C5)

In the waveguide, we have

χ (r) =
(

1

τ3

)
exp(ikxx) cos(α1|y + d + a|)∣∣r∈�W

. (C6)

To carry out normalization, we make use of the fact that the
wave functions in the cavity and in the waveguide are coupled
with each other by evanescent waves, as shown in Fig. 13. We
have

Nχ = cos(α1a)

exp(−α2a)
. (C7)

This wave function is still not normalized. To complete the
normalization, the free space solution is needed. Note that
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the total wave function must be continuous at the boundaries.
Introducing the notation � = [ψ1, ψ2]T , we have(

�(II)(r) + χ (r)
)∣∣

r∈�C
= � (I)(r)

∣∣
r∈�C

,(
�(III)(r) + χ (r)

)∣∣
r∈�W

= � (I)(r)
∣∣
r∈�W

. (C8)

The numbers of poles inside the cavity, inside the waveguide,
outside but near the cavity, outside but in the vicinity of the
waveguide are NαC , NαW , NβC , and NβW , respectively. At the
cavity boundary, we choose N�C discrete points. Similarly, we
choose N�W discrete points at the waveguide boundary. From
each pole, the range of the momentum quantum number is
l ∈ [−L, L], with NL ≡ 2L + 1.

The boundary condition can be written as a matrix equation

M ∗ G = Y. (C9)

For M, we expand the four sets of poles to get

M =

⎛
⎜⎜⎜⎜⎝

AαC(II) AαW (II) −AβC(II) Z(II)
βW

BαC(II) BαW (II) −BβC(II) Z(II)
βW

AαC(III) AαW (III) Z(III)
βC −AβW (III)

BαC(III) BαW (III) Z(III)
βC −BβW (III)

⎞
⎟⎟⎟⎟⎠,

(C10)
which can be expanded as A and B, representing the mag-
nitude of the first and second spinor component approaching
the boundary, respectively. For example, AαC(II) denotes the
poles inside the cavity (αC) reaching boundary II, with the as-
sociated matrix dimension N�C × NLNαC . Explicitly, we have

AαC(II) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1AαC1
−L · · · 1AαC

NαC
−L · · · 1AαC1

l · · · 1AαC
NαC
l · · · 1AαC

NαC
L
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−L · · · 2AαC

NαC
−L · · · 2AαC1

l · · · 2AαC
NαC
l · · · 2AαC

NαC
L

... · · · ... · · · ... · · · ... · · · ...

N�C AαC1
−L · · · N�C AαC

NαC
−L · · · N�C AαC1

l · · · N�C AαC
NαC
l · · · N�C AαC

NαC
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C11)

BαC(II) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1BαC1
−L · · · 1BαC

NαC
−L · · · 1BαC1

l · · · 1BαC
NαC
l · · · 1BαC

NαC
L

2BαC1
−L · · · 2BαC

NαC
−L · · · 2BαC1

l · · · 2BαC
NαC
l · · · 2BαC

NαC
L

... · · · ... · · · ... · · · ... · · · ...

N�C BαC1
−L · · · N�C BαC

NαC
−L · · · N�C BαC1

l · · · N�C BαC
NαC
l · · · N�C BαC

NαC
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C12)

For i1 AαCi2
i3

, i1 ∈ [1, N�C ] denotes the set of discrete boundary
points, i2 ∈ [1, NαC ] is the poles number, and i3 ∈ [−L, L] is
the momentum index. For example, we have

i1 AαCi2
i3

= H (1)
i3

(k1di1i2 ) exp(ii3θi1i2 ),

i1 BαCi2
i3

= τ1H (1)
i3+1(k1di1i2 ) exp[i(i3 + 1)θi1i2 ],

di1i2 ≡ |di1i2 | = |ri1 − ri2 |,
θi1i2 = Angle(ri1 − ri2 ). (C13)

The quantity Z(II)
βW is the zero matrix of dimension

N�C × NLNβW . This means only poles outside but near
the cavity contribute to the wave function inside the
cavity.

The quantity G contains the unknown coefficients:

G = [GαC , GαW , GβC , GβW ]T , (C14)

where Gτ denotes the coefficients associated with poles at τ ,
for τ ∈ {αC, βC, αW , βW }. Taking the first one as an example,

we have

GαC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1
−L

...
G1

l

G2
l

...

G
NαC
l
...

G
NαC
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NαC ×1

. (C15)

The quantity Y denotes the incident wave given by

Y = [
χ�C

1 , χ�C
2 , χ�W

1 , χ�W
2

]T
. (C16)

For χi1
i2

, i1 ∈ {1, �W } indicates the discrete boundary points
and i2 ∈ {1, 2} denotes the first and second spinor component.
For example, we have

χ�C
1 =

⎛
⎜⎜⎜⎜⎝

χ1
1

χ2
1
...

χ
N�C
1

⎞
⎟⎟⎟⎟⎠

N�C ×1

, (C17)
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FIG. 14. Validation of the MMP method as applied to the cou-
pled cavity-waveguide system. (a1) Transmission T0 and reflection
R0 vs the input energy for the circular cavity, which are calculated
from Eqs. (D1) and (D2), respectively. The deviation of the value of
T0 + R0 from unity is the result of a finite truncation of the waveguide
in the propagating direction. (a2) The corresponding plot for the
chaotic cavity with the shape of Africa. In both cases, the relative
error is smaller than 10%. (b1) The z component of the pseudospin
polarization for kxR = 8.4231 for the circular cavity, with parameter
values the same as in Figs. 7(a)–7(c). The results for different values
of b converge. (b2) The corresponding plot for the deformed cavity
for kxR = 8.9623 with the same parameter values as in Figs. 7(d)–
7(f). There is also convergence for different values of the truncation
length b.

with

χ i2
i1 = χi1(ri2). (C18)

We solve the equations by using the pseudoinverse method:
E = pinv(M) × Y. The error can be estimated as

SSE = ‖ M ∗ G − Y ‖
‖ Y ‖ . (C19)

In all calculations, we have SSE < 2%.

APPENDIX D: VALIDATION OF MMP METHOD

An ideal waveguide has an infinite length, for which the
transmission is unity. With a finite truncation, the transmission
value can deviate from unity, which constitutes the main error
source of the MMP method. As shown in Fig. 12(b), the free
space transmission approaches one as the truncation length b
is increased. We validate the MMP method as applied to the
coupled cavity-waveguide system through the following steps.

1. Transmission and reflection

Since there are no intrinsic sources for the coupled system,
after normalization, the transmission T0 and reflection R0 must
satisfy T0 + R0 = 1. For the transmission, we have

T0 = Jout
x /Jout-Free

x , (D1)

where Jout
x = ∫∫

jxdxdy and the integration is over the waveg-
uide region beyond the coupling region directly below the
cavity. The denominator is the integral of the corresponding
free space solution. For reflection, we have

R0 = 1 − J in
x /J in-Free

x , (D2)

where J in
x = ∫∫

jxdxdy and integration region is one in the
waveguide before the coupling region. The denominator is
the integral of the corresponding free space solution. While
ideally, the integration range should be infinite, we find that
carrying out the integral several cavity sizes away can give
accurate solutions.

Figures 14(a1) and 14(a2) show T0 + R0 versus the input
energy kx for the circular and deformed cavities, respectively.
Away from Fano resonance, we have T0 + R0 = 1. At the
Fano resonance point, the error is relatively large but is less
than 10%.

2. Truncation error

A finite truncation in x will induce errors. However, in the
y and z directions, no truncation is necessary. Figures 14(b1)
and 14(b2) show the z component of the pseudospin current Jz

for different values of b for the circular and deformed cavities,
respectively. We observe a good convergence.
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