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An emergent class of two-dimensional Dirac materials is α-T3 lattices that can be realized by adding an atom
at the center of each unit cell of a lattice with T3 symmetry. The interaction strength α between this atom and
any of its nearest neighbors is a parameter that can be continuously tuned between zero and one to generate a
spectrum of materials. We investigate the fundamentally important and practically relevant issue of quasiparticle
confinement for the entire spectrum of α-T3 materials. Except for the two end points, i.e., α = 0, 1, which
correspond to the graphene and pseudospin-1 lattices, respectively, the time-reversal symmetry is broken, leading
to the removal of level degeneracy and facilitating confinement. Taking the approach of quantum scattering off
an electrically generated potential cavity in the quantum-dot regime, we characterize confinement by identifying
and examining the scattering resonances. We study a number of cavities with characteristically distinct classical
dynamics: circular, annular, elliptical, and stadium cavities. For the circular and annular cavities with classically
integrable and mixed dynamics, respectively, the scattering matrix can be analytically obtained, so the scattering
cross sections and the Wigner-Smith time delay associated with the resonances can be calculated to quantify
confinement. For the elliptical and stadium cavities with mixed and chaotic dynamics in the classical limit,
respectively, the scattering-matrix approach is infeasible, so we adopt an efficient numerical method to calculate
the scattering wave functions and experimentally accessible measures of confinement such as the magnetic
moment. The main finding is that, for all the cases, the regime of small α values offers the best confinement
possible among the spectrum of α-T3 materials, which is general and holds regardless of the nature of the
corresponding classical dynamics.
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I. INTRODUCTION

There has been tremendous development of research on
two-dimensional (2D) Dirac materials since the experimental
realization of graphene [1–4]. A distinct characteristic of low-
energy excitations in 2D Dirac materials is the pseudospin
degree of freedom. A variety of such materials have been
studied, suggesting that a continuous spectrum of pseudospin
quasiparticles may exist in these materials and may be ex-
perimentally realized. At the lower end of the spectrum is
graphene, whose energy band structure constitutes a pair of
Dirac cones with the corresponding low-energy excitations
being pseudospin-1/2 particles, which are described by a two-
component spinor wave function governed by the standard
2D Dirac equation [3]. At the high end of the spectrum
are Dirac materials with a T3 symmetry, whose energy band
contains a pair of Dirac cones and a flat band through the
conic intersecting point [5]. Because of the existence of
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three distinct bands, the low-energy excitations need to be
described by a spinor wave function of three components,
corresponding effectively to pseudospin-1 quasiparticles that
obey the Dirac-Weyl equation. In between the pseudospin-1/2
and pseudospin-1 extremes lies a spectrum of pseudospin
quasiparticles that can be generated by the corresponding
spectrum of α-T3 lattices [6–16].

The relativistic quantum behaviors of α-T3 particles are de-
scribed by the generalized Dirac-Weyl equation with a three-
component spinor, where the original 2 × 2 Pauli matrices
(for pseudospin-1/2 particles) are replaced by a set of 3 × 3
matrices—the set of generalized Pauli matrices. Figure 1(a)
illustrates the structure of an α-T3 lattice with a T3 symmetry,
where the unit cell is essentially that of the graphene hon-
eycomb lattice with an additional atom at the center of the
hexagon. There are then three nonequivalent atoms in the α-T3

unit cell, where α is a parameter characterizing the coupling
strength between the central atom and any of the six atoms at
the vertices of the hexagon [6]. Especially, if in the graphene
lattice the nearest-neighbor interaction energy is t , then the
interaction energy between the central atom and one on the
hexagon is αt .

The possible values of α range from zero to one. For α = 0,
the presence of the central atom has no effect on the hexagonal
lattice, so the whole lattice effectively reduces to that of
graphene with pseudospin-1/2 quasiparticles. For α = 1, the
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FIG. 1. Illustration of an α-T3 lattice, confinement cavity, and
the energy band structure. (a) An α-T3 lattice, where A, B, and C
represent the three nonequivalent atoms, labeled as red, blue, and
green circles. The hopping energy between A and B (solid line) is
t and between B and C (dashed line) is αt . (b) A circular cavity
(blue) in an α-T3 sheet (gray), which can be realized through an exter-
nally applied electric potential. Two geometric regions are specified:
one outside and another inside the cavity. (c) For pseudospin-1/2
system (α = 0), energy-band structure for scattering, where carriers
dominate inside the cavity, forming a quantum-dot structure. The
two bands (the pair of vertex-touching Dirac cones) correspond
to the two pseudospin states, and the blue and red lines are the
linear energy-momentum dispersion relations associated with the
two nonequivalent atoms (A and B) in the unit cell, respectively.
The horizontal gray line illustrates the incident energy, which is
much lower than the potential height.

interaction energy between the central atom and one on the
hexagon is identical to that of the nearest neighbor interaction
in the graphene lattice, so the α-T3 lattice possesses the full
T3 symmetry with pseudospin-1 particles. For α ∈ (0, 1), the
α-T3 lattice is essentially a hybrid between the graphene and
pseudospin-1 lattices [8]. For convenience, we call α the
pseudospin parameter.

Experimentally, one way to realize α-T3 hybrid and
pseudospin-1 systems is through photonic crystals [17–19].
The three nonequivalent atoms can be simulated by using
coupled waveguides generated by laser inscription [19]. Dif-
ferent lattice constants can be used to build a quantum dot
structure [20]. Electronic materials can also be exploited to
generate pseudospin-1 lattice systems such as transition-metal
oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [21],
SrCu2(BO3)2 [22], or graphene-in2Te2 [23].

In potential device applications of α-T3 materials, a funda-
mental issue is how to effectively confine the quasiparticles in
an enclosure. Similar to optics [24], such a structure can be
exploited for storage and energy transfer in spintronics and
valleytronics [25,26]. However, even in a perfectly circular
cavity generated by, e.g., an electrostatic potential, confine-
ment of pseudospin-1/2 particles in graphene is already a non-
trivial issue [27], due to the phenomenon of Klein tunneling
[28–34]. To confine pseudospin-1 particles is also difficult,
due to super-Klein tunneling [33], in which particles can
penetrate through a high and wide potential barrier at any
angle. Confinement becomes even more difficult in realistic
situations where geometric deformations from the circular

shape are inevitable, which can lead to chaotic dynamics
in the classical limit [35–37]. What are the general features
of confining pseudospin quasiparticles of the α-T3 lattice
in comparison with the confinement of pseudospin-1/2 and
pseudospin-1 particles? The purpose of this paper is to address
this question that not only is useful for gaining understanding
into the fundamental physics of the quasiparticles in the exotic
2D materials but also has implications to developing future
α-T3 material based electronic/spintronic devices.

To be concrete, we study confinement of quasiparticles in
a cavity in an α-T3 lattice, which can be created by applying
a step electrostatic potential, the boundary of which divides
the lattice system into two regions, as shown in Fig. 1(b).
Experimentally, such a structure can be generated by a STM
(scanning tunneling microscope) tip induced potential [34,38–
40] or through the method of doping [41]. The geometric
shape of the cavity can be chosen to generate integrable (e.g.,
a circle), mixed (e.g., an ellipse), or chaotic (e.g., a stadium)
dynamics in the classical limit. In order to confine an electron
inside the cavity, its energy should be far away from the
Klein tunneling regime that occurs for E ≈ U/2 for graphene
[28–34] and pseudospin-1 materials [33]. For the confinement
problem to have physical and applied significance, we focus
on the quantum-dot regime where the effect of Klein tunneling
is weak [15,27,42]. First, we choose the incident energy E
such that it is much smaller than the electric potential: |E | �
|U |, as shown by the energy band structure in Fig. 1(c), so as
to avoid the Klein tunneling regime. The wave vector inside
the cavity is thus much larger than that outside. Second, we
choose the size of the cavity such that the system in the
quantum-dot regime defined by k0R � 1 � V R, where k0 is
the wave vector outside, R is the effective size (radius) of the
cavity, and V = U/vg is some normalized potential strength
(with vg being the group velocity). In this regime, outside
of the cavity the wave characteristics of the quasiparticles
dominate but inside the cavity the particle nature becomes
important—there are then carriers in the cavity. The linear dis-
persion relation associated with the Dirac cones is E = vgk0.
The electron motion inside the cavity can be studied in terms
of Dirac electron optics [29,34,38,43–67]. As the value of the
pseudospin parameter α increases from zero to one, the nature
of the quasiparticles of the system changes from pseudospin-
1/2 to hybrid and finally to pseudospin-1. For α �= 0, 1, the
time-reversal symmetry (T -symmetry) is broken [11].

The main finding of this paper is that, in the quantum-
dot regime, among the possible α-T3 materials, the strongest
or optimal confinement occurs for hybrid materials in be-
tween the pseudospin-1/2 and pseudospin-1 limits but near
the graphene end, i.e., for some value of α � 0. This result
holds not only for the perfectly circular cavity with classical
integrable dynamics but also for deformed cavities with mixed
or chaotic dynamics in the classical limit. Contributing factors
to this phenomenon include T -symmetry breaking in the
hybrid material and unconventional wave-function behaviors
as induced by the boundary conditions.

In Sec. II, we analyze the scattering process from circular
cavity for α-T3 materials by calculating the quasibound states
and the far-field behavior. Especially, because of the circular
symmetry, in the quantum-dot regime there are quasibound
states with nonzero angular momentum whose lifetime is
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infinite, and the confinement efficacy is determined the num-
ber of such states. We find that, for the hybrid system, because
of the T -symmetry breaking, more such quasibound states
can emerge as compared with the graphene and pseudospin-1
limits. In Sec. III, we study the annular cavity for which the
scattering process can still be understood analytically. Cal-
culation of the Wigner-Smith time delay for different values
of α and different potential profiles indicates that, for certain
potential profile, maximum confinement occurs for a small but
nonzero value of α. Finally, in Sec. IV, we study confinement
in deformed cavities with classical mixed and chaotic dynam-
ics, which find applications in enhancing directional emission.
In this case, all the quasibound states have a finite lifetime.
However, practically, confinement is still possible, which can
be characterized by physically measurable quantities such as
the magnetic moment.

II. CONFINEMENT IN A CIRCULAR CAVITY

We consider the tight-binding model for a free α-T3 particle
and derive the corresponding continuum Hamiltonian. In the
tight-binding framework, the Bloch Hamiltonian of the α-T3

lattice system is given by

H (k) =
⎛
⎝ 0 fk 0

f ∗
k 0 α fk
0 α f ∗

k 0

⎞
⎠, (1)

where

fk = −t[eikyat + 2e−ikyat /2 cos(
√

3/2kxat )]

and at is the lattice constant. Expanding fk at zero yields fk ≈
vg(νkx − iky), where vg = 3at t/2 and ν = ± is the valley
index. Imposing the normalization t → t/

√
1 + α2, we get

the continuum model for low-energy excitations in the α-T3

lattice as

H = vgSα · p, (2)

where Sα denotes the generalized Pauli matrices that de-
pend on the material parameter α. The details for solv-
ing the corresponding eigenvalue problem are presented in
Appendix A.

Quantum scattering from a circular cavity has been studied
for graphene (α = 0) [52,54,68,69] and pseudospin-1 (α = 1)
[33,70] systems. There has also been a study of scattering
from a centrally symmetric potential in α-T3 materials [16].
Because of the circular symmetry in the potential profile, the
scattering problem can be solved analytically.

The Hamiltonian for a general α-T3 lattice with a circular
cavity is

H = vgSα · p + vgV �(R − r), (3)

where V is potential height, � is Heaviside step function,
and Sα are the generalized Pauli matrices that depend on the
parameter α (detailed in Appendix A). For this Hamiltonian,
the three-component spinor wave function can be obtained
analytically (Appendix B).

Let q be the wave vector inside the cavity. The linear
dispersion relation gives qvg = k0vg − V . In the quantum-dot
regime k0R � 1 � V R, we have |k0| � |q|. In the language
of Dirac electron optics, waves inside the cavity will have

a large relative refractive index, rendering existent a critical
angle for total internal reflection [15,27,42], which makes
confinement possible.

There are different ways to characterize confinement quan-
titatively. For example, we can use the total scattering cross
section defined as

σ (θ ′) =
∮

| f (θ, θ ′)|2dθ, (4)

where θ ′ is the incident angle, θ specifies the direction of
measurement, and f (θ, θ ′) is determined by the far-field
behavior of the scattering wave (Appendix A). A large total
cross section corresponds to stronger scattering. Alternatively,
the wave function inside the cavity can be used to quantify
confinement. With the analytically obtained three-component
spinor wave function � = (ψA, ψB, ψC )T inside the cavity, we
have the average density of state (DOS) as

DOS =
∫

cavity
(|ψA|2 + |ψB|2 + |ψC |2). (5)

We can normalize the DOS to unit area after integration.
In experiments, information about the average DOS can
be obtained through conductivity measurement [34,38–40].
Another useful quantity to characterize confinement is the
Wigner-Smith time delay [71,72] defined through the scatter-
ing matrix S:

τ = −ih̄Tr

(
S† ∂S

∂E

)
. (6)

A large positive value of τ is indicative of a confinement state
[73].

We consider the quantum-dot regime k0R � 1 � V R
where the incident wave vector is infinitesimally small for a
fixed potential height but the wave vector is large inside the
cavity. (In terms of the small wavelength inside the cavity, this
regime can be called the semiclassical regime.) Figure 2(a)
shows, in the parameter plane (α, k0R), the total scattering
cross section σ with color-coded values. We see that σ ex-
hibits peak values, each corresponding to a quasibound state.
The dominant peaks arise in the small k0R regime and depend
on the value of α as well. The result in Fig. 2(a) suggests that,
in the quantum-dot regime, as the value of α is varied, there
can be drastic changes in the quantum states from the point
of view of confinement. This can be further seen in Fig. 2(b)
that shows, for three different values of α (α = 0, 0.1, 1), σ

versus k0R. While there are peaks in 10−1 < k0R < 101 for
all three cases, in the small region 10−2 < k0R < 10−1, only
the α = 0.1 case has seen a peak. The existence of a strong
quasibound state in 10−2 < k0R < 10−1 for α = 0.1 (but not
for α = 0 or α = 1) is further demonstrated by the average
DOS and the Wigner-Smith time delay versus k0R, as shown
in Figs. 2(c) and 2(d), respectively.

A heuristic understanding of the emergence of strong con-
finement states associated with α-T3 scattering in the hybrid
system can be gained by examining the far-field behavior
such as backscattering. For graphene, due to the π/2 Berry
phase, in the low-energy regime backscattering is ruled out
[52,74]. For pseudospin-1 systems, scattering in the far field is
isotropic [33]. What is the far-field behavior in the scattering
of α-T3 particles for 0 < α < 1? To address this question,
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FIG. 2. Scattering of α-T3 particles in the regime of small in-
cident wavevectors. The circular electrical cavity has V R = 30.
(a) Color-coded values of the scattering cross section σ in the
parameter plane (k0R, α), where a local peak (resonance) in σ

indicates the existence of a quasibound state and the inverse of the
half width of the peak is proportional to the lifetime of the state.
There is dominance of resonant peaks in the regime of small α

values. [(b)–(d)] Behaviors of σ , average DOS, and Wigner-Smith
time delay versus k0R for three values of α: 0, 0.1, and 1. In the
region of small k0R values, only the α = 0.1 case exhibits a strong
peak, indicating a superior ability for α-T3 material with α = 0.1 to
confine electrons to those of graphene and pseudospin-1 materials.

we analyze different scattering channels. For pseudospin-1/2
system (graphene), there are two lowest angular momentum
states: ±1/2. The counterparts of these states in α-T3 scat-
tering in the hybrid system are l = 1 and l = 0. Let Al be
the scattering wave amplitude with angular momentum l . In
the semiclassical regime, only the l = 0 and l = 1 channels
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FIG. 3. Enhancement of backscattering from a circular cavity in
the hybrid systems. (a) Enhancement ratio δ vs α for two values of
k0R. In each case, a peak in δ arises, signifying strong enhancement
of backscattering. For the case of k0R = 0.01, the peak appears at
α ≈ 0.1 with the enhancement ratio exceeding 103. As shown in
the inset, a polar representation of the normalized differential cross
section for k0R = 0.01 and V R = 30, in the low-energy regime,
there is no backscattering for pseudospin-1/2 and pseudospin-1
scattering is isotropic. However, in certain hybrid systems, strong
backscattering can arise with diminishing forward scattering.

contribute [68] to Al . For pseudospin-1 scattering, because of
T -symmetry preservation, we have A0 
 A1 = A−1. For the
hybrid system [α ∈ (0, 1)], both A0 and A1 can be appreciable.

In the low-energy regime, the angular scattering cross
section is given by

dσ

dθ
≈ 2

πk0
|A0 + A1eiθ |2. (7)

For graphene, the coefficients A0 and A1 are replaced by A−1/2

and A1/2 with A−1/2 = A1/2, leading to vanishing scattering
cross section for θ = π . For pseudospin-1 scattering, the low-
est angular momentum mode is l = 0. In this case, scattering
is isotropic [33]. For the hybrid system, in the quantum-dot
regime, the dominant scattering channels are still l = 0 and
l = 1 but, differing from pseudospin-1/2 or pseudospin-1
scattering, the scattering channels are dependent upon each
other. As a result, backscattering will be enhanced even when
the value of α is small (but not equal to zero) (see Appendix B
for details).

To characterize enhancement in backscattering, we define
the ratio between the values of the angular scattering cross
section at angles zero and π :

δ = dσ/dθ |θ=π

dσ/dθ |θ=0
, (8)

as the enhancement factor, which can be calculated numer-
ically from the scattering matrix. Figure 3 shows, for two
values of k0R, δ versus α. In each case, there exists a range
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FIG. 4. Quasibound states associated with the first few angular
momentum channels in the parameter plane (α,V R). In the limit
α → 0, level degeneracy occurs in the way of l → −l + 1. In the
opposite limit α → 1, degeneracy follows the rule l → −l . The
amount of level separation depends quadratically on α as its value
is increased from zero, but the dependence becomes linear as α

approaches one. This indicates the emergence of more quasibound
states in the small α regime, implying a strong confinement ability
there.

of α values in which backscattering is enhanced (δ > 1).
Remarkably, in each case there is a peak in δ. For small values
of α, the enhancement factor is given by

δ ∝ α4(k0R)−2. (9)

At the peak, we have δ 
 1, so backscattering is greatly
enhanced. This provides an explanation for the emergence of
a quasibound state at the corresponding value of α.

We examine quasibound states in hybrid material systems
in more detail. For plane wave scattering, while there is
mixing among scattering associated with different angular-
momentum channels as characterized by the scattering matrix,
at a resonance scattering depends strongly on the angular
momentum [68,75]. Let Bl be the coefficient of the spinor
wave function inside the cavity associated with angular mo-
mentum l . Each quasibound state corresponds to a maximum
in Bl . For scattering in an infinite plane, the lifetime of the
quasibound states can be infinite. The confinement quality
is thus determined by the number of quasibound states. To
estimate this number for a hybrid system, we begin with
the degenerate states for pseudospin-1/2 and pseudospin-1
systems as a result of T -symmetry preservation (Appendix B),
where the degeneracy is broken for α �= 0, 1. The number of
quasibound states will then be larger for the hybrid system
than for graphene or the pseudospin-1 system.

For α → 0 and α → 1, the behavior of broken degeneracy
can be studied numerically and analytically. To facilitate
numerical computations, we fix the incident angle and vary
the potential height V . The existence of the confinement states
for the first few angular momentum values in the (α,V R)
parameter plane are shown in Fig. 4. As the value of α is
increased from zero, there is fast separation of the originally

degenerate states. For α → 1, restoration of the degeneracy
occurs in a slower manner. Thus, for small values of α, we
expect a more dramatic deviation in the behaviors of the
quantum states from those of graphene.

In the quantum-dot regime, the asymptotic behavior of the
scattering wave function associated with each resonance (or
quasibound state) can be obtained analytically, e.g., through
the method of level doubling [75,76] (Appendix B). The
energy separation in the two limiting regimes is given by

l ∝ α2l/(k0R), for α → 0 and l �= 0,

l ∝ (1 − α)k0R/l, for α → 1 and l �= 0. (10)

For α → 0, the amount of level separation follows a quadratic
dependence on α with the quantity k0R � 1 in the denomina-
tor. As a result, the amount of separation grows quickly as α is
increased from zero. Near the pseudospin-1 limit, the amount
of the separation has a linear dependence on k0R(1 − α) and
thus decreases slowly to zero as the value of α approaches
one. Numerical support for these analytic estimates is given
in Fig. 4.

The quick increase in the number of quasibound states
as the value of α is increased from zero implies a strong
confinement ability of α-T3 materials near the graphene end.

III. CONFINEMENT IN AN ANNULAR CAVITY

In the fields of microcavity optics and quantum chaos,
annular cavity is a commonly studied type of structures for
confinement [67,77,78] because it offers a convenient and
systematic way to generate the whole spectrum of classical
behaviors ranging from integrable dynamics to chaos. In
particular, the system is integrable when the two circles are
concentric (ring cavity). Mixed classical dynamics with co-
existence of Kolmogorov-Arnold-Moser (KAM) islands and
chaos arise when there is a small displacement between the
centers of the two circles. Fully developed chaotic dynamics
occur when the displacement is sufficiently large. An ap-
pealing feature of the annular structure is that the quantum
scattering matrix can be analytically calculated for all cases
of classical dynamics through a proper coordinate transform
[67].

To generate an annular structure on an α-T3 sheet, we apply
the following electrical potential:

V (r) = V1�(R1 − r)�(|r − ξ|) + V2�(R2 − |r − ξ|), (11)

where the two circles have radius R1 and R2, respectively, and
their centers are located at O and O′ with the displacement
vector ξ = O′ − O between them. A simple change of coor-
dinates gives ξ = (ξ, 0), which aligns the displacement in the
x direction. Figures 5(a1)–5(c1) illustrate three representative
annular profiles corresponding to three different values of ξ .
For the integrable dynamics case of ξ = 0, due to the perfect
circular symmetry in the potential, there is no mixing among
the states with different angular momenta. (Analytic formulas
for the scattering matrix and cross sections for this case are
given in Appendix C.) For ξ �= 0, the circular symmetry is
broken and the classical dynamics contain a chaotic com-
ponent. For example, for the potential profile in Fig. 5(b1),
we have checked that the classical phase space contains both
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FIG. 5. Three types of annular cavities and the behaviors of
the corresponding total scattering cross section. (a1) A ring cavity
(ξ = 0), where the two boundaries divide the lattice into three re-
gions and the classical dynamics are integrable. (a2) The correspond-
ing total cross section σ vs the dimensionless quantity k0R1 for dif-
ferent values of α for the parameter setting R2/R1 = 0.6 and ξ = 0.
(b1) Confinement geometry for ξR1 = 0.1, where O and O′ are the
centers of the outer and inner circles, respectively. In this case, the
classical dynamics are mixed. (b2) The corresponding total scattering
cross section. (c1) Potential profile for ξR1 = 0.3, where the classical
dynamics are fully chaotic and (c2) the corresponding scattering
cross section. For all three types of cavities, there is a resonant peak
in the total cross section for α = 0.1, but no such peak appears for
α = 0 or α = 1, implying a much stronger ability to confine electrons
for the α-T3 (α = 0.1) cavity than for the graphene or pseudospin-1
cavity. Fully developed classical chaos can smooth out the resonance
to some extent, but it is still pronounced.

KAM tori and chaotic regions, but for a larger value of ξ [e.g.,
the case of Fig. 5(c1)], all KAM tori have been destroyed,
leading to fully developed chaos [77]. (Appendix D gives
the analytic formulas of some key quantities characterizing
relativistic quantum chaotic scattering in this case.)

For convenience, we choose the radius R1 of the outer
circle as the characteristic length of the system. Figures 5(a2)–
5(c2) show the total scattering cross section versus the quan-
tity k0R1 for the three cases in Figs. 5(a1)–5(c1), respectively,
where each panel contains results for three values of α: 0,
0.1, and 1. In all three cases of the potential profile, in the
range of k0R1 values plotted, for α = 0 or α = 1, there is no
resonance. However, for α = 0.1, there is a strong resonant
peak about k0R1 = 10−2 for all three cases. The resonance
is relatively sharp when the classical dynamics are integrable
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FIG. 6. Comparison of confinement abilities among three ma-
terial systems in an eccentric annular cavity. Shown are the total
cross section and the Wigner-Smith time delay vs the normalized
potential height β for a fixed incident energy. The parameter setting is
V1R1 = −10β and V2R1 = 40β, k0R1 = 0.1, and ξR1 = 0.05. [(a1)–
(c1)] Total scattering cross section and [(a2)–(c2)] Wigner-Smith
time delay vs β for α = 0, α = 0.1, and α = 1, respectively. Among
the three cases, the hybrid system (α = 0.1) exhibits more resonant
peaks than the other two cases, indicating a stronger confinement
ability.

and mixed, as shown in Figs. 5(a2) and 5(b2), respectively.
Fully developed chaos can smooth out the resonance to certain
extent, but it is still quite pronounced, as shown in Fig. 5(c2).

To characterize the confinement quality for different cavity
geometries and for different values of α, we fix the incident
energy and increase the normalized potential height β from
zero, which is defined through V1R1 = −10β and V2R1 =
40β. Figure 6 shows, for ξR1 = 0.05 (mixed classical dy-
namics), the total cross section and the Wigner-Smith time
delay versus β in the range β ∈ [0.9, 1, 1] for three values of
α. In all three cases, there are a number of resonant peaks,
each corresponding to a quasibound state, where the inverse
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FIG. 7. Confinement for different α-T3 materials and different
annular cavity geometries. (a) Color-coded value of the integrated
Winger-Smith time delay τ in the parameter plane (α, ξR1). For
α in the vicinity of 0.2 and small values of ξ , τ attains relatively
large values. Computationally, the 2D parameter plane is represented
by a grid. For each grid point, the integration is carried out with
respect to β for β ∈ [0.4, 1.6]. Varying the integration interval does
not change the result significantly. (b) The value of τ vs α for four
values of the geometric parameter ξR1. Regardless of the geometry,
best confinement occurs for α-T3 materials with the value of α in the
vicinity of 0.2.

of the width of a resonant peak determines the lifetime of the
state. Simply counting the number of resonant peaks in all
three cases, we find that the hybrid material system has more
as compared with either the graphene or the pseudospin-1
material. The reason, as in the case of a circular cavity, is that,
for α �= 0, 1, the broken T symmetry makes the originally
degenerate states (for α = 0 or 1) nondegenerate.

To further characterize the confinement, we integrate the
curves of the Wigner-Smith time delay in Figs. 6(a2)–6(c2)—
an approach often employed to quantify confinement in opti-
cal cavities [73,79,80]:

τ = 1

β2 − β1

∫ β2

β1

τ (k0, β )dβ. (12)

Roughly, the so-obtained average time delay corresponds to
the number of quasibound states contained in the integration
interval. To be systematic, we calculate the integral in the
parameter plane (α, ξR1), as shown in the color-coded graph
in Fig. 7(a). We observe a region of relatively higher values of
τ (brighter color) for 0 < α < 0.5 and ξR1 � 0.15, indicating

that a stronger confinement can be achieved for the corre-
sponding lattice structure and cavity geometry. For a fixed
geometry, the confinement ability exhibits a nonmonotonous
behavior as the value of α is increased from zero to one, as
shown in Fig. 7(b) for four different annular cavities.

IV. EFFECT OF GEOMETRIC DEFORMATIONS
ON CONFINEMENT

A. Confinement in deformed cavities with distinct classical
dynamics: numerical demonstration

We have demonstrated that the family of annular cavities,
regardless of the corresponding classical dynamics, is able
to confine α-T3 particles. Can confinement be achieved in
more general cavities with their geometrical shape deformed
from the circular shape, such as the elliptical cavity with
mixed classical dynamics or the stadium-shaped chaotic cav-
ity (a paradigm in the field of quantum chaos [81–83])?
(There is quantum chaotic scattering [84–89] in this case.)
For pseudospin-1/2 particles, previous studies based on the
method of finite-domain scattering (by setting to zero the
wave vector outside of the cavity) revealed that confinement
modes can exist in the stadium cavity [90–93]. Geometrically,
the elliptical and stadium cavities can be generated through
continuous deformation of the circular cavity. To quantita-
tively assess the effect of geometric deformation on confine-
ment, we carry out a comparative analysis of the confinement
quality of α-T3 particles in the circular, elliptical, and stadium
cavities. Here, classical dynamics are defined as those of a
free particle moving in a closed billiard system of certain
geometry with the spin degree of freedom excluded. Note
that, for quantum treatment of α-T3 particles based on the
Dirac-Weyl equation, the spin degree of freedom is inherently
taken into account.

While the scattering of α-T3 particles in the circular and
annular cavities can be solved analytically, for a deformed
cavity without the circular symmetry, analytic solutions are
not feasible. In fact, to our knowledge, there were no previous
numerical methods for solving the generalized Dirac-Weyl
equation for α-T3 particles that are neither pseudospin-1/2 nor
pseudospin-1. Taking advantage of a recently developed com-
putational method [94] for pseudospin-1 particles based on the
multiple multipole (MMP) method in optics [95–99], we have
developed an efficient computational method [94] to solve the
spinor wave functions associated with the scattering of α-T3

particles from an arbitrary geometric domain (Appendix E).
The basic idea is to place two sets of fictitious “poles,” one
inside the cavity and another outside, which are regarded as
the sources for generating the scattering wave function. The
multiple set of poles (henceforth the term “multiple multi-
pole”) can be determined by matching the wave functions at
the cavity boundary. From the so-calculated scattering wave
functions, we get the density of states (DOS) as a function
of some energy-related parameter of the system, where each
peak in the DOS corresponds to a quasibound state. (The
details of the MMP method for quantum scattering associated
with the generalized Dirac-Weyl equation for α-T3 particles
are given in Appendix E.)

Figure 8 illustrates, for α = 0 and three types of cavities
(circular, elliptical, and stadium-shaped), DOS versus some
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FIG. 8. Resonances and DOS patterns calculated from the MMP
method for three types of cavities for pseudospin-1/2 wave. The
top, middle, and bottom rows correspond to the circular, elliptical,
and stadium-shaped cavities with classically integrable, mixed, and
chaotic dynamics, respectively. For a meaningful comparison, the
areas of the cavities are set equal: πab = πR2 for the ellipse, where
a and b are respectively the semimajor and semiminor axes (ec-
centricity γ = a/b), and πr2

0 + 2l0r0 = πR2 for the stadium, where
l0 is the length of the straight segment and r0 is the radius of the
semicircle. In the left column, the normalized energy parameter is
V R for the circular cavity, Va for the elliptical cavity, and V r0 for
the stadium. [(a1)–(c1)] The DOS at an arbitrary point in the cavity
vs the energy parameter for the three types of cavities, respectively.
In panel (a1), the incident wave vector is k0R = 1/10 and the nearly
periodic resonant peaks correspond to different angular momentum
states. (a2) A representative DOS pattern associated with a resonant
peak, where the square root of the DOS is color-coded. In panel (b1),
the eccentricity of the elliptical cavity is γ = 1.1 and the incident
wave vector is k0a = √

1.1/10. (b2) Color-coded square root of the
DOS pattern for a resonant state. In panel (c1), the stadium cavity
has A = πR2, r0/l0 = 1, and L = 2πr0 + 2l0, and the incident wave
vector is k0r0 = √

π/(π + 2)/10. (c2) Color-coded square root of
the DOS pattern for a representative resonant state.

normalized energy parameter and the representative DOS pat-
terns in the physical domain corresponding to a pronounced
resonant state. The three cavities have the same area. Shown
in the left column is the average DOS per unit area inside the
cavity versus an energy parameter for the three cavities. In
each case, in the interval of the energy parameter, there are a
number of distinct peaks in the DOS plot, each corresponding
to a quasibound state. The right column shows, for each
case, the DOS pattern associated with a typical pronounced
resonant peak. Note that, for α = 0, both components of

the spinor wave function are continuous across the cavity
boundary. These results, which are obtained from our MMP
method, agree with the previous results for scattering of
pseudospin-1/2 particles in graphene [90–93].

B. Recurrence of period-2 type of quasibound modes

In quantum confinement, a fundamental issue is recurrence
where, as the wave vector varies, a particular resonant state
can arise periodically at a distinct set of energy or wave
vector values. In bounded systems, e.g., the stadium cavity
with classical chaotic dynamics that has played a paradigmatic
role in the study of the phenomenon of scarring in non-
relativistic quantum mechanics [100], scars associated with
certain periodic orbits can recur, which can be described by
the Gutzwiller formula [81,101]. Recurrence of quantum scars
can also arise in graphene billiard systems [102]. In relativistic
quantum billiard systems with T -symmetry breaking [103],
chiral scars of massless spin-1/2 fermions for certain classes
of periodic orbits can arise [104–106], which can recur with
the energy or the wave vector. In open (scattering) systems
with quasibound states, there are still relationships among the
classical period orbits, the wave functions, and directional
emission in nonrelativistic quantum systems, but the current
understanding is that recurrence of the quasibound states
is unlikely [37,107,108]. Can this conventional wisdom be
applied to α-T3 particles in a cavity?

Our answer to the above question is surprisingly a “no,”
as we have found a class of quantum states corresponding to
classical periodic orbits of period 2 for α-T3 particles which
can actually recur. In general, quantum scars are referred to
as the unusually high concentrations of the wave function
along the classical periodic orbits [100]. In particular, for the
elliptical cavity, we find that these modes correspond to the
spinor wave functions concentrated along the minor axis of
the cavity, as shown in Figs. 9(a) and 9(b) for two cavities
with different values of eccentricity, where the insets illustrate
the corresponding classical orbits. For convenience, we fix
the incident energy E and vary the height V of the electric
potential so as to systematically increase the wave vector q
inside the cavity. We find that, regardless of the geometric
shape of the cavity and of the value of α, the period-2 mode
can arise repetitively in a periodic fashion. Figure 9(a) shows,
for eccentricity value γ = 1.1, α = 1/3 (red asterisks), and
α = 1 (purple asterisks), the wave-vector value at which the
mode emerges versus the index of the recurring mode. A
similar plot is displayed in Fig. 9(b) for γ = 1.5, α = 2/3
(red asterisks), and α = 1 (purple asterisks). The spinor wave-
function patterns associated with some representative recur-
ring modes are shown on the right-hand side of Figs. 9(a) and
9(b). We find that the spacing in the wave vector for recurrence
follows certain rules:

q = 2π/L, for α = 1, (13)

q = π/L, for α ∈ (0, 1), (14)

where L = 2b is the length of the minor axis of the ellipti-
cal cavity. These resemble the semiclassical rules for quan-
tum scars in closed chaotic systems [81,101]. For α �= 1 in
which the T symmetry is broken, the frequency in the wave
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FIG. 9. Recurrence of a class of quasibound state in elliptical
cavities. The quasibound state concentrates near the minor axis
of the cavity, corresponding to a period-2 type of classical orbits.
(a) Dimensionless wave-vector value qb at which such a quasibound
state emerges vs the index of the resonant energy level for γ = 1.1,
where two types of α-T3 waves are shown: α = 1/3 (purple asterisks)
and α = 1 (red asterisks). Insert: one type of period-2 orbit with
wave function localized along the blue line. (b) Similar plots but for
γ = 1.5, α = 2/3 (purple asterisks) and α = 1 (red asterisks). The
right panels show representative spinor wave function patterns for
some specific values of q as indicated in the panels on the left.

vector for the quasibound mode to occur is twice of that for
pseudospin-1 system (α = 1).

We remark that, in Fig. 8, a few relatively low-excited
states are presented. Some relatively high states are shown in
Fig. 9. In particular, in Fig. 9(a), we have qb ≈ 40, where b is
the dimension of the cavity and q is the wave vector inside.
The setting puts the system in the quantum dot regime, as
the wave vector inside the cavity is large. As shown in the
right panels of Fig. 9, there are many nodes inside the cavity
and the period-2 mode corresponds to a highly exited state.
We see that, because of the small wavelength, deformation
and classical chaos can have an effect on the states, driving
the wave function toward concentrating along some classical
periodic orbits.

C. Characterization of confinement by magnetic moment

For the circular and annular cavities, we have used the
Wigner-Smith delay time and the total scattering cross section
to quantify confinement, which can be calculated from the

analytic scattering matrix. For a mixed or chaotic cavity,
while the scattering wave functions for α-T3 particles can be
numerically calculated using the MMP method, it does not
yield the scattering matrix. For a given state, the degree of
confinement is directly related to the peak width of the DOS
distribution. However, counting peak numbers and estimating
their width are not reliable, especially when the distributions
overlap. We thus seek alternative measures to characterize
confinement.

One experimentally accessible measure is the magnetic
moment [109–111] defined as

μB = − e

2

∫
(r × j)d2r, (15)

where r is the position, j is the current, and the integration
is with respect to the interior of the cavity. In Ref. [110], it
was shown that in topological insulators with impurities, only
the states with a large magnetic moment can survive. The
robustness of the states against impurities can be measured
by the magnetic moment, justifying its use to characterize the
degree of confinement.

For the α-T3 wave, the associated current is given by j =
vg�

†Sα� with the following components in the 2D Cartesian
coordinates:

jx = 2vgRe[ψ∗
B (ψA cos φ + ψC sin φ)],

jy = −2vgIm[ψ∗
B (ψA cos φ − ψC sin φ)]. (16)

We compare the confinement properties for three types of
cavities with distinct classical dynamics: circular (integrable),
elliptical (mixed), and stadium (fully chaotic) cavities. The
size parameters for these cavities are the same as those in
Fig. 8. We fix the incident wave vector k0R = 0.1, change
the potential height V , and calculate the magnetic moment for
each quasibound state. Since the current is proportional to the
square of the wave function, for each state we normalize the
magnetic moment by |�|2 to get the average:

μB = 1

N

N∑
i=1

| ∫ r × jd2r|∫ |�|2d2r
, (17)

where the sum is over all quasibound states in a wave-vector
range. Figure 10 shows, for the three types of cavities, the
average magnetic moment versus α. Note that, because of
the unbroken T symmetry for α = 0, 1, the net current is
zero and so the corresponding average magnetic moment is
zero. For α < 0.1, confinement is strengthened as the value
of α is increased. For α > 0.2, the opposite trend occurs:
Confinement is weakened as α becomes larger. For all three
cavities, the maximum value of μB is achieved for α ≈ 0.1,
indicating the strongest possible confinement there among the
possible α-T3 materials.

Certain features of Fig. 10 can be heuristically understood,
as follows. In general, wave functions concentrating along
the boundary will contribute to a large magnetic moment and
hence strong confinement. For small values of α, the third
spinor component ψC is proportional to αh with h being a
kind of Bessel function. However, the boundary condition
stipulates h ∝ α−2. As a result, the third component along the
boundary is proportional to α−1, leading to a larger magnetic
moment for small but nonzero values of α. Note that, in the
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FIG. 10. Average magnetic moments μB vs α for three different
cavities with characteristically distinct classical dynamics. The inci-
dent wave vector is set to be k0R = 0.1 for the circular cavity. The
areas of the other two cavities are the same as that of the circular
cavity, and the corresponding wave vectors are set as in Fig. 8. The
elliptical cavity has eccentricity γ = 1.1 and the parameters of the
stadium cavity are r0/l0 = 1 and L = 2πr0 + 2l0. The normalized
magnetic moment is averaged for V R ∈ [20, 40], in which there are
hundreds of quasibound states for all three cavities. The average
magnetic moment is zero for α = 0 or α = 1 because of T -symmetry
preservation, and is maximized for a small but nonzero value of α.
This indicates that, among the possible α-T3 materials, one with the
strongest possible confinement occurs in the regime of small (but
nonzero) α values.

original definition, Eq. (15), the magnetic moment depends on
both the magnitude of the current j and the position r. While
the T symmetry is broken for all three cavities for α � 0,
for the elliptical and stadium cavities, there is one additional
broken symmetry: the circular symmetry. As a result, the
average magnetic moments are larger than that for the circular
cavity.

V. CONCLUSION AND DISCUSSION

Given a specific type of quantum materials, the issue of
confinement of quasiparticles is of both fundamental impor-
tance and applied value. We have addressed the confinement
issue in α-T3 materials that represent a broad spectrum of
state-of-the-art 2D Dirac materials. In terms of the lattice
interaction parameter α whose value lies in the unit interval,
graphene with pseudospin-1/2 quasiparticles is at the lower
end of the spectrum (α = 0) while at the other end sits the
pseudospin-1 material (α = 1). Exactly at the two ends of the
spectrum, the T symmetry is preserved, but for any material
in between, the symmetry is broken. While experimental
realizations of α-T3 materials have been achieved only at
the two ends of the spectrum, advances in nanotechnologies
and materials science may make it possible to create the 2D
Dirac-Weyl materials with arbitrary values of α in the near
future. A pertinent theoretical question is thus what kind of
α-T3 materials would have the best confinement property,
especially in the quantum-dot regime. In general, associated

with T symmetry breaking is broken level degeneracy, facili-
tating confinement. It is thus intuitively expected that any α-T3

material for α �= 0 would have better confinement properties
than graphene and the pseudospin-1 lattice. We have indeed
observed this feature. In fact, we have found that optimal
confinement is achieved for materials near the graphene end,
i.e., those with small and nonzero α values.

The general approach we have undertaken in this study
is quantum scattering from a cavity generated by a purely
static electric potential. Focusing on the quantum-dot regime,
we have studied a number of cavities with characteristically
distinct classical dynamics: circular, annular, elliptical, and
stadium cavities. For the circular cavity with classical inte-
grable dynamics, the scattering matrix can be analytically
obtained, making feasible a confinement analysis based on
the scattering cross sections and the Wigner-Smith time delay.
Typically, a number of resonant peaks arise in the plots of
these quantities versus some energy-related parameter and a
relatively sharp resonant peak corresponds to strong confine-
ment, as has been verified by an analysis of backscattering
and level separation. For the eccentric annular cavity that
can generate the full spectrum of classical dynamics ranging
from integrable to chaotic, the scattering matrix can still
be analytically calculated through some proper coordinate
transform. For the elliptical and stadium cavities, where the
classical dynamics are mixed for the former and fully chaotic
for the latter, the scattering matrix approach is infeasible.
We have adopted an efficient numerical method, the MMP
method, to deal with these cavities. In particular, the method
enables the three-component spinor wave function for an
arbitrary value of α to be numerically computed, based on
which experimentally accessible measures of confinement
such as the magnetic moment can be calculated. Through
analyzing the magnetic moment, we find that, for small α

values, for the confined modes, the third component of the
spinor wave function is typically larger than the other two
components, generating wave functions concentrating along
the cavity boundary with a large magnetic moment. For all
these cases, we have found that in the region of small α

values (α < 0.1), confinement is enhanced as the value of
α is increased. For α > 0.2, confinement is weakened with
a continuous increase in the value of α. Thus, for the α-T3

lattice system, the best confinement is achieved for a small
but nonzero value of α. This phenomenon is general and holds
regardless of the nature of the classical dynamics.
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APPENDIX A: POTENTIAL SCATTERING
OF α-T3 PARTICLES: BASICS

1. Free space solutions

In the free space, the Hamiltonian for α-T3 wave is

H = vgSα · p, (A1)
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where Sα = (Sα
x , Sα

y ) are 3 × 3 generalized Pauli matrices.
The two matrices, together with the third one Sα

z , obey the
Levi-Civita symbol in three dimensions. For massless quasi-
particles in α-T3 materials, the matrix Sα

z does not arise in the
Hamiltonian. Letting φ = tan−1 α, we have

Sα
x =

⎛
⎝ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎠, (A2)

Sα
y = −i

⎛
⎝ 0 cos φ 0

− cos φ 0 sin φ

0 − sin φ 0

⎞
⎠. (A3)

For φ = 0, Sα
x and Sα

y reduce to the 2 × 2 Pauli matrices
for pseudospin-1/2 particles. For φ = π/4, the Hamiltonian
reduces to that for pseudospin-1 particles. For α � 0, we have
sin φ ≈ α.

In the polar coordinates, the eigenequation becomes⎛
⎝ 0 cos φL̂− 0

cos φL̂+ 0 sin φL̂−
0 sin φL̂+ 0

⎞
⎠

⎛
⎝cos φhl−1e−iθ

iκhl

− sin φhl+1eiθ

⎞
⎠eilθ

= E

⎛
⎝cos φhl−1e−iθ

iκhl

− sin φhl+1eiθ

⎞
⎠eilθ , (A4)

where

L̂± = −ie±iθ

(
∂r ± i

∂θ

r

)
, (A5)

and κ = sign(k) is the band index. Comparing with the solu-
tions for the pseudospin-1/2 system, we have that hl are the
Bessel type of functions. Let h(0)

l = Jl be the Bessel function,
and h(1)

l = H (1)
l and h(2)

l = H (2)
l be the first and second kinds

of Hankel functions. Furthermore, we let

kψ
(0,1,2)
l (r) ≡ 1√

2π

⎛
⎜⎜⎝

cos φh(0,1,2)
l−1 (kr)e−iθ

iκh(0,1,2)
l (kr)

− sin φh(0,1,2)
l+1 (kr)eiθ

⎞
⎟⎟⎠eilθ , (A6)

where r = (r, θ ).

2. Boundary conditions

For a finite potential, we write the three-component spinor
wave function as

�(r, θ ) =

⎛
⎜⎝

ψA

ψB

ψC

⎞
⎟⎠ =

⎛
⎜⎝
RA(r)e−iθ

RB(r)

RC (r)eiθ

⎞
⎟⎠eilθ , (A7)

where RA(r), RB(r), and RC (r) are the corresponding radial
components. The eigenequation H� = E� thus becomes

−ivg

⎛
⎝ 0 cos φ

(
d
dr + l

r

)
0

cos φ
(

d
dr − l−1

r

)
0 sin φ

(
d
dr + l+1

r

)
0 sin φ

(
d
dr − l

r

)
0

⎞
⎠

⎛
⎝RA(r)
RB(r)
RC (r)

⎞
⎠ = [E − V (r)]

⎛
⎝RA(r)
RB(r)
RC (r)

⎞
⎠. (A8)

Suppose the change in the potential at the cavity boundary r = R is finite. Integrating Eq. (A8) in the infinitesimal interval
r ∈ [R − η, R + η], where η ∼ 0, we obtain

RB(R − η) = RB(R + η),

cos φRA(R − η) + sin φRC (R − η) = sin φRA(R + η) + cos φRC (R + η). (A9)

Together with the angular part of the spinor wave function, we get the boundary conditions as

ψ<
B = ψ>

B ,

cos φψ<
A eiθ + sin φψ<

C e−iθ = cos φψ>
A eiθ + sin φψ>

C e−iθ .
(A10)

where < and > denote the wave functions inside and outside
of the boundary, respectively. Note that, across the boundary,
the second spinor component must be continuous, but only
a linear combination of the first and third components is
required to be continuous.

The current density for α-T3 particles is

j = vg�
†Sα�, (A11)

whose components are given by

jx = 2vg Re [ψ∗
B (ψA cos φ + ψC sin φ)],

jy = −2vg Im [ψ∗
B (ψA cos φ − ψC sin φ)]. (A12)

3. Elastic scattering theory

For scattering of α-T3 particles from a potential, the general
wave function can be written as

� = �in + �out

=
∑

l

al

[
kψ

(2)
l +

∑
l ′

Sll ′
kψ

(1)
l ′

]

=
∑

l

al

[
2kψ

(0)
l +

∑
l ′

(Sll ′ − δll ′ )
kψ

(1)
l ′

]
, (A13)

where the incident and reflected waves are expressed as the
second and first kinds of Hankel functions, respectively. Sll ′

is the scattering matrix between incident wave with angular
momentum l and scattering wave with angular momentum l ′.
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Let Tll ′ ≡ Sll ′ − δll ′ and χin ≡ ∑
l al

kψ
(0)
l . For certain choice

of al , χin corresponds to the plane wave. The far-field behavior
of the wave function is

lim
k0r
1

� = χin + f (θ, θ ′)√−ir

⎛
⎝cos φe−iθ

κ

sin φeiθ

⎞
⎠eikr . (A14)

Comparing with the assumption in Eq. (A13), we get

f (θ, θ ′)√−ir

⎛
⎝cos φe−iθ

κ

sin φeiθ

⎞
⎠eikr

= lim
kr
1

∑
l

al

∑
l ′

Tll ′

⎛
⎜⎝

cos φH (1)
l ′−1(kr)e−iθ

iκH (1)
l ′ (kr)

− sin φH (1)
l ′+1(kr)eiθ

⎞
⎟⎠eil ′θ . (A15)

Using the asymptotic property of the Hankel function [112]

H (1)
l (z) ≈

√
2

πz
exp

[
i

(
z − 1

2
lπ − 1

4
π

)]
(A16)

and comparing both sides of Eq. (A15), we get

fl (θ, θ ′) =
√

2

πk

∑
l

∑
l ′

alTll ′ (−i)l ′eil ′θ

=
√

2

πk

∑
l

fl (θ
′)eilθ , (A17)

where

fl (θ
′) =

∑
m

amTml (−i)l . (A18)

Once the scattering matrix has been obtained, we can analyze
the far-field behaviors. For example, the differential cross
section is

dσ

dθ
= | f (θ, θ ′)|2 = 2

πk

∣∣∣∣∣
∑

l

fl (θ
′)eilθ

∣∣∣∣∣ (A19)

and the total scattering cross section is given by

σ (θ ′) =
∮

dθ | f (θ, θ ′)|2 = 4

k

∑
ll ′

al (T T †)ll ′a
∗
l ′ . (A20)

APPENDIX B: SCATTERING FROM A CIRCULAR CAVITY

1. Solution of scattering wave functions

The incident wave is

χin(r) = 1√
2

⎛
⎝cos φ exp(−iθ ′)

κ0

sin φ exp(iθ ′)

⎞
⎠eik0r cos θ , (B1)

where θ ′ is the incident angle and k0 = |E |/vg is the incident
wave vector. Using the Jacobi-Anger identity [112]

eiz cos θ ≡
∞∑

l=−∞
il Jl (z)eilθ , (B2)

we can expand the plane wave in the polar coordinates as

χin(r) = 1√
2

∑
l

il−1

⎛
⎝ cos φJl−1(k0r)ei(l−1)θ

iκ0Jl (k0r)eilθ

− sin φJl+1(k0r)ei(l+1)θ

⎞
⎠

= √
π

l=∞∑
l=−∞

il−1k0ψ
(0)
l . (B3)

From Fig. 1, there are two regions. In region I (outside of the
cavity), the wave vector is k and the band index is κ0 = SignE .
Inside the cavity, the wave vector is q = |E − V |/vg and the
band index is κ1 = Sign(E − V ). The wave function in region
I is

� (I)(r) = χin(r) + √
π

∞∑
l=−∞

il−1Al
k0ψ

(1)
l , (B4)

where Al ’s are the expansion coefficients. Similarly, in region
II, we have

� (II)(r) = √
π

∞∑
l=−∞

il−1Bl
qψ

(0)
l . (B5)

Imposing boundary conditions and matching the wave func-
tions for each angular momentum channel, we get

BlJl (qR) = κ0κ1
[
Jl (k0R) + Al H

(1)
l (k0R)

]
,

BlX
(0)
l (qR) = X (0)

l (k0R) + AlX
(1)
l (k0R),

(B6)

where

X (0,1,2)
l = cos2 φh(0,1,2)

l−1 − sin2 φh(0,1,2)
l+1 . (B7)

We thus have

Al = − Jl (qR)X (0)
l (k0R) − κ0κ1X (0)

l (qR)Jl (k0R)

Jl (qR)X (1)
l (k0R) − κ0κ1X (0)

l (qR)H (1)
l (k0R)

,

Bl = H (1)
l (k0R)X (0)

l (k0R) − X (1)
l (k0R)Jl (k0R)

H (1)
l (k0R)X (0)

l (qR) − κ0κ1X (1)
l (k0R)Jl (qR)

. (B8)

Recalling the definition of the scattering matrix Scd

� (I) =
∞∑

l=−∞
al

(
k0ψ

(2)
l + Scd

l
k0ψ

(1)
l

)
(B9)

and comparing this with Eq. (B4), we obtain

Scd
l = 1 + 2Al

= −Jl (qR)X (2)
l (k0R) − κ0κ1X (0)

l (qR)H (2)
l (k0R)

Jl (qR)X (1)
l (k0R) − κ0κ1X (0)

l (qR)H (1)
l (k0R)

. (B10)

From Eqs. (A19) and (A20), we obtain the differential cross
section as

dσ

dθ
= 1

πk0

∣∣∣∣∣
∑

l

(
Scd

l − 1
)
eilθ

∣∣∣∣∣
2

(B11)

and the following total scattering cross section

σ = 2

k0

∑
l

∣∣Scd
l − 1

∣∣2
, (B12)
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where the factor (2/k0) is the result of plane wave normaliza-
tion.

2. Far-field properties

In the quantum-dot regime k0R � 1, for pseudospin-1/2
scattering the main contribution to the scattering wave func-
tion comes from the ±1/2 angular momentum channels. For
pseudospin-1 scattering [33], the main contribution comes
from the lowest angular momentum channel l = 0. For α-T3

scattering, we have

A1 = − J1(qR)X (0)
1 (k0R) − κ0κ1X (0)

1 (qR)J1(k0R)

J1(qR)X (1)
1 (k0R) − κ0κ1X (0)

1 (qR)H (1)
l (k0R)

. (B13)

Recall the asymptotic properties of the Bessel and Hankel
functions [112]:

lim
z→0

J0(z) ≈ 1, (B14)

lim
z→0

Jl (z) ≈ 1

�(l + 1)

(
1

2
z

)l

, (B15)

lim
z→0

H (1)
0 (z) ≈ −H (2)

0 (z) ≈ 2i

π
ln(z), (B16)

lim
z→0

H (1)
l (z) ≈ −H (2)(z) ≈ − i

π
�(l )

(
1

2
z

)−l

, (B17)

for l > 0. For negative values of l , we have J−l = (−1)l Jl and
H (1,2)

−l = (−1)lH (1,2)
l . We treat α as a perturbation parameter.

For α � 0, the dominant perturbation term is J1(qR)X (1)
1 (k0R)

in the denominator of Eq. (B13), which has the form
α2H (1)

2 (k0R). We get

A1 = A(α=0)
1

1 + ηα2/(k0R)
, (B18)

where η is a parameter. Note that A1 decays fast in the
quantum-dot regime. The backscattering ratio is given by

δ = dσ/dθ |θ=π

dσ/dθ |θ=0
= |A0 − A1|2

|A0 + A1|2 ∝ α4(k0R)−2. (B19)

3. Low-field property and level degeneracy

We analyze the maximum value of Bl . For l �= 0, the
maximum occurs when the denominator of Eq. (B8) vanishes.
In the pseudospin-1/2 case α = 0, Eq. (B6) becomes

BlJl (qR) = κ0κ1
[
Jl (k0R) + AlH

(1)
l (k0R)

]
,

BlJl−1(qR) = Jl−1(k0R) + AlH
(1)
l−1(k0R). (B20)

Using the transform l → −l + 1 and noting J−l = (−1)l Jl

and H (1)
−l = (−1)lH (1)

l , we get B−l+1 = κ0κ1Bl and A−l+1 =
Al . For pseudospin-1 (α = 1) scattering, Eq. (B6) becomes

BlJl (qR) = κ0κ1
[
Jl (k0R) + AlH

(1)
l (k0R)

]
,

Bl (Jl−1(qR) − Jl+1(qR)) = Jl−1(k0R) − Jl+1(k0R)

+ Al (Hl−1(k0R) − Hl+1(k0R)).

(B21)

With l → −l and using J−l = (−1)l Jl and H (1)
−l = (−1)lH (1)

l ,
we get A−l = Al and B−l = Bl . The wave function is degen-
erate with respect to the transform l → −l .

For a general α-T3 system, Eq. (B6) contains the parameter
α. We have

BlJl (qR) = κ0κ1
[
Jl (k0R) + AlH

(1)
l (k0R)

]
,

BlX
(0)
l (qR) = X (0)

l (k0R) + AlX
(1)
l (k0R). (B22)

For α � 0, we have α ≈ sin φ and, hence,

X (1)
l ≈ H (1)

l−1

[
1 + ηl (l − 1)

(
α

kR

)2
]
, (B23)

where η is a parameter. In the numerator of Bl , X (1)
l (k0R)

cancels off Jl (k0R) for small k0R and l �= 0. The denominator
has a similar behavior, as in the far-field case:

H (1)
l (k0R)X (0)

l (qR)

= κ0κ1H (1)
l−1

[
1 + ηl (l − 1)

(
α

k0R

)2
]

Jl (qR). (B24)

To satisfy this equation for small values of α, we consider
q → q + l . Comparing the two sides of the equations, we
get

l ∝ α2l

k0R
, (B25)

for l > 0. For α close to one, we have cos φ ≈ cos(π/4) +
(α − 1) sin(π/4). Following a similar analysis, we have that
H (1)

l+1(k0R) in the denominator is dominant and H (1)
l (k0R) is a

perturbation. We get

l ∝ (1 − α)
k0R

l
for |l| > 0. (B26)

APPENDIX C: SCATTERING OF α-T3 WAVE
FROM A RING CAVITY

Consider the ring cavity in Fig. 5(a1), where two bound-
aries divide the whole space into three regions. The wave
vectors in the three regions are k0 = |E |/vg, k1 = |E − V1|/vg,
and k2 = |E − V2|/vg with the respective band indices κ0 =
signE , κ1 = sign(E − V1), and κ2 = sign(E − V2). The wave
functions in the three regions are given by

� (I)(r) =
∞∑

l=−∞

(
k0ψ

(2)
l + Sring

l
k0ψ

(1)
l

)
, (C1)

� (II)(r) =
∞∑

l=−∞
Cl

(
k1ψ

(2)
l + Scd

l
k1ψ

(1)
l

)
, (C2)

� (III)(r) =
∞∑

l=−∞
Dl

k2ψ
(0)
l . (C3)
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Let El = ClScd
l . Matching the boundary conditions for each angular momentum channel, we get⎛

⎜⎜⎜⎜⎝
κ1H (2)

l (k1R2) −κ2Jl (k2R2) κ1H (1)
l (k1R2) 0

X (2)
l (k1R2) X (0)

l (k2R2) X (1)
l (k1R2) 0

κ1H (2)
l (k1R1) 0 κ1H (1)

l (k1R1) −κ0H (1)
l (k0R1)

X (2)
l (k1R1) 0 X (1)

l (k1R1) −X (1)
l (k0R1)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Cl

Dl

El

Sring
l

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

κ0H (2)
l (k0R1)

X (2)
l (k0R1)

⎞
⎟⎟⎟⎠. (C4)

The solutions of the coefficients are

Cl = κ0κ1
H (2)

l (k0R1) + H (1)
l (k0R1)Scd

l

H (2)
l (k1R1) + H (1)

l (k1R1)Scd
l

,

Dl = κ0κ1Cl
H (2)

l (k1R2) + H (1)
l (k1R2)Scd

l

Jl (k2R2)
. (C5)

We thus get the scattering matrix for the ring cavity as

Sring
l = −κ0xlH

(2)
l (k0R1) − κ1ylX

(2)
l (k0R1)

κ0xlH
(1)
l (k0R1) − κ1ylX

(1)
l (k0R1)

, (C6)

where

xl = X (2)
l (k1R1) + X (1)

l (k1R1)Scd
l ,

yl = H (2)
l + H (1)

l (k1R1)Scd
l ,

with Scd
l given by Eq. (B10).

APPENDIX D: SCATTERING OF α-T3 WAVE FROM AN
ECCENTRIC CIRCULAR CAVITY

Similar to scattering from a ring cavity, in an eccentric
circular cavity there are three distinct regions with wave
vectors k0, k1, and k2. Because of the eccentricity, there is
mixing of wave functions from different angular-momentum
channels. We can write

� (I)(r) =
∞∑

l=−∞
a0

l

[
k0ψ

(2)
l +

∞∑
l ′=−∞

Sll ′
k0ψ

(1)
l ′

]
, (D1)

� (II)(r) =
∞∑

l=−∞

∞∑
m=−∞

l a1
m

[
k1ψ

(2)
l +

∞∑
m′=−∞

Sod
mm′

k1ψ
(1)
l ′

]
,

(D2)

where Sod is the scattering matrix for the inner circle, a
transformed version of the inner circle in the corresponding
ring cavity:

Sod = U −1ScdU, (D3)

where the transformation matrix is U = [Ulμ] = [Jμ−l (k1ξ )]
and its inverse is U −1 = [U −1

ml ] = [Jm−l (k1ξ )]. We match the
boundary conditions

a0
l X (2)

l (k0R1)δlm + a0
l SlmX (1)

m (k0R1)

= l a1
mX (2)

m (k1R1) +
∑

j

l a1
j S

od
jmX (1)

m (k1R1),

iκ0
[
a0

l Hl (k0R1)δlm + a0
l SlmH (1)

m (k0R1)
]

= iκ1

⎡
⎣l a1

mH (2)
m (k1R1) +

∑
j

l a1
j S

od
jmH (1)

m (k1R1)

⎤
⎦, (D4)

and define

A0 = [
a0

l δlm
]
, A = [

l a1
m

]
,

C(1,2) = [
X (1,2)

l (k0R1)δlm
]
, D(1,2) = [

H (1,2)
l (k0R1)δlm

]
,

c(1,2) = [
X (1,2)

l (k1R1)δlm
]
, d(1,2) = [

H (1,2)
l (k1R1)δlm

]
.

(D5)

Equation (D4) can be rewritten as a matrix equation

A0C(2) + A0SC(1) = Ac(2) + ASod c(1),

κ0[A0D(2) + A0SD(1)] = κ1[Ad2 + ASod d(1)]. (D6)

We obtain

S = −D(2) − κ0κ1D(2)E

D(1) − κ0κ1D(1)E
, (D7)

where E = F−1D, F , and G are defined as

F = c(2) + Sod c(1),

G = d(2) + Sod d(1),

and

A = A0C(2) + A0SC(1)

c(2) + Scd c(1)
, (D8)

with A0 being the coefficient for the incident wave.

APPENDIX E: MMP METHOD FOR SOLVING α-T3 WAVE
SCATTERING FROM AN ARBITRARY DOMAIN

We describe a generalized MMP method that can be used
to solve the scattering of α-T3 wave in an efficient way. The
method was originated in optics [95–99] and recently adopted
for pseudospin-1 wave scattering [94]. Consider the simple
case of a single scattering cavity, where the regions outside of
and inside it are denoted as I and II, respectively, with wave
vectors k0 and q as well as band indices κ0 and κ1. Suppose
a plane spinor wave is incident on the cavity, which can be
written as

χ in(r) =

⎛
⎜⎝

χ in
A

χ in
B

χ in
C

⎞
⎟⎠ = 1√

2

⎛
⎝cos φ exp(−iθ ′)

κ0

sin φ exp(iθ ′)

⎞
⎠eik0r cos θ . (E1)

To calculate the scattering wave function, we place a number
of “poles” inside and outside of the cavity, as shown in Fig. 11.
Poles inside and outside of the cavity are labeled as mII and
mI, respectively, with their total numbers MII and MI. Each
pole is treated as a fictitious source. To avoid the problem of
singularity at a source, the scattering wave function outside
of the cavity is given as the superposition of the waves from
all the poles inside the cavity, while the wave function inside
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(a) (b) (c)
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(d)

0 1 2 3 4 5 6 7 8 9 10
100

105

(e)

FIG. 11. Illustration of MMP method for α-T3 wave scattering and validation. [(a)–(c)] Distributions of interior and exterior poles for the
circular, elliptical, and stadium cavities, respectively. For each cavity, the solid curve represents the cavity boundary �, and the regions outside
of and inside the cavity are labeled as I and II, respectively. (d) For the circular cavity, analytically obtained local density of state (LDOS) vs
the potential parameter V R at the test point (r = 0.9 and θ = π/3) specified by the green pentagram in panel (a). (e) The LDOS at the same
point obtained from MMP. The agreement between the results in panels (d) and (e) is excellent.

the cavity is determined by the poles outside, as illustrated in
Figs. 11(a)–11(c). For a fictitious source, the base function is

�l (r) = 1√
2π

⎛
⎜⎜⎝

cos φh(0,1,2)
l−1 (kr)e−iθ

iκh(0,1,2)
l (kr)

− sin φh(0,1,2)
l+1 (kr)eiθ

⎞
⎟⎟⎠eilθ , (E2)

where h(0,1,2)
l (z) denotes some type of Bessel function. For

each source, we choose the outgoing wave as the basis, i.e.,
the Hankel function of the first kind: H (1)

l . The wave function
outside of the cavity can be written in terms of the poles inside
as

� (I)(r) =

⎛
⎜⎝

ψ
(I)
A

ψ
(I)
B

ψ
(I)
C

⎞
⎟⎠

=
∑
mII

∑
l

F mII
l

⎛
⎜⎜⎝

cos φH (1)
l−1

(
k0dmII

)
e−iθmII

iκ0H (1)
l

(
k0dmII

)
− sin φH (1)

l+1

(
k0dmII

)
eiθmII

⎞
⎟⎟⎠eilθmII ,

(E3)

where

dmII ≡ ∣∣dmII

∣∣ = ∣∣r − rmII

∣∣,
θmII ≡ Angle

(
r − rmII

)
,

and F mII
l is the expansion coefficient for the eigenvector from

the mIIth pole with angular momentum index l located at rmII .

Similarly, the wave function inside the cavity is determined
by the poles outside of the cavity:

� (II)(r) =

⎛
⎜⎝

ψ
(II)
A

ψ
(II)
B

ψ
(II)
C

⎞
⎟⎠

=
∑
mI

∑
l

F mI
l

⎛
⎜⎝

cos φH (1)
l−1

(
qdmI

)
e−iθmI

iκ1H (1)
l

(
qdmI

)
− sin φH (1)

l+1

(
qdmI

)
eiθmI

⎞
⎟⎠eilθmI , (E4)

where
dmI ≡ ∣∣dmI

∣∣ = ∣∣r − rmI

∣∣, and θmI ≡ Angle
(
r − rmI

)
.

To match the boundary conditions, the three components of
the spinor wave function must satisfy(

χ in
B + ψ

(I)
B

)∣∣
r∈�

= ψ
(II)
B

∣∣
r∈�

,[
cos φ

(
χ in

A + ψ
(I)
A

) + sin φ
(
χ in

C + ψ
(I)
C

)]∣∣
r∈�

= (
cos φψ

(II)
A + sin φψ

(II)
C

)∣∣
r∈�

.

Expanding this equation in terms of the poles and the corre-
sponding eigenvectors, we obtain∑

mII

∑
l

jP(I)
lmII

F mII
l −

∑
mI

jP(II)
lmI

F mI
l = − jχ in

B ,

∑
mII

∑
l

jQ(I)
lmII

F mII
l −

∑
mI

jQ(II)
lmI

F mI
l

= −(
cos φ jχ in

A + sin φ jχ in
C

)
, (E5)
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where

jP(I)
lmII

= iκ0H (1)
l

(
k0

∣∣r j − rmII

∣∣)eilθmII ,

jP(II)
lmI

= iκ1H (1)
l

(
k1

∣∣r j − rmI

∣∣)eilθmI ,

jQ(I)
lmII

= cos2 φH (1)
l−1

(
k0

∣∣r j − rmII

∣∣)ei(l−1)θmII − sin2 φH (1)
l+1

(
k0

∣∣r j − rmII

∣∣)ei(l+1)θmII ,

jQ(II)
lmI

= cos2 φH (1)
l−1

(
k1

∣∣r j − rmI

∣∣)ei(l−1)θmI − sin2 φH (1)
l+1

(
k1

∣∣r j − rmI

∣∣)ei(l+1)θmI , (E6)

and

jχ in
A,B,C = χ in

A,B,C (r j ). (E7)

We discretize the boundary into J points. For each point, we truncate the angular momentum as l ∈ [−L, L]. Let NL = 2L + 1 be
the number of eigenvectors associated with different values of the angular momentum and let N = NL × (MI + MII ) = NI + NII.
The boundary conditions lead to the following matrix equation,

M2J×N · FN×1 = −G2J×1, (E8)

where M can be expanded in terms of the matrices P and Q, which are typically not square matrices:

M2J×N =
(

P (I) −P (II)

Q(I) −Q(II)

)
2J×N

. (E9)

The two vectors in Eq. (E8) are given by

FN×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 1II
−L
...

F 1II
l

F 2II
l
...

F MII
l
...

F MII
L

F 1I
−L
...

F 1I
l

F 2I
l
...

F MI
l
...

F MI
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×1

, G2J×1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jχ in
B

...
jχ in

B

...
Jχ in

B

cos φ1χ in
A + sin φ1χ in

A

...
cos φ jχ in

A + sin φ jχ in
A

...
cos φJχ in

A + sin φJχ in
A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2J×1

, (E10)

and the matrices P and Q are given by

P (λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1P(λ)
−L1λ

· · · 1P(λ)
−LMλ

· · · 1P(λ)
l1λ

· · · 1P(λ)
lMλ

· · · 1P(λ)
LMλ

2P(λ)
−L1λ

· · · 2P(λ)
−LMλ

· · · 2P(λ)
l1λ

· · · 2P(λ)
lMλ

· · · 2P(λ)
LMλ

... · · · ... · · · ... · · · ... · · · ...
jP(λ)

−L1λ
· · · jP(λ)

−LMλ
· · · jP(λ)

l1λ
· · · jP(λ)

lMλ
· · · jP(λ)

LMλ

... · · · ... · · · ... · · · ... · · · ...
JP(λ)

−L1λ
· · · JP(λ)

−LMλ
· · · JP(λ)

l1λ
· · · JP(λ)

lMλ
· · · JP(λ)

LMλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×Nλ

, (E11)
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and

Q(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1Q(λ)
−L1λ

· · · 1Q(λ)
−LMλ

· · · 1Q(λ)
l1λ

· · · 1Q(λ)
lMλ

· · · 1Q(λ)
LMλ

2Q(λ)
−L1λ

· · · 2Q(λ)
−LMλ

· · · 2Q(λ)
l1λ

· · · 2Q(λ)
lMλ

· · · 2Q(λ)
LMλ

... · · · ... · · · ... · · · ... · · · ...
jQ(λ)

−L1λ
· · · jQ(λ)

−LMλ
· · · jQ(λ)

l1λ
· · · jQ(λ)

lMλ
· · · jQ(λ)

LMλ

... · · · ... · · · ... · · · ... · · · ...
JQ(λ)

−L1λ
· · · JQ(λ)

−LMλ
· · · JQ(λ)

l1λ
· · · JQ(λ)

lMλ
· · · JQ(λ)

LMλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

J×Nλ

, (E12)

where λ ∈ {I, II} and λ = {I, II} − λ.
Because of the finite truncation, the total basis is not

complete, so Eq. (E9) can be satisfied only approximately. To
achieve high accuracy requires J 
 N . Equation (E9) can be
solved by the pseudoinverse method [F = −pinv(M ∗ G) in
MATLAB].

From the expansion coefficients F, we can get the
scattering wave function in the whole space. To validate
the MMP method, we set α = 1/3 in the circular cav-
ity and calculate the local density of states (LDOS) as a
function of the parameter V R both analytically and using

the MMP method. The results are shown in Figs. 11(d) and
11(e). There is a good agreement between the results.

The error of the MMP method can be estimated as

SSE = ‖M ∗ F + G‖
‖G‖ . (E13)

For the circular and the elliptical cavities, the relative errors
are typically smaller than 10−5. For the stadium cavity, the
error is bounded by 0.05. In the quantum-dot regime where
the wave vector inside the cavity is large, a large number of
poles are needed and they should be placed as close to the
boundary as possible.
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