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Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors
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The natural measure of a chaotic set in a phase-space region can be related to the dynamical
properties of the unstable periodic orbits embedded in that set. This result has been proven to be
valid for hyperbolic chaotic systems. We test the goodness of such a periodic-orbit characterization of
the natural measure for nonhyperbolic chaotic systems by comparing the natural measure of a typical
chaotic trajectory with that computed from unstable periodic orbits. Our results suggest that the unstable
periodic-orbit formulation of the natural measure is typically valid for nonhyperbolic chaotic systems.
[S0031-9007(97)03650-8]

PACS numbers: 05.45.+b

In studying chaotic systems, one is often interested irtypical trajectory visits these cubes in the limit that both
long term statistics such as averages, Lyapunov exponentbe length of the trajectory goes to infinity and the size
dimensions, and other invariants of the probability densityof the grid goes to zero [5]. Except for an initial condi-
or the measure. Both these statistical quantities are phydiion set of Lebesgue measure zero in the basin of attraction
cally meaningful only when the measure being consideredf the chaotic attractor, these frequencies in the cubes are
is the one generated by a typical trajectory in phase spacthe same for different choices of the initial conditigg,

This measure is called the natural measure [1] and it is inand they are called the natural measure. Specifically, let
variant under the evolution of the dynamics. Therefore, itf (xo, T, €;) be the amount of time that a trajectory from a
is of paramount physical importance to be able to underrandom initial conditiorx in the basin of attraction spends
stand and to be able to characterize the natural measure [] theith covering cubeC; of edge lengthe; in atimeT.

in terms of fundamental dynamical quantities. And there isThe natural measure of the attractor in the cabés

nothing more fundamental than to express the natural mea- F(x0,T, €)
sure in terms of the periodic orbits embedded in a chaotic mi = lim L2020 B ()
attractor. = r

A key contribution along these lines was made inThe spectrum of an infinite number of fractal dimensions
Ref. [3] in which the authors obtained an expression fomuantifies the singular behavior of the natural measure [6].
the invariant natural measure in terms of the magnitude Hyperbolic chaotic attractors have embedded within
of the eigenvalues of the unstable periodic orbits embeddetthemselves an infinite number of unstable periodic orbits.
in the chaotic attractor. They proved [3] the correctnes§he same thing we expect to occur for nonhyperbolic
of their expression but only for the special case of achaotic attractors arising from physical processes [7]. The
hyperbolic dynamics [4]. The validity of their results unstable periodic orbits amypicalin the sense that they
for physical, which are typically nonhyperbolic, situationsform a Lebesgue measure zero set. Invariant measures
remained, however, only a conjecture. The purpose of thiproduced by unstable periodic orbits are thus atypical, and
Letter is to provide strong evidence for the applicability ofthere are an infinite number of such atypical invariant
the results of Greboget al. [3] to nonhyperbolic chaotic measures embedded in a chaotic attractor. The hot and
systems and, hence, validating their conjecture. cold spots are a reflection of these atypical measures.

The long-time probability density or the natural measureThe natural measure, on the other hand, is typical in
generated by typical trajectories of chaotic dynamical systhe sense that it is generated by a trajectory originated
tems is generally highly singular. A trajectory originatedfrom any one of the randomly chosen initial conditions
from a random initial condition in the basin of attraction of in the basin of attraction. A typical trajectory visits a
a chaotic attractor visits different parts of the attractor withfixed neighborhood of any one of the different periodic
drastically different probabilities. Call regions with high orbits from time to time. Thus, chaos can be considered
probabilities “hot” spots and regions with low probabili- as being organized with respect to the unstable periodic
ties “cold” spots. Such hot and cold spots in the attractoorbits since these orbits support the natural measure [8].
can be interwoven on arbitrarily fine scales. In this senseAn interesting question is then how the natural measure
chaotic attractors are said to possess a multifractal strucan be quantified in terms of the infinite number of
ture, which is a property of the natural measure. To obtairatypical invariant measures embedded in the attractor.
the natural measure, one covers the chaotic attractor withhis question was systematically addressed in Ref. [3], in
a grid of cubes and examines the frequency with which avhich a formula was obtained relating the natural measure
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of a hyperbolic chaotic set in phase space to the expanding (@
eigenvalues of all the periodic orbits enclosed in the set. u
Specifically, consider d-dimensional mapi(x). Letx;,
be theith fixed point of thep-times iterated map, i.e.,
M?”(x;,) = X;,. Thus eachx;, is on a periodic orbit
whose period is eithep or a factor ofp. The natural X
measure of a chaotic attractor @; is given by u; =
lim,—. ui(p), where

cell Ci

wip = Y —! @

x;, EC; Ll(xip) ’ S

In Eq. (2), Li(x;,) is the magnitude of the expanding

eigenvalue of the Jacobian matrBM?(x;,), and the (b)
summation is taken over all fixed points M” (x) in C;. u
Equation (2) is theoretically significant because it pro- cell C
vides a fundamental link between the natural measure and '
various atypical invariant measures embedded in a chaotic
attractor.

To provide strong evidence for the applicability of
Eqg. (2) to nonhyperbolic chaotic systems, we consider
two-dimensional invertible maps, which in principle can
be obtained from a system of differential equations through
a surface of section. We cover the chaotic attractor with
a fine grid of boxes and compute the natural meagure

in each nonempty bok;; according to Eq. (1). We then FIG. 1. (a) An initial conditionx, in the cellC; and the point
compute u;(p) from all the fixed points of thep-times x, that comes back t@; after p iterations. (b) The recFangIe
iterated map contained in each b6xaccording to Eq. (2). ../, maps to the rectangle'f'¢'s’ after p iterations. There
Let Au(p) = \/ §V=1[Mi(l7) — wi?/N, whereN is the ~ must be then a fixed point;, of the p times iterated map
number of boxe<; with nonzero natural measure. We " Ci.
find that Au(p) decreases exponentially as the pernod
increases, thereby validating Eq. (2). Now construct two rectangles‘gh ande’ f'g'h’ with side

To obtain Eq. (2) [3], we first cover the chaotic attractorlengths(ab, cd) and(a’b’, ¢'d’), respectively, as shown in
with a grid of partitioning boxes, each being confined byFig. 1(b). We see that the rectangl¢gh maps to the
segments of the stable and unstable manifolds. If the boxesctangle’ f/'g’h’ underM? (x). Consequently, there must
are small compared with the size of the phase-space regidre an unstable fixed point;, of M?(x) in the boxC;.
in which the chaotic set lies, each box can be regardeAssuming that’d’ has a lengthe, we havee/L;(x;,) for
as being rectangular, as shown in Fig. 1(a), where théhe length ofcd, whereL,(x;,) is the unstable (expand-
horizontal and vertical sides are segments of the stable andg) eigenvalue of the fixed point;,. Since the natural
unstable manifolds, respectively. Now imagine that wemeasure is uniform along the unstable direction, we see
choose a large number of initial conditions according tathat associated with the unstable fixed poiw}, the
the natural measure. The natural measure contained in tfiection of trajectories that come backd® in p iterations
box C; is the fraction of trajectories that come backton  is[e/L(x;,)]/e = 1/Li(x;,). Taking into consideration
the limit where the number of iteratioms— «. Letxybe  all the unstable fixed points containeddn and taking the
an initial condition in the boxC; in Fig. 1(a). Because of limit p — o, we obtain Eq. (2).
recurrence or ergodicity, the trajectory froipcomes back The above argument applies to situations where a good
to some poink, in C;, say, afteip iterations, as shown in partition of the phase space exists such that the shorter
Fig. 1(a). Letab be the horizontal line segment through line segmentsa’s’ and ¢d in Fig. 1(b) are completely
x( ending at the two unstable-manifold segments,@dtl  contained in the boxC;. For hyperbolic systems, such a
be the vertical line segment through ending at the two  partition exists, which is the Markov partition [9]. There-
stable-manifold segments, as shown in Fig. 1(b). Sincéore, Eq. (2) is rigorously valid for hyperbolic dynamical
ab is parallel to the stable-manifold segments and, sinceystems [3]. The argument becomes problematic for non-
X9 maps tox, after p iterations, the image oféb under hyperbolic systems. A grid of boxes in which each box
thep-times iterated maM? (x) is a shorter horizontal line C; looks like the box in Fig. 1 cannot be constructed be-
segmenta’d’ straddlingx,,. Similarly, thepth preimage cause of the set of an infinite number of tangency points
of ¢’d' is a shorter vertical line segment straddling. ~ between the stable and unstable manifolds [4]. Therefore,
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the applicability of Eq. (2) to nonhyperbolic systems is (@)
only a conjecture.

We have undertaken a series of numerical experiments
to test the goodness of the conjecture given by Eq. (2). -5-
We choose the Hénon mafx,y) — (a — x> + by, x).

It is one of the very few model systems for which there
is a numerical algorithm to compute, in principle, all un-
stable periodic orbits of arbitrarily high periods [10]. We
studya = 1.4 andb = 0.3, a parameter setting for which
it apparently possesses a chaotic attractor. The attractor -8
is also apparently nonhyperbolic because a rigorous com-

putation of the stable and unstable manifolds [11] points -9 : : : : |
towards the existence of an infinite number of tangency 4 8 12 16 20 24 28 32
points of these manifolds on the attractor. The periodic p

orbits up to period 31 are computed using the procedure in
Ref. [10]. To compute the natural measure of the attractor
in different phase-space regions, we ude& X 128 grid

to cover the regior-2 = (x,y) = 2 and then use a trajec-
tory of length10 (after disregarding 0* initial iterations)
from a randomly chosen initial condition. There are 909
nonempty boxes to which the trajectory visits. The quan-
tity w; in Eq. (2) in each nonempty bo&; is approxi-
mately the fraction of time that the trajectory visits the
box. Next, we compute, in each nonempty box, all the
fixed pointsx;, of thep-times iterated map and their asso-
ciated expanding eigenvalués(x;,) to obtain the quan-

slope = -0.14

In[Ap(p)]

tity w;(p) in Eq. (2). Figure 2(a) shows lu(p) versus 0 S S S S S B
p for 6 = p = 31. We observe the following scaling 4 8 12 16 20 24 28 32
relation: p

Au(p) ~ exp(—ap), (3) FIG. 2. For the Hénon chaotic attractor, (a)Ap(p) versus

) . p. We have, approximatehA u(p) ~ ¢ %147, (b) The total
wherea =~ 0.14 is the scaling exponent. Thus, we see thaleriodp natural measurews(p) computed from Eq. (2) using
the quantitative characterization of the natural measure dfll the periodp orbits. The total measure approaches to unity
the chaotic attractor by unstable periodic orbits becomedsp increases. The dashed line in (a) is\ip(p) versusp but
exponentially accurate as the peripihcreases. Asymp- 1€ quantityu;(p) is rescaledus(p).
totically, we haveA u(p) — 0, indicating the applicability
of Eg. (2) to nonhyperbolic chaotic sets. It is interestingdoubling transformation,,+; = 2x, mod1). All periodic
to note that the somewhat large fluctuations in Fig. 2(aprbits of periodp of this map have the same eigenvalie
are partly due to the fact that there are fewer periodic orDivide the unit interval intdN bins so that the size of each
bits of lower periodp, since their number increases wjth  bin is e = 1/N. The natural measure contained in each
exponentially, where the exponential rate is the topologibin is e because it is uniform in the unit interval. There are
cal entropy. Figure 2(b) shows the total perjpdratu- (27 = 1)/N fixed points of thepth-fold map in each bin
ral measureus(p) = > ¢ wmi(p) versusp. It can be seen sothatu;(p) = [(2” + 1)/N]/2? = €(1 = 27P). Thus,
that us(p) approaches unity rapidly gsincreases. The we haveAu(p) = |ui(p) — €| ~ 277 = exp(—p In2).
dashed line in Fig. 2(a) is b w( p) versusp but the quan-  Notice that the scaling exponent for the doubling trans-
tity w;(p) is rescaled byus(p). The rescaled plot has a formation is In2, which is the topological entropy. This
similar slope as the unscaled one (the solid line), but thés due to the fact that the natural measure is uniform and
fluctuations are smaller. We find that Eq. (3) appears tall periodic-orbit points have the same eigenvalue. For
hold regardless of the fineness of the grid used to covamore complicated nonhyperbolic systems, such as the one
the attractor. For instance, almost identical plots as inn our numerical example, the natural measure is highly
Fig. 2(a) are obtained when grid$ X 64 and256 X 256  nonuniform and the positive Lyapunov exponents of all the
are used. Thus, we expect Eg. (2) to be valid for anyperiodp orbits are not the same but obeys some probabil-
phase-space region containing part of the chaotic set iity distribution with width proportional tq/p [12]. Thus,
nonhyperbolic systems. the scaling exponent in Eq. (3) is less than the topologi-

To understand thexponentialscaling law Eq. (3), we cal entropy. We have also checked the scaling Eq. (3)
utilize a simple one-dimensional analyzable model: thefor another hyperbolic map, the Kaplan-Yorke map [13]
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and have found that the exponent is approximately the tracting subspace. Otherwise the set is nonhyperbolic.

topological entropy. Itis thus interesting to note that non-  In general, nonhyperbolicity is a complicating feature be-
hyperbolicity makes the scaling exponent deviate from the ~ cause it can cause fundamental difficulties in the study of
topological entropy, but nonetheless the scaling law is still ~ the chaotic systems, a known one being the shadowability
exponential. of numerical trajectories by true trajectories [C. Grebogi,
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