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Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations o
natural systems. We give theoretical argument that severe modeling difficulties may occur for high
dimensional chaotic systems in the sense that no model is able to produce reasonably long solutio
that are realized by nature. We make these ideas concrete by investigating systems of coupled cha
oscillators. They arise in many situations of physical and biological interests, and they also arise fro
discretization of nonlinear partial differential equations. [S0031-9007(99)09331-X]
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Coupled oscillators are relevant to a large variet
of physical and biological phenomena [1]. Arrays o
Josephson junctions [2] and coupled solid state lase
[3] are well known examples in physics. In biology
vital organs such as hearts, auditory, visual, and cent
nervous systems are complex networks of many sm
oscillators such as cells and neurons. Systems of coup
equations can also arise from spatial discretization
nonlinear partial differential equations such as the Navie
Stokes equation in fluid dynamics. The dynamics of th
fundamental elements, or the individual oscillators in th
network, can be either regular or complicated. Typically
the collective behavior of all the oscillators in the networ
can be extremely rich, ranging from steady state o
periodic oscillations to chaotic or turbulent motions
Systems of coupled oscillators have thus become
area of great interest for physicists, mathematicians, a
biologists.

Mathematically, a natural system ofN coupled oscil-
lators can be modeled using either continuous-time flow
or a lattice of coupled maps; the latter can be written a
follows:

xi
n11 ­ Fsxi

nd 1 e

NX
j­1

gijHsxj
nd, i ­ 1, . . . , N ,

(1)

wherei andj denote the lattice site,n is the discrete time,
xi is aD-dimensional vector,F andH areD-dimensional
vector functions, is a parameter characterizing the
coupling strength, andgij denotes the elements of the
coupling matrix. For such a system, of great importanc
is the synchronization state (manifold) defined byx1 ­
x2 ­ · · · ­ xN . If the elements of the coupling matrix
satisfy

P
j gij ­ 0, then the synchronization state is

a solution of Eq. (1). In this case, if the system i
initialized in the synchronization manifold, the state of th
system remains synchronized in the absence of rand
noise. The synchronization manifold is thus aninvariant
manifold for the system. It has dimensionD, while the
full dynamics lies in a manifold of dimensionN 3 D.
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There have been a number of recent papers addr
ing various issues on the stability of the synchronizati
manifold for coupled chaotic oscillators [4]. The purpos
of this Letter is to show that, by looking at the stability o
the synchronization manifold, one can establish to wh
extent a natural system of coupledchaoticoscillators can
be modeleddeterministicallyby Eq. (1). Our principal
result is that there are parameter regimes of positive m
sure for which Eq. (1) is not able to model determini
tically the natural system of coupled oscillators in th
sense that no trajectory of reasonable length [5] of Eq.
is close to any trajectory of the natural chaotic syste
of coupled oscillators that Eq. (1) is supposed to mod
More specifically, say one constructs aphysicalsystem of
coupled chaotic oscillators in a laboratory, and one m
sures a trajectory. Then no trajectory of reasonable len
from the mathematical model of thephysicalsystem, as
given by Eq. (1), is close to the measured physical t
jectory [6,7]. We stress that subtleties and difficulties
numerical calculations of chaotic systems are not the
sue here. The difficulty to model the natural process i
consequence of the inexactitude of the model given by
inevitable random disturbances and imperfections of
model such as various approximations used in the mod
building process and intrinsic dynamical properties of t
physical systems under consideration. We argue then
this Letter that, if the model is an approximation to th
natural process, as indeed it is, due to imperfections
the natural system, no model can produce trajectories
reasonable length that are close to trajectories of the
tual system of coupled oscillators. Moreover, we sho
that this obstruction to modeling occurs already for sma
but nonzero, coupling. Thus, one should exercise so
care when studying and interpreting results from mod
of coupled chaotic oscillators. Often, the only long-ter
meaningful results one can trust are the statistical inva
ants obtained by simulating a large number of trajector
of the model [7]. The implication is that in laboratory ex
periments involving coupled chaotic oscillators, it mig
only make sense to workdirectly with measured time
© 1999 The American Physical Society 4803
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series instead of a mathematical model similar to Eq. (
when attempting to understand the long-term behavior
the system, even if the model is built upon physical law
and is considered to be reasonable.

The property that allows us to make such strong sta
ments about the difficulties in modeling coupled chaot
oscillators is the notion ofunstable dimension variability
[8], a type of nonhyperbolicity believed to arise common
in high-dimensional chaotic systems [9]. Roughly, un
stable dimension variability means as the trajecto
evolves in the chaotic invariant set, it experiences
distinct number of unstable directions in different region
of the phase space. This is a situation violating a ba
requirement for hyperbolicity of dynamical systems [10
The fundamental reason for unstable dimension variabil
is the different number of unstable directions exhibited b
the unstable periodic orbits embedded in the chaotic s
The consequence of unstable dimension variability m
be severe: due to modeling error, no model trajectory
reasonable length is close to any trajectory of the actu
system [7–9,11,12].

To address modeling of coupled chaotic systems,
thus suffices to search for unstable dimension variab
ity in such systems, which can be qualitatively see
as follows. Consider the chaotic attractor (usually low
dimensional) in the synchronization manifold of dimen
sion D. Since the synchronization manifold is invarian
under the dynamics, the infinite number of unstable p
riodic orbits embedded in the attractor are the period
orbits of Eq. (1). Coupling of theN individual oscillators
immediately introducesN 2 1 additionalD-dimensional
eigenspaces to each one of these periodic orbits, subsp
which aretransverseto the synchronization manifold. In
these transverse subspaces, the unstable periodic orbi
the synchronization manifold can have a different numb
of unstable directions due to coupling. As a result, the
unstable periodic orbits in the space of dimensionND for
the coupled oscillator system have a different number
unstable directions, a situation characterizing unstable
mension variability.

To explicitly demonstrate unstable dimension variabilit
in models of coupled chaotic oscillators, we study a mod
system ofN coupled Hénon maps [13] on a circle (periodi
boundary condition) for which unstable periodic orbits i
the invariant manifold can be computed systematically:

hxi
n11, yi

n11j ­

(
a 2 sxi

nd2 1 byi
n

1
e

2
s2xi

n 2 xi11
n 2 xi11

n d, xi
n

)
, (2)

i ­ 1, . . . , N ,

where the coupling is assumed to be nearest-neighb
type, is the coupling strength, anda and b are the
local parameters in the Hénon map [denoted byFsxd].
Writing X ; hx1, x2, . . . , xN j, wherexi ; sxi , yid [ R2

andX [ R2N , we have for the synchronization manifold
4804
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x1 ­ x2 ­ · · · ­ xN ; x, which is invariant and a two-
dimensional plane. Unstable periodic orbits of the Hén
mapFsxd can be computed by the method of Ref. [14].

We now argue, quantitatively, that unstable dimensio
variability occurs when is nonzero. The starting point
is to study the stability of the Hénon unstable periodic o
bits in the 2N-dimensional space of coupled oscillators
which are embedded in the synchronization manifold. T
do this, we make use of the variational formalism deve
oped by Pecora and Carroll [15]. For Eq. (2), an infin
tesimal vectordX evolves in the tangent space accordin
to dXn11 ­ fIN ≠ DFsxd 2

e

2 g ≠ Hg ? dXn, whereIN

is theN 3 N identity matrix, “≠” denotes direct product,
DFsxd is the Jacobian matrix of the Hénon map, and th
elements of the matrixg are zero except for the follow-
ing: gii ­ 22 si ­ 1, . . . , Nd, gi,i21 ­ gi,i11 ­ 1 si ­
2, . . . , Nd, g12 ­ g1N ­ gN1 ­ gN ,N21 ­ 1, and H11 ­
1 is the only nonzero element in the matrixH. In order
to find the stability of each unstable periodic orbit embe
ded in the invariant Hénon plane, it is necessary to diag
nalize the matrixfIN ≠ DFsxd 2

e

2 g ≠ Hg. This can be
done by diagonalizing the matrixg, which does not in-
fluence the block-diagonal matrixIN ≠ DFsxd. Let gk

sk ­ 0, 1, . . . , N 2 1d be the eigenvalues of the matrixg,
whereg0 ­ 0 (because

P
j gij ­ 0). As a result of the di-

agonalization, we obtain the followingN variational equa-
tions in the plane:

dxk
n11 ­

"
DFsxd 2

e

2
gkH

#
? dxk

n

­

√
22x 2

e

2 gk b
1 0

!
? dxk

n , (3)

k ­ 0, 1, . . . , N 2 1 .

The first equation, corresponding tog0 ­ 0, gives the
stability of an orbit in the invariant Hénon plane. Th
remaining N 2 1 equations determine then the stabil
ties of the orbit in the2sN 2 1d-dimensionaltransverse
space, which is made up ofN 2 1 transverse planes. Let
sx1, x2, . . . , xpd be one of the periodic orbits of period-p
in the invariant Hénon plane, whose stability in theN 2 1
transverse planes is determined by the following produ
of p matrices:

pY
i­1

√
22xi 2

e

2 gk b
1 0

!
, k ­ 1, 2, . . . , N 2 1 . (4)

In the transverse planes, for typical eigenvaluesgk fi 0,
a finite can cause a shift in the transverse eigenvalu
of the Hénon unstable periodic orbits. Consider all th
unstable periodic orbits of period-p ( p large) in the Hénon
chaotic attractor. By definition of the Lyapunov exponen
the probability distribution of the unstable eigenvalues
these Hénon orbits is approximately a Gaussian centere
elp and it has a finite width, wherel . 0 is the Lyapunov
exponent of the Hénon chaotic attractor [16]. Thus, the
can be a set of periodic orbits whose eigenvalues are lar
than but close to unity. As one examines the stability
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these orbits in theN 2 1 transverse planes, fore * 0, it is
likely that the eigenvalues in some of the transverse plan
cross the unit circle inward becoming less than 1, leading
the loss of a few unstable directions, amongN 2 1 of them
whene fi 0. Unstable dimension variability thus occurs
for e * 0 due to the existence of Hénon orbits whos
eigenvalues are close to 1 if one requires small coupli
strength.

We have undertaken a series of eigenvalue compu
tions to demonstrate unstable dimension variability in th
model given by Eq. (2) forN ­ 5 ( just for an illustra-
tive purpose). The full dynamics is hence inR10, but the
invariant synchronization plane isR2. We first compute
all the periodic orbits of period up to 28 for the Hénon
chaotic attractor ata ­ 1.4 and b ­ 0.3 in the synchro-
nization plane of Eq. (2). The Lyapunov spectra in eac
transverse plane for all the Hénon unstable periodic orb
up top ­ 28 are then computed for0 # e # 1.6. Since
N ­ 5, each periodic orbit has five degenerate unstable
rections with equal eigenvalues whene ­ 0. The matrix
g has the following set of eigenvalues forN ­ 5: g0 ­ 0,
g1 ­ g2 ­ 21.382, andg3 ­ g4 ­ 23.618. Thus, as
is increased from zero, periodic orbits begin to lose u
stable directions in pairs. That is, forfixed but positive,
the Hénon periodic orbits can have five, three, or one u
stable directions, corresponding to four, two, or zero tran
versely unstable directions. Figures 1(a) and 1(b) sho
the histograms of the two largest transverse Lyapunov e
ponentssl1

T ­ l
2
T d for all periodic orbits of period 28

(there are 16 031 distinct ones) ate ­ 0.4 and e ­ 0.8,
respectively. It can be seen that fore ­ 0.4, almost all

FIG. 1. ForN ­ 5, a ­ 1.4, andb ­ 0.3 in Eq. (2). (a) and
(b): Histograms ofl1

T andl
2
T sl1

T ­ l
2
T d for all periodic orbits

of period 28 ate ­ 0.4 ande ­ 0.8, respectively; (c) and (d):
histograms ofl3

T andl
4
T sl3

T ­ l
4
T d for all period-28 orbits for

e ­ 0.4 ande ­ 0.8, respectively.
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orbits of period 28 have at least two transversely unsta
directions; while fore ­ 0.8, a small fraction of these or
bits are transversely stable, i.e., they have no transver
unstable directions, and, hence, these orbits have only
unstable direction, the one in the invariant manifold. P
riodic orbits can also have two or four transversely u
stable directions. This is shown in Figs. 1(c) and 1(
where the histograms of the third and the fourth larg
transverse Lyapunov exponentssl3

T ­ l
4
T d of all period-

28 orbits are shown fore ­ 0.4 ande ­ 0.8, respectively.
We see that fore ­ 0.4, a small but finite fraction of orbits
have negative values ofl

3
T andl

4
T , indicating that these or-

bits can have at most two transversely unstable directio
For e ­ 0.8, a larger fraction of the period-28 orbits hav
this behavior. These results thus clearly indicate unsta
dimension variability in model Eq. (2) fore fi 0.

How large should the coupling parameter be for unsta
dimension variability to occur? To address this questi
we compute, for a given periodp, emin, the minimum value
of the coupling for which unstable dimension variabili
occurs for all periodic orbits of period less than or
equal to p, as shown in Fig. 2(a) forp # 28. As p
increases,emin is a nonincreasing function ofp. This
implies thatemin ! ec * 0 asp ! `, whereec is a small
constant. Thus, unstable dimension variability may oc
at small coupling strength. To understand to what ext
one encounters unstable dimension variability for perio
orbits of a given (large) period, we compute the fractio
of all period-28 orbits which have four, two, and ze
transversely unstable directions as functions of. The
results are plotted in Fig. 2(b) for0 # e # 1.6. The
fraction of orbits with four unstable directions decreas
linearly as is increased from zero, as shown in th
inset of Fig. 2(b) for0 # e # 0.5. The linear behavior
for e * 0 can be understood from the histograms sho
in Figs. 1(a)–1(d). For small , almost all period-28
orbits have at least two transversely unstable directi
[Fig. 1(a)] and, hence, the fraction of orbits with fou
transversely unstable directions is proportional to the a
of the histograms ofl3

T andl
4
T on the positive side. This

area decreases approximately linearly both as the mea
the histogram is translated towards the negative direc
when is increased and as the mean of the histogram
far from zero. However, for larger, as the means of eac
histogram ofl3

T andl
4
T gets close to zero, the fraction o

orbits with four transversely unstable directions decrea
sharply.

In summary, we presented theoretical justification a
computational evidence for the occurrence of unstable
mension variability in systems of coupled chaotic osc
lators. We gave support to our conjecture that unsta
dimension variability and, consequently, severe model
difficulties may arise as the coupling parameter is increa
from zero. We expect these results to be quite gen
since the number of unstable directions of any unstable
riodic orbits is determined by the local chaotic dynami
4805
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FIG. 2. (a) ForN ­ 5, a ­ 1.4, andb ­ 0.3 in Eq. (2),emin
versus the periodp. (b) Fractions of all period-28 orbits with
four, two, and zero transversely unstable directions versus� for
0 , e , 1.6. Blowup in the range0 , e # 0.5 is shown in
the inset.

and the coupling strength, regardless of the specific co
pling scheme [Eq. (3)]. These conclusions also have de
consequences for the integration of partial differentia
equations using discretization, a procedure that yields
system of coupled ordinary differential equations and
used so commonly in physics and engineering. It mea
that even if the laws of physics are exact in terms of pa
tial differential equations (e.g., Navier-Stokes equation
severe modeling difficulties arise as soon as one discretiz
the equation.

Y. C. L. was supported by AFOSR under Gran
No. F49620-98-1-0400 and by NSF under Gran
No. PHY-9722156. C. G. was supported by DOE
(Mathematical, Information, and Computation Science
Division, High Performance Computing and Communica
tion Program) and by the CNPq/NSF-INT Program.

[1] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. E
50, 1874 (1994), and references therein.

[2] See, for example, P. Hadley, M. R. Beasley, an
K. Wiesenfeld, Phys. Rev. B38, 8712 (1988); S. Watan-
abe and S. H. Strogatz, Physica (Amsterdam)74D, 197
(1994).

[3] R. Roy and K. S. Thornburg, Jr., Phys. Rev. Lett.72, 2009
(1994).
4806
u-
ep
l
a

is
ns
r-
),
es

t
t

s
-

d

[4] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Re
Lett. 73, 3528 (1994); J. F. Heagy, L. M. Pecora, and T. L
Carroll, Phys. Rev. Lett.74, 4185 (1995).

[5] Typically, in low-dimensional chaotic systems, one ex
pectst, the length of valid trajectories from the model, to
scale with the model uncertainty� ast , e21y2. Heret

can be taken as the reasonable length of any valid mo
trajectory [C. Grebogi, S. M. Hammel, and J. A. Yorke
Bull. Am. Math. Soc.19, 465 (1988); C. Grebogi, S. M.
Hammel, J. A. Yorke, and T. Sauer, Phys. Rev. Lett.65,
1527 (1990)].

[6] A necessary requirement for a model is robustness und
small perturbations. For chaotic systems, the outcome
the system is sensitively dependent on the initial cond
tions. In view of this, we consider a model to be robus
if the sets of all possible outcomes of the two slightly dif
ferent versions of the model, sayA and B, are very simi-
lar. Successful modeling would require that the set of a
possible outcomes from modelA agrees closely with the
set of all possible outcomes from modelB. Difficulties
appear when there are trajectories ofA that do not closely
follow any trajectory of B (or vice versa) for all but
short periods of time, because, if trajectories from th
closely related models do not agree, either model
presumably useless in representing thephysical system.
The hierarchy of difficulty levels (L. Poon, C. Grebogi
T. Sauer, and J. A. Yorke, report) that can obstruct mod
ing shadowability and hence impede the ability to mod
certain physical processes are as follows: (i) mild: simp
chaos or sensitive dependence on initial condition
(ii) moderate: nonhyperbolicity due to quadratic tangen
cies of stable and unstable manifolds, and (iii) sever
unstable dimension variability, as in the system of couple
chaotic oscillators discussed in this Letter.

[7] Y.-C. Lai, C. Grebogi, and J. Kurths, Phys. Rev. E59,
2907 (1999).

[8] R. Abraham and S. Smale, Proc. Symp. Pure Math.14, 5
(1970).

[9] S. P. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Phy
Rev. Lett. 73, 1927 (1994); S. P. Dawson, Phys. Rev
Lett. 76, 4348 (1996); E. J. Kostelich, I. Kan, C. Grebogi
E. Ott, and J. A. Yorke, Physica (Amsterdam)109D, 81
(1997).

[10] D. V. Anosov, Proc. Steklov Inst. Math.90, 1 (1967);
R. Bowen, J. Differ. Eq.18, 333 (1975).

[11] T. Sauer, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.79,
59 (1997).

[12] Unstable dimension variability is reflected and quantifie
by finite-time Lyapunov exponents fluctuating about zer
[9,11]. It is possible to show [11] that model trajectorie
remain close to trajectories of the natural process only
to time t , d22mys2

, whered is the modeling error,m
and s2 are the mean and variance, respectively, of th
time-one Lyapunov exponent closest to zero. Thus, t
model solutions are not expected to reflect trajectories
the natural system for times longer thant.

[13] M. Hénon, Commun. Math. Phys.50, 69 (1976).
[14] O. Biham and W. Wenzel, Phys. Rev. Lett.63, 819 (1989).
[15] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.80, 2109

(1998).
[16] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A37, 1711

(1988).


