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Modeling of Coupled Chaotic Oscillators
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Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of
natural systems. We give theoretical argument that severe modeling difficulties may occur for high-
dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions
that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic
oscillators. They arise in many situations of physical and biological interests, and they also arise from
discretization of nonlinear partial differential equations. [S0031-9007(99)09331-X]

PACS numbers: 05.45.Xt

Coupled oscillators are relevant to a large variety There have been a number of recent papers address-
of physical and biological phenomena [1]. Arrays ofing various issues on the stability of the synchronization
Josephson junctions [2] and coupled solid state lasenmanifold for coupled chaotic oscillators [4]. The purpose
[3] are well known examples in physics. In biology, of this Letter is to show that, by looking at the stability of
vital organs such as hearts, auditory, visual, and centrahe synchronization manifold, one can establish to what
nervous systems are complex networks of many smakxtent a natural system of coupleHdaoticoscillators can
oscillators such as cells and neurons. Systems of coupldsk modeleddeterministicallyby Eq. (1). Our principal
equations can also arise from spatial discretization ofesult is that there are parameter regimes of positive mea-
nonlinear partial differential equations such as the Naviersure for which Eq. (1) is not able to model determinis-
Stokes equation in fluid dynamics. The dynamics of thdically the natural system of coupled oscillators in the
fundamental elements, or the individual oscillators in thesense that no trajectory of reasonable length [5] of Eq. (1)
network, can be either regular or complicated. Typically,is close to any trajectory of the natural chaotic system
the collective behavior of all the oscillators in the networkof coupled oscillators that Eq. (1) is supposed to model.
can be extremely rich, ranging from steady state omMore specifically, say one constructphysicalsystem of
periodic oscillations to chaotic or turbulent motions. coupled chaotic oscillators in a laboratory, and one mea-
Systems of coupled oscillators have thus become asures a trajectory. Then no trajectory of reasonable length
area of great interest for physicists, mathematicians, anfftom the mathematical model of thghysicalsystem, as
biologists. given by Eq. (1), is close to the measured physical tra-

Mathematically, a natural system &f coupled oscil- jectory [6,7]. We stress that subtleties and difficulties of
lators can be modeled using either continuous-time flowsiumerical calculations of chaotic systems are not the is-
or a lattice of coupled maps; the latter can be written asue here. The difficulty to model the natural process is a

follows: consequence of the inexactitude of the model given by the
4 _ N _ inevitable random disturbances and imperfections of the
xi = F(x)) + e > gH(x)), i=1,...,N, model such as various approximations used in the model-
j=1 building process and intrinsic dynamical properties of the

() physical systems under consideration. We argue then in
wherei andj denote the lattice site, is the discrete time, this Letter that, if the model is an approximation to the
x; is aD-dimensional vectof andH are D-dimensional natural process, as indeed it is, due to imperfections of
vector functions,e is a parameter characterizing the the natural system, no model can produce trajectories of
coupling strength, ang;; denotes the elements of the reasonable length that are close to trajectories of the ac-
coupling matrix. For such a system, of great importanceual system of coupled oscillators. Moreover, we show
is the synchronization state (manifold) defined Xly= that this obstruction to modeling occurs already for small,
x? = ... = xV. If the elements of the coupling matrix but nonzero, coupling. Thus, one should exercise some
satisfy > ;¢;; = 0, then the synchronization state is care when studying and interpreting results from models
a solution of Eg. (1). In this case, if the system isof coupled chaotic oscillators. Often, the only long-term
initialized in the synchronization manifold, the state of themeaningful results one can trust are the statistical invari-
system remains synchronized in the absence of randosmts obtained by simulating a large number of trajectories
noise. The synchronization manifold is thusiamariant  of the model [7]. The implication is that in laboratory ex-
manifold for the system. It has dimensi@n while the periments involving coupled chaotic oscillators, it might
full dynamics lies in a manifold of dimensiad X D. only make sense to workirectly with measured time
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series instead of a mathematical model similar to Eqg. (1)x! = x> = ... = x" = x, which is invariant and a two-
when attempting to understand the long-term behavior oflimensional plane. Unstable periodic orbits of the Hénon
the system, even if the model is built upon physical lawsmapF(x) can be computed by the method of Ref. [14].
and is considered to be reasonable. We now argue, quantitatively, that unstable dimension
The property that allows us to make such strong statevariability occurs where is nonzero. The starting point
ments about the difficulties in modeling coupled chaoticis to study the stability of the Hénon unstable periodic or-
oscillators is the notion ofinstable dimension variability bits in the2N-dimensional space of coupled oscillators,
[8], a type of nonhyperbolicity believed to arise commonly which are embedded in the synchronization manifold. To
in high-dimensional chaotic systems [9]. Roughly, un-do this, we make use of the variational formalism devel-
stable dimension variability means as the trajectoryoped by Pecora and Carroll [15]. For Eg. (2), an infini-
evolves in the chaotic invariant set, it experiences desimal vectors X evolves in the tangent space according
distinct number of unstable directions in different regionsto §X,,+; = [Iy ® DF(x) — 5g ® H] - §X,,, wherely
of the phase space. This is a situation violating a basits theN X N identity matrix, “®” denotes direct product,
requirement for hyperbolicity of dynamical systems [10]. DF(x) is the Jacobian matrix of the Hénon map, and the
The fundamental reason for unstable dimension variabilitelements of the matrig are zero except for the follow-
is the different number of unstable directions exhibited bying: g;; = =2 (i = 1,...,N), gii-1 = gii+1 =1 (i =
the unstable periodic orbits embedded in the chaotic se,...,N), g1 = giv = gnv1 = gvv—1 = 1, and Hy; =
The consequence of unstable dimension variability may is the only nonzero element in the matik In order
be severe: due to modeling error, no model trajectory ofo find the stability of each unstable periodic orbit embed-
reasonable length is close to any trajectory of the actualed in the invariant Hénon plane, it is necessary to diago-
system [7-9,11,12]. nalize the matri¥Iy ® DF(x) — 5g ® H]. This can be
To address modeling of coupled chaotic systems, idlone by diagonalizing the matriy, which does not in-
thus suffices to search for unstable dimension variabilfluence the block-diagonal matriky ® DF(x). Let y;
ity in such systems, which can be qualitatively seenk = 0,1,...,N — 1) be the eigenvalues of the matuggx
as follows. Consider the chaotic attractor (usually low-wherey, = O(becausij gij = 0). Asaresult of the di-
dimensional) in the synchronization manifold of dimen-agonalization, we obtain the following variational equa-
sion D. Since the synchronization manifold is invariant tions in the plane:

under the dynamics, the infinite number of unstable pe- €

riodic orbits embedded in the attractor are the periodic 8Xy. g = |:DF(X) ) ka} - 8x)

orbits of Eq. (1). Coupling of th& individual oscillators

immediately introduce®y — 1 additional D-dimensional [ —2x =5y b .
eigenspaces to each one of these periodic orbits, subspaces - 1 0]/ O, , (3)

which aretransverseo the synchronization manifold. In

these transverse subspaces, the unstable periodic orbits in k=01..N~-1

the synchronization manifold can have a different numbeiThe first equation, corresponding tay = 0, gives the

of unstable directions due to coupling. As a result, thesestability of an orbit in the invariant Hénon plane. The

unstable periodic orbits in the space of dimens\d for  remaining N — 1 equations determine then the stabili-

the coupled oscillator system have a different number ofies of the orbit in the2(N — 1)-dimensionaltransverse

unstable directions, a situation characterizing unstable dspace, which is made up &f — 1 transverse planes. Let

mension variability. (x1,X2,...,X,) be one of the periodic orbits of perigd-

To explicitly demonstrate unstable dimension variabilityin the invariant Hénon plane, whose stability in fiie— 1

in models of coupled chaotic oscillators, we study a modetransverse planes is determined by the following product

system ofV coupled Hénon maps [13] on a circle (periodic of p matrices:

boundary condition) for which unstable periodic orbits in >/, ~_ ¢ b

. 4 . . i 27k
the invariant manifold can be computed systematically: ( 1 0 ) k
i=1
Lyl =1a — (x))* + by! In the transverse planes, for typical eigenvalygs# 0,

a finite e can cause a shift in the transverse eigenvalues

of the Hénon unstable periodic orbits. Consider all the

unstable periodic orbits of perigd{ p large) in the Hénon

. chaotic attractor. By definition of the Lyapunov exponent,
i=1L...N, the probability distribution of the unstable eigenvalues of

where the coupling is assumed to be nearest-neighbothese Hénon orbits is approximately a Gaussian centered at

type, € is the coupling strength, and and » are the ¢*? and it has a finite width, wherg > 0 is the Lyapunov

local parameters in the Hénon map [denotedRKix)].  exponent of the Hénon chaotic attractor [16]. Thus, there

Writing X = {x!,x?,...,x"}, wherex’ = (x’,y’) € R*>  can be a set of periodic orbits whose eigenvalues are larger

andX € R?", we have for the synchronization manifold: than but close to unity. As one examines the stability of
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these orbits in th&/ — 1 transverse planes, far= 0, itis  orbits of period 28 have at least two transversely unstable
likely that the eigenvalues in some of the transverse planedirections; while fore = 0.8, a small fraction of these or-
cross the unit circle inward becoming less than 1, leading tbits are transversely stable, i.e., they have no transversely
the loss of a few unstable directions, amang- 1 ofthem  unstable directions, and, hence, these orbits have only one
whene # 0. Unstable dimension variability thus occurs unstable direction, the one in the invariant manifold. Pe-
for e = 0 due to the existence of Hénon orbits whoseriodic orbits can also have two or four transversely un-
eigenvalues are close to 1 if one requires small couplingtable directions. This is shown in Figs. 1(c) and 1(d),
strength. where the histograms of the third and the fourth largest
We have undertaken a series of eigenvalue computaransverse Lyapunov exponerits, = A3) of all period-
tions to demonstrate unstable dimension variability in the28 orbits are shown far = 0.4 ande = 0.8, respectively.
model given by Eq. (2) fov = 5 (just for an illustra- We see that foe = 0.4, a small but finite fraction of orbits
tive purpose). The full dynamics is henceRi’, but the  have negative values af- andA?, indicating that these or-
invariant synchronization plane R2. We first compute bits can have at most two transversely unstable directions.
all the periodic orbits of period up to 28 for the Hénon For e = 0.8, a larger fraction of the period-28 orbits have
chaotic attractor at = 1.4 andb = 0.3 in the synchro- this behavior. These results thus clearly indicate unstable
nization plane of Eqg. (2). The Lyapunov spectra in eactdimension variability in model Eq. (2) far # 0.
transverse plane for all the Hénon unstable periodic orbits How large should the coupling parameter be for unstable
up top = 28 are then computed fdr = € = 1.6. Since  dimension variability to occur? To address this question,
N = 5, each periodic orbit has five degenerate unstable diwe compute, for a given periqa, emin, the minimum value
rections with equal eigenvalues when= 0. The matrix of the coupling for which unstable dimension variability
g has the following set of eigenvalues fir= 5: yo = 0,  occurs forall periodic orbits of period less than or
v = vy, = —1.382,andy; = y4 = —3.618. Thus,as equal to p, as shown in Fig. 2(a) fop = 28. As p
is increased from zero, periodic orbits begin to lose unincreases.emi, is @ nonincreasing function gp. This
stable directions in pairs. That is, feffixed but positive, implies thatei, — €. = 0asp — o, wheree, is a small
the Hénon periodic orbits can have five, three, or one uneonstant. Thus, unstable dimension variability may occur
stable directions, corresponding to four, two, or zero transat small coupling strength. To understand to what extent
versely unstable directions. Figures 1(a) and 1(b) showne encounters unstable dimension variability for periodic
the histograms of the two largest transverse Lyapunov exerbits of a given (large) period, we compute the fractions
ponents(A; = A7) for all periodic orbits of period 28 of all period-28 orbits which have four, two, and zero
(there are 16031 distinct ones) at= 0.4 ande = 0.8, transversely unstable directions as functionseof The
respectively. It can be seen that fer= 0.4, almost all results are plotted in Fig. 2(b) fob =< e =< 1.6. The
fraction of orbits with four unstable directions decreases
©e=04 linearly ase is increased from zero, as shown in the
700 1500 ——— inset of Fig. 2(b) for0 = € = 0.5. The linear behavior
coo for € = 0 can be understood from the histograms shown
200 10004 in Figs. 1(a)-1(d). For smalt, almost all period-28
3004 orbits have at least two transversely unstable directions
200 | 5001 [Fig. 1(a)] and, hence, the fraction of orbits with four
100+ transversely unstable directions is proportional to the area
ST e oToh 05040506 %52 5 oz o7 o6 of the histograms ofi3 and A} on the positive side. This
7‘11’ XZT 7»3T, >»4T area decreases approximately linearly both as the mean of
the histogram is translated towards the negative direction
@e=08 whene is increased and as the mean of the histogram is
far from zero. However, for larget as the means of each
histogram ofA3 and A+ gets close to zero, the fraction of
orbits with four transversely unstable directions decreases
sharply.
In summary, we presented theoretical justification and
computational evidence for the occurrence of unstable di-
016 010203040506 060402 6 02 02 mension variability in systems of coupled chaotic oscil-
KIT, 7~2T 7»3Ts 7»4T lators. We gave support to our conjecture that unstable
. dimension variability and, consequently, severe modeling
I(:tl)§3H1|st ogf’;x s_ofi’lraa;d kzj ’(i?di ;%)0 ']%:na:lz geglzgdl C(%) rt?i?g difficulties may arise as the coupling parameter is increased
of period 28 ate = 0.4 ande = 0.8, respectively; (c) and (d): from zero. We expect these results to be quite general
histograms ofA} and A} (A} = A}) for all period-28 orbits for ~ Since the number of unstable directions of any unstable pe-
e = 0.4 ande = 0.8, respectively. riodic orbits is determined by the local chaotic dynamics
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FIG. 2. (a) ForN = 5,a = 1.4, andb = 0.3 in EQ. (2), €min
versus the periogp. (b) Fractions of all period-28 orbits with
four, two, and zero transversely unstable directions vergos
0 < € < 1.6. Blowup in the range < e = 0.5 is shown in
the inset.
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pling scheme [Eq. (3)]. These conclusions also have deepg
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system of coupled ordinary differential equations and is

used so commonly in physics and engineering. It means
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tial differential equations (e.g., Navier-Stokes equation)
severe modeling difficulties arise as soon as one discretiz

the equation.
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