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Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors
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The natural measure of a chaotic set in a phase-space region can be related to the dynamical
properties of the unstable periodic orbits embedded in that set. This result has been proven to be
valid for hyperbolic chaotic systems. We test the goodness of such a periodic-orbit characterization of
the natural measure for nonhyperbolic chaotic systems by comparing the natural measure of a typical
chaotic trajectory with that computed from unstable periodic orbits. Our results suggest that the unstable
periodic-orbit formulation of the natural measure is typically valid for nonhyperbolic chaotic systems.
[S0031-9007(97)03650-8]

PACS numbers: 05.45.+b
i
y

,
e

i

h

t

-
t
s

th
e

i-
tion
are

let
a
s

ns
6].
in
ts.
lic
he

res
nd
nt
and
es.
in

ted
s

a
ic
ed
dic
[8].
re
f

tor.
in

ure
In studying chaotic systems, one is often interested
long term statistics such as averages, Lyapunov expone
dimensions, and other invariants of the probability dens
or the measure. Both these statistical quantities are ph
cally meaningful only when the measure being consider
is the one generated by a typical trajectory in phase spa
This measure is called the natural measure [1] and it is
variant under the evolution of the dynamics. Therefore
is of paramount physical importance to be able to und
stand and to be able to characterize the natural measure
in terms of fundamental dynamical quantities. And there
nothing more fundamental than to express the natural m
sure in terms of the periodic orbits embedded in a chao
attractor.

A key contribution along these lines was made
Ref. [3] in which the authors obtained an expression f
the invariant natural measure in terms of the magnitu
of the eigenvalues of the unstable periodic orbits embedd
in the chaotic attractor. They proved [3] the correctne
of their expression but only for the special case of
hyperbolic dynamics [4]. The validity of their results
for physical, which are typically nonhyperbolic, situation
remained, however, only a conjecture. The purpose of t
Letter is to provide strong evidence for the applicability o
the results of Grebogiet al. [3] to nonhyperbolic chaotic
systems and, hence, validating their conjecture.

The long-time probability density or the natural measu
generated by typical trajectories of chaotic dynamical sy
tems is generally highly singular. A trajectory originate
from a random initial condition in the basin of attraction o
a chaotic attractor visits different parts of the attractor wi
drastically different probabilities. Call regions with high
probabilities “hot” spots and regions with low probabili
ties “cold” spots. Such hot and cold spots in the attrac
can be interwoven on arbitrarily fine scales. In this sen
chaotic attractors are said to possess a multifractal str
ture, which is a property of the natural measure. To obta
the natural measure, one covers the chaotic attractor w
a grid of cubes and examines the frequency with which
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typical trajectory visits these cubes in the limit that bo
the length of the trajectory goes to infinity and the siz
of the grid goes to zero [5]. Except for an initial cond
tion set of Lebesgue measure zero in the basin of attrac
of the chaotic attractor, these frequencies in the cubes
the same for different choices of the initial conditionx0,
and they are called the natural measure. Specifically,
fsx0, T , eid be the amount of time that a trajectory from
random initial conditionx0 in the basin of attraction spend
in the ith covering cubeCi of edge lengthei in a timeT .
The natural measure of the attractor in the cubeCi is

mi ­ lim
T!`

fsx0, T , eid
T

. (1)

The spectrum of an infinite number of fractal dimensio
quantifies the singular behavior of the natural measure [

Hyperbolic chaotic attractors have embedded with
themselves an infinite number of unstable periodic orbi
The same thing we expect to occur for nonhyperbo
chaotic attractors arising from physical processes [7]. T
unstable periodic orbits areatypical in the sense that they
form a Lebesgue measure zero set. Invariant measu
produced by unstable periodic orbits are thus atypical, a
there are an infinite number of such atypical invaria
measures embedded in a chaotic attractor. The hot
cold spots are a reflection of these atypical measur
The natural measure, on the other hand, is typical
the sense that it is generated by a trajectory origina
from any one of the randomly chosen initial condition
in the basin of attraction. A typical trajectory visits
fixed neighborhood of any one of the different period
orbits from time to time. Thus, chaos can be consider
as being organized with respect to the unstable perio
orbits since these orbits support the natural measure
An interesting question is then how the natural measu
can be quantified in terms of the infinite number o
atypical invariant measures embedded in the attrac
This question was systematically addressed in Ref. [3],
which a formula was obtained relating the natural meas
© 1997 The American Physical Society 649
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of a hyperbolic chaotic set in phase space to the expan
eigenvalues of all the periodic orbits enclosed in the s
Specifically, consider ad-dimensional mapMsxd. Let xip

be the ith fixed point of thep-times iterated map, i.e.
Mpsxipd ­ xip. Thus eachxip is on a periodic orbit
whose period is eitherp or a factor ofp. The natural
measure of a chaotic attractor inCi is given by mi ­
limp!` mispd, where

mispd ­
X

xip[Ci

1
L1sxipd

. (2)

In Eq. (2), L1sxipd is the magnitude of the expandin
eigenvalue of the Jacobian matrixDMpsxipd, and the
summation is taken over all fixed points ofMpsxd in Ci.
Equation (2) is theoretically significant because it p
vides a fundamental link between the natural measure
various atypical invariant measures embedded in a cha
attractor.

To provide strong evidence for the applicability
Eq. (2) to nonhyperbolic chaotic systems, we consi
two-dimensional invertible maps, which in principle ca
be obtained from a system of differential equations throu
a surface of section. We cover the chaotic attractor w
a fine grid of boxes and compute the natural measuremi

in each nonempty boxCi according to Eq. (1). We then
computemispd from all the fixed points of thep-times
iterated map contained in each boxCi according to Eq. (2).

Let Dmspd ;
qPN

i­1fmispd 2 mig2yN, whereN is the
number of boxesCi with nonzero natural measure. W
find that Dmspd decreases exponentially as the periodp
increases, thereby validating Eq. (2).

To obtain Eq. (2) [3], we first cover the chaotic attract
with a grid of partitioning boxes, each being confined
segments of the stable and unstable manifolds. If the bo
are small compared with the size of the phase-space re
in which the chaotic set lies, each box can be regar
as being rectangular, as shown in Fig. 1(a), where
horizontal and vertical sides are segments of the stable
unstable manifolds, respectively. Now imagine that
choose a large number of initial conditions according
the natural measure. The natural measure contained in
boxCi is the fraction of trajectories that come back toCi in
the limit where the number of iterationsn ! `. Let x0 be
an initial condition in the boxCi in Fig. 1(a). Because o
recurrence or ergodicity, the trajectory fromx0 comes back
to some pointxp in Ci, say, afterp iterations, as shown in
Fig. 1(a). Letab be the horizontal line segment throug
x0 ending at the two unstable-manifold segments, andc0d0

be the vertical line segment throughxp ending at the two
stable-manifold segments, as shown in Fig. 1(b). Si
ab is parallel to the stable-manifold segments and, si
x0 maps toxp after p iterations, the image ofab under
thep-times iterated mapMpsxd is a shorter horizontal line
segmenta0b0 straddlingxp . Similarly, thepth preimage
of c0d0 is a shorter vertical line segment straddlingx0.
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FIG. 1. (a) An initial conditionx0 in the cellCi and the point
xp that comes back toCi after p iterations. (b) The rectangle
efgh maps to the rectanglee0f 0g0h0 after p iterations. There
must be then a fixed pointxip of the p times iterated map
in Ci .

Now construct two rectanglesefgh ande0f 0g0h0 with side
lengthssab, cdd andsa0b0, c0d0d, respectively, as shown in
Fig. 1(b). We see that the rectangleefgh maps to the
rectanglee0f 0g0h0 underMpsxd. Consequently, there mus
be an unstable fixed pointxip of Mpsxd in the boxCi.
Assuming thatc0d0 has a lengthe, we haveeyL1sxipd for
the length ofcd, whereL1sxipd is the unstable (expand-
ing) eigenvalue of the fixed pointxip. Since the natural
measure is uniform along the unstable direction, we s
that associated with the unstable fixed pointxip , the
fraction of trajectories that come back toCi in p iterations
is feyL1sxipdgye ­ 1yL1sxipd. Taking into consideration
all the unstable fixed points contained inCi and taking the
limit p ! `, we obtain Eq. (2).

The above argument applies to situations where a go
partition of the phase space exists such that the sho
line segmentsa0b0 and cd in Fig. 1(b) are completely
contained in the boxCi. For hyperbolic systems, such a
partition exists, which is the Markov partition [9]. There
fore, Eq. (2) is rigorously valid for hyperbolic dynamica
systems [3]. The argument becomes problematic for no
hyperbolic systems. A grid of boxes in which each bo
Ci looks like the box in Fig. 1 cannot be constructed b
cause of the set of an infinite number of tangency poin
between the stable and unstable manifolds [4]. Therefo
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the applicability of Eq. (2) to nonhyperbolic systems
only a conjecture.

We have undertaken a series of numerical experime
to test the goodness of the conjecture given by Eq.
We choose the Hénon map,sx, yd ! sa 2 x2 1 by, xd.
It is one of the very few model systems for which the
is a numerical algorithm to compute, in principle, all u
stable periodic orbits of arbitrarily high periods [10]. W
studya ­ 1.4 andb ­ 0.3, a parameter setting for which
it apparently possesses a chaotic attractor. The attra
is also apparently nonhyperbolic because a rigorous c
putation of the stable and unstable manifolds [11] poi
towards the existence of an infinite number of tangen
points of these manifolds on the attractor. The perio
orbits up to period 31 are computed using the procedur
Ref. [10]. To compute the natural measure of the attrac
in different phase-space regions, we use a128 3 128 grid
to cover the region22 # sx, yd # 2 and then use a trajec
tory of length107 (after disregarding104 initial iterations)
from a randomly chosen initial condition. There are 9
nonempty boxes to which the trajectory visits. The qua
tity mi in Eq. (2) in each nonempty boxCi is approxi-
mately the fraction of time that the trajectory visits th
box. Next, we compute, in each nonempty box, all t
fixed pointsxip of thep-times iterated map and their ass
ciated expanding eigenvaluesL1sxipd to obtain the quan-
tity mispd in Eq. (2). Figure 2(a) shows lnDmspd versus
p for 6 # p # 31. We observe the following scaling
relation:

Dmspd , exps2apd , (3)

wherea ø 0.14 is the scaling exponent. Thus, we see th
the quantitative characterization of the natural measure
the chaotic attractor by unstable periodic orbits becom
exponentially accurate as the periodp increases. Asymp-
totically, we haveDmspd ! 0, indicating the applicability
of Eq. (2) to nonhyperbolic chaotic sets. It is interesti
to note that the somewhat large fluctuations in Fig. 2
are partly due to the fact that there are fewer periodic
bits of lower periodp, since their number increases withp
exponentially, where the exponential rate is the topolo
cal entropy. Figure 2(b) shows the total period-p natu-
ral measuremSspd ;

P
Ci

mispd versusp. It can be seen
that mSspd approaches unity rapidly asp increases. The
dashed line in Fig. 2(a) is lnDmspd versusp but the quan-
tity mispd is rescaled bymSspd. The rescaled plot has
similar slope as the unscaled one (the solid line), but
fluctuations are smaller. We find that Eq. (3) appears
hold regardless of the fineness of the grid used to co
the attractor. For instance, almost identical plots as
Fig. 2(a) are obtained when grids64 3 64 and256 3 256
are used. Thus, we expect Eq. (2) to be valid for a
phase-space region containing part of the chaotic se
nonhyperbolic systems.

To understand theexponentialscaling law Eq. (3), we
utilize a simple one-dimensional analyzable model: t
is
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FIG. 2. For the Hénon chaotic attractor, (a) lnDmspd versus
p. We have, approximately,Dmspd , e20.14p. (b) The total
period-p natural measuremSspd computed from Eq. (2) using
all the period-p orbits. The total measure approaches to unit
asp increases. The dashed line in (a) is lnDmspd versusp but
the quantitymispd is rescaledmSspd.

doubling transformationxn11 ­ 2xn mods1d. All periodic
orbits of periodp of this map have the same eigenvalue2p .
Divide the unit interval intoN bins so that the size of each
bin is e ­ 1yN . The natural measure contained in eac
bin ise because it is uniform in the unit interval. There ar
s2p 6 1dyN fixed points of thepth-fold map in each bin
so thatmispd ­ fs2p 6 1dyNgy2p ­ es1 6 22pd. Thus,
we haveDmspd ­ jmispd 2 ej , 22p ­ exps2p ln 2d.
Notice that the scaling exponent for the doubling tran
formation is ln2, which is the topological entropy. This
is due to the fact that the natural measure is uniform a
all periodic-orbit points have the same eigenvalue. F
more complicated nonhyperbolic systems, such as the o
in our numerical example, the natural measure is high
nonuniform and the positive Lyapunov exponents of all th
period-p orbits are not the same but obeys some probab
ity distribution with width proportional to

p
p [12]. Thus,

the scaling exponent in Eq. (3) is less than the topolog
cal entropy. We have also checked the scaling Eq. (
for another hyperbolic map, the Kaplan-Yorke map [13
651
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and have found that the exponent is approximately t
topological entropy. It is thus interesting to note that non
hyperbolicity makes the scaling exponent deviate from th
topological entropy, but nonetheless the scaling law is s
exponential.

In summary, we have presented evidence for the valid
of the theory that relates the natural measure to unsta
periodic orbits for nonhyperbolic chaotic sets. Our con
clusion is that such a theory, while previously shown to b
valid for hyperbolic systems [3], is apparently correct fo
nonhyperbolic chaotic systems. Unstable periodic orb
play a pivotal role in determining the dynamics on chaot
sets. These orbits are the fundamental building blocks
chaotic sets since they support the natural measure,
parently even for nonhyperbolic sets as indicated by o
numerical investigations herewith. Dynamical invarian
such as the Lyapunov exponents, topological entropy, a
even the spectrum of fractal dimensions of a chaotic s
hyperbolic or not, can now then be determined based on
natural measures expressed in terms of the unstable p
odic orbits embedded in the set. The periodic-orbit theo
is conceptually appealing and is potentially useful for fu
ther theoretical or even practical developments [14].

This work was supported by AFOSR under Gran
No. F49620-96-1-0066, by NSF under Grant No. DMS
962659, and by the University of Kansas. This wor
was also supported by the Department of Energy (Math
matical, Information and Computational Sciences Div
sion, High Performance Computing and Communicatio
Program).

*Permanent address: Institute for Plasma Research, D
partment of Mathematics, Institute for Physical Scienc
and Technology, The University of Maryland, College
Park, MD 20742.

[1] R. Bowen and D. Ruelle, Invent. Math.79, 181 (1975).
[2] In fact, physicists in statistical mechanics and ergod

theory expend great efforts in the characterization
invariant measures.

[3] C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A37, 1711
(1988).

[4] The dynamics is hyperbolic on a chaotic attractor if a
each point of the trajectory the phase space can be s
into expanding and contracting subspaces and the an
between them is bounded away from zero. Furthermo
the expanding subspace evolves into the expanding o
along the trajectory and the same is true for the co
652
e
-
e
ill

ty
le
-
e
r
ts
c
of
p-

ur
s
nd
t,

he
eri-
y
-

t
-

e-
-
n

e-
e

c
f

t
lit
le

e,
ne
-

tracting subspace. Otherwise the set is nonhyperboli
In general, nonhyperbolicity is a complicating feature be
cause it can cause fundamental difficulties in the study o
the chaotic systems, a known one being the shadowabili
of numerical trajectories by true trajectories [C. Grebogi
S. M. Hammel, and J. A. Yorke, J. Complexity3, 136
(1987); Bull. Am. Math. Soc.19, 465 (1988); C. Grebogi,
S. M. Hammel, J. A. Yorke, and T. Sauer, Phys. Rev. Lett
65, 1527 (1990); S. Dawson, C. Grebogi, T. Sauer, an
J. A. Yorke, Phys. Rev. Lett.73, 1927 (1994)].

[5] J. D. Farmer, E. Ott, and J. A. Yorke, Physica (Amster
dam)7D, 153 (1983).

[6] P. Grassberger, Phys. Lett.97A, 227 (1983); H. G. E.
Hentschel and I. Procaccia, Physica (Amsterdam)8D, 435
(1983); P. Grassberger, Phys. Lett.107A, 101 (1985);
T. C. Halsey, M. J. Jensen, L. P. Kadanoff, I. Procaccia
and B. I. Shraiman, Phys. Rev. A33, 1141 (1986).

[7] As we mentioned before, most chaotic sets encountered
physical systems are, however, nonhyperbolic. Nonhype
bolicity also occurs commonly in chaotic saddles [Y.-C.
Lai, C. Grebogi, J. A. Yorke, and I. Kan, Nonlinearity
6, 779 (1993)] that physically leads to transient chao
[T. Tél, in Directions in Chaos,edited by B.-L. Hao
(World Scientific, Singapore, 1990), Vol. 3, pp. 149–211].

[8] G. H. Gunaratne and I. Procaccia, Phys. Rev. Lett.59,
1377 (1987); D. Auerbach, P. Cvitanovic´, J.-P. Eckmann,
G. H. Gunaratne, and I. Procaccia, Phys. Rev. Lett.58,
2387 (1987); D. Auerbach, B. O’Shaughnessy, and I. Pro
caccia, Phys. Rev. A37, 2234 (1988); D. Auerbach, Phys.
Rev. A 41, 6692 (1990).

[9] R. Bowen, On Axiom A Diffeomorphisms,Proceedings
of the CBMS Regional Conference Series in Mathemat
ics (American Mathematical Society, Providence, 1978)
Vol. 35.

[10] O. Biham and W. Wenzel, Phys. Rev. Lett.63, 819 (1989);
Phys. Rev. A42, 4639 (1990).

[11] Z. You, E. J. Kostelich, and J. A. Yorke, Int. J. Bifurcation
Chaos1, 605 (1991).

[12] R. S. Ellis, Entropy, Large Deviations and Statistical
Mechanics(Springer-Verlag, New York, 1985).

[13] J. L. Kaplan and J. A. Yorke, inFunctional Differential
Equations and Approximations of Fixed Points,edited
by H.-O. Peitgen and H.-O. Walter, Lecture Notes in
Mathematics Vol. 730 (Springer-Verlag, Berlin, 1979),
p. 204.

[14] D. P. Lathrop and E. J. Kostelich, Phys. Rev. A40, 4028
(1989); D. Pierson and F. Moss, Phys. Rev. Lett.75, 2124
(1995); D. Christini and J. J. Collins, Phys. Rev. Lett.
75, 2782 (1995); X. Pei and F. Moss, Nature (London)
379, 619 (1996); P. So, E. Ott, S. J. Schiff, D. T. Kaplan,
T. Sauer, and C. Grebogi, Phys. Rev. Lett.76, 4705
(1996).


