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Critical Exponent for Gap Filling at Crisis
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A crisis in chaotic dynamical systems is characterized by the conversion of a nonattracting, Cantor-
set-like chaotic saddle into a chaotic attractor. The gaps in between various pieces of the chaotic saddle
are densely filled after the crisis. We give a quantitative scaling theory for the growth of the topological
entropy for a major class of crises, the interior crisis. The theory is confirmed by numerical experiments.
[S0031-9007(96)01224-0]
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The nature of the asymptotic dynamics of a physicalThe chaotic saddle apparently has a Cantor-set-like frac-
system depends on its parameters. As a system parametal structure with finite sizegaps along its unstable
changes, there can be qualitative changes in the asymfsliation. As a comparison, Fig. 1(c) shows that after
totic set of the system, which can usually be characterizethe crisis (ata = 1.28 > a.) the enlarged attractor fills
by quantitative and universal scaling behaviors. these gapsompletely. Note that thisgap filling happens

Typically, in nonlinear system, one finds parameter reabruptly at the crisis. We emphasize that the example
gions in which chaos is present. In this region thereshown in Figs. 1(a)—1(c) for the Hénon map is paradig-
is an infinite number of unstable periodic orbits in thematic: The same phenomenon occurs in any physical
chaotic set and this chaotic set can be either attractingystem exhibiting crisis, such as in the driven pendulum
or repelling. The latter occurs iperiodic windows.The  experiment by Leven and Selent [5], but has not been
unstable periodic orbits that existed in the large chaoti@nalyzed in detalil.
attractor before the creation of a given periodic win- In this Letter, we present qualitatively that gap filling
dow (by a saddle-node bifurcation) are in the repellingis accomplished by the creation of a large numbenef
chaotic set when the window is created [1]. Hence, atinstable periodic orbitshat are not present before the
a given periodic window, one finds the coexistence ofcrisis, yet they provide the support for the dense filling of
both this repelling chaotic seind the attracting periodic the gaps after the crisis. The creation of the gap-filling
orbit. This orbit bifurcates in an infinite period-doubling orbits thus provides the primary mechanism for the struc-
cascade leading to a small chaotic attractor. The colliture development of chaotic attractors. Quantitatively,
sion of this small chaotic attractor with the coexistingthis process leads to an increase in the topological en-
repelling chaotic set marks the end of the window andropy / of the chaotic attractor. We find that for parame-
the recovery of the large chaotic attractor in an interiorter valuesa beyond the crisis value., the topological
crisis [2] which has been observed in many experimentgntropy obeys the following algebraic scaling law
[3]. The purpose of this Letter is to establighiantita- .
tively a universal scaling for this attractor enlargement. hla) = hac) ~ (a = ac)¥, with y = h(ac)/A. (1)
The scaling, valid after the interior crisis, is due to thewhere A denotes the Lyapunov exponent of the unstable
emergence of new orbits connecting the two collidingperiodic orbit mediating the crisis. We cafl the gap-
sets. Because there are an infinite number of periodifilling exponent. In what follows we derive Eq. (1) for
windows, believed to be dense in parameter space, owhaotic maps by a diagram technique based upon a scaling
scaling occurs in the neighborhood of an infinite numberargument. We also provide numerical results that support
of parameter values. Therefore, this scaling is of fun-our theoretical prediction.
damental importance to understanding chaotic systems, We call the confined phase space region where the
whether in the study of theoretical models or in labora-original chaotic attractor resides thand region(B) and
tory experiments. the space in between these bandsgheounding region

As an example, Fig. 1(a) shows a bifurcation dia-(S), respectively. For parameter values below the crisis,
gram for the Hénon map [4]x,+1,y,+1) — (@ — x> +  every unstable periodic orbit is contained either in the
0.3y,,x,), where the parametesz varies near the cri- small attractor or in the coexisting chaotic saddle, i.e.,
sis valuea, = 1.272. |In this crisis, a small seven-piece every periodic orbit is restricted strictly to the band or
attractor changes suddenly into a single, much largeto the surrounding region. The boundary between the
chaotic attractor fou > a.. Figure 1(b) illustrates (for band and surrounding regions is formed by the stable
a = 1.27 < a.) that besides the chaotic attractor theremanifold of an unstable periodic orbit [2], the so-called
also exists a chaotic saddle in the surrounding regiormediating periodic orbit(M) [6], which belongs to the
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the mediating orbit, respectively; the region abo¥g,

is the surrounding region. The lobés,...,L,,... are
pieces of the unstable foliation of the remnant of the
former small chaotic attractor. These lobes penetrate the
surrounding region above the crisis; thus the former small
attractor isconverted into a chaotic saddle within the band
region [6]: A trajectory which is on the closure of the
unstable foliation is injected into the surrounding region
through the lobd.;. The depth of this protruding lobe is
proportional toa — a.. For subsequent iterations for the
p-fold map,L; maps toL,, L, to L3, and so on, moving
towardsM and stretching alongyy; at a rate determined
by the Lyapunov exponent\ of the mediating orbit.
TR The timem(a) that the trajectory spends in the vicinity
1t ~T 1 of M before spreading over the surrounding region can
N~ be estimated by requiring that the length of the lobes
y N increases up to an order of 1 after iterations. Thus

/ /j we obtain

7 m(a) = =[In(a = ac)l/A. )

-1k P ]

_ We note that in the limita — a, + 0, m(a) diverges,
1 0 1 2 indicating that very close to the crisis from above,
x trajectories escaping from the band region spend a very
long time in the vicinity ofM, in the course of which the
motion is practically indistinguishable from the behavior
of the mediating orbit. Thugvery burst starts with an
Lf 1 approximately periodic motiowhose durationn is much
longer than the periogt of M. Consequently, since every
y | coupling orbit must contain at least one burst, Eq. (2) also
gives anasymptotic scaling for the minimum length of
coupling periodic orbits.
a1f 1 As the parameter increases beyond the crisis value,
s . . m(a) decreases, indicating the appearance of new, shorter
-1 0 1 2 and shorter coupling orbits. The creation of the new cou-
! pling orbits leads to an increase in th@pological en-
FIG. 1. (a) Bifurcation diagrant(a) of the Hénon map near tropy 1 of the enlarged attractor, defined Wgn) ~ ",

the interior crisisa, =~ 1.272. Because of the projection on the \\hare N(n) is the number of period- orbits embed-
x axis, the seven pieces of the attractor appear as six bands. ( din th £ A ding to the th d ical d
The seven-piece chaotic attractor (heavy dots) and the chaot In the Set. According 10 the thermodynamical de-

saddle (light dots) before the crisis+’s indicate the period- Scription of dynamical systems [8]V(n) can also be
7 mediating orbit. (c) The single enlarged attractor after theinterpreted as a formal “partition sum.” This lead us

crisis. to the idea of using the following diagram technique
to represent and calculate the topological entropy of the

chaotic saddle below the crisis. Hence the mediating orbghaotic set.
has the same period, sgy, as the number of pieces

of the small attractor [e.g., period 7 in Fig. 1(b)]. The

crisis occurs when the chaotic saddle collides with this

boundary. (Here we assume that the mediating orbit

is hyperbolic with a single repulsive direction and the

topology of the invariant manifolds changes smoothly

with the control parameter [7].) After the crisis there

are periodic orbits that visit both regions. We call

them coupling orbits since they have components in .
both regions. The orbit components in the surrounding
region are calledursts[2]. For parameter values slightly .
above the crisis, an orbit can escape from the banglG. 2. Schematic diagram of the topology of the stable and

region, as schematically illustrated in Fig. 2. HéW;  unstable manifolds of the-fold iterated map in the vicinity of
and Wy, denote the stable and unstable manifolds ofthe p-mediating orbitM above the crisis.
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Let the diagram trajectory must spend at least one step in the band region
and, due to Eq. (2), at least steps to go over the mediat-
¢ D~ et = pn (3) ing orbit. This implies that the lengths of the double-line

and the dotted propagators is at least 1 andrespec-
represent the number of unstable periodic orbits of lengttively. The full length of each diagram termas _
n on the attractor after the crisis, i.e., represent the For instance, the number of the simplest coupling orbits

partition sumn (n) itself. Let (with exactly one burst), i.e., the third diagram on the
right-hand side of Eq. (6), is given by
nlBly n -m n—n
) J~e =:b 4 nim b
(} ;) ( ) N1 (n) ~ Z Z bn,,knmsn—n,,—n,,,
and ny=1 n,=m
= Ck"[s"™™ + Bb"™™ + AK""]  (7)
s
Q D et = sn (5) forn > m > 1. Here the asymptotid, B, andC coef-

o _ ficients depend on the control parameter and the values of
denote the number of periodic orbits of lengthocated  the propagators and reflect the effect of short range corre-
entirely within the band and the surrounding regions, re-ations between subsequent orbit segments. Equation (7)
spectively. Note that these two sets of periodic orbitjescribes the simplest interaction, or coupling, between
form two chaotic saddles, both being embedded in thghe two chaotic saddles in the band and in the surround-
enlarged attractor. The respective partial topological enmg regions. The number of possible orbit combinations
tropiesh!?] andh!$T of these chaotic saddles determine thecharacterizes the strength of the coupling.
growth rates of the two latter diagrams. The exponentials Equation(6) can be viewed as a perturbation series, with
of the topological entropies in the representations (4) angq. (7) being its first “loop order” term and the subsequent
(5), b ands, can be regarded as tipeopagatorsfor the  diagrams accounting for the higher loop order terms.
corresponding diagrams. These propagators take into ac-|n general, before the crisis the topological entropy of
count the contributions to the partition suvin) fromthe  the chaotic set (the small attractor) in the band region is
periodic orbits in the band and in the surrounding regionssmaller than that of the coexisting chaotic saddle in the
Similarly, r in (3) acts as the propagator representing thesyrrounding region [6]. This behavior persists after the
number of every allowed periodic orbit. crisis. Thus we have, for the above propagators; s >

In determiningr, we also have to take into account the ;, - k, which, for largen, implies 7" > s" > b" > k".
contribution of the coupling orbits t&/(r). In fact the |n the limitn > m the simplest coupling term in Eq. (7)
essence of the gap-filling phenomenonthe growth in givesN,(n) = C(k/s)"s", yielding a “coupling strength”
number of the coupling orbitdeing made up of various proportional tos ™ <« 1. We assume that and g de-
combinations of the orbits that already existed before th%end Continuous|y on the control parametem@t Then
crisis. The counting of the total number of orbits of according to (2), ag — a. + 0 the value ofm diverges,
length n, with 0,1,2,... bursts during their period, can meaning that the number of the combinational possibili-

be expressed by the following diagram equation: ties decreases drastically, and the coupling becomes weak.
This fact guarantees the convergence of the perturbation
¢ )= D+ ( ) series Eq.(6), which can be rewritten in the following self-

consistent form,

= Dy - ®

oy ey Y+ (6) By neglecting the effect of long range correlations we can
ubstitute the propagators and the expression for the first

never escape from the band and from the surrounding rd2P Order term, Eq. (7), to obtaiV(n) ~ r" = s" +
P 9 1%y 2—m Ni(n)N(n — ny). By taking the relation

gions, as represented by diagrams (4) and (5), whil . 4 . X
the additional terms correspond to the coupling orbits2MONg t'h_e propagators into cons@eratlon, the solution of
he implicit equation for in the scaling region < m <«

The approximately periodic components of the Couplingt ) mo—m mom
orbits invoking the bursts give only a constant contribu-? —~ “1S” = s[1 + Ck"s™" + O(Ck™s™™)’]. There-
tion to the partition sum (since they always closely fol-fore' close to the crisis the topological entropy is

low the same mediating orbij[) correspond!ng thus to a ho~ KISl 4 co—MSm (9)
zero topological entropy. We incorporate this feature into

Eq. (6) by inserting the dotted “interaction” diagram with By using the property that at. the topological entropy
the corresponding propagatér= 1 at the beginning of of the enlarged attractor coincides with that of the chaotic
each burst. Thus the number of dotted insertions is equaladdle, and combining Egs. (2) and (9), we obtain our
to the number of escapes. Note that before each burst theain result, which is Eq. (1).
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To test the theoretical prediction of Eq. (1), we haveaccompanying crises in chaotic dynamical systems. In ad-
undertaken a series of numerical experiments using twddition, we have obtained the quantitative scaling relation,
dimensional maps. Here we shall present results for th&q. (1), providing a new scaling exponent as a characteris-
Hénon map for the interior crisis shown in Figs. 1(a)—tic quantity of this phenomenon [10]. The scaling relation
1(c). The largest eigenvalue of the period-7 mediatings valid for systems related to one- and two-dimensional
orbit is approximately 10.87, which corresponds to themaps with smooth control parameter dependence, since our
Lyapunov exponenh = 0.34. We have used the method qualitative arguments and the diagram equations hold re-
developed in Ref. [9] to determine the topological entropygardless of the details of the system. Our approach and
by monitoring how the length of an infinitesimal curve results can be adapted for higher dimensional maps [7] and
grows under the action of the map. In particular, weother types of crises as well.
randomly choose an infinitesimal curve straddling a point This work was supported by the U.S.-Hungary Science
on the chaotic attractor along the unstable manifold. Asand Technology Program (JF No. 286), by the Hungarian
the map is iterated forward in time, its length growsNational Science Foundation (OTKA F17166, T17493,
exponentially. The positive exponential growth rate ofand T19483), and by the Department of Energy (Office
the curve length is taken to be the topological entropy [9]of Energy Research, Office of Scientific Computing). The

To obtain the scaling relation, Eq. (1), it is necessarynumerical computation for this work was supported by the
to estimatei(a.). We choose 40 values af uniformly ~ W. M. Keck Foundation.
distributed on the base-10 logarithmic scale in the small
interval[a, + 1074, a. + 1073¢] and compute the topo-
logical entropy i for all these 40 values oki. The
average value of these 40s is then taken to be an ap-
proximation ofi(a.). We obtaini(a.) = 0.38. The scal-
ing exponent from the theory is thep = 0.38/0.34 =~
1.12. Figure 3 showsi(a) — h(a.) versusa — a., on
a logarithmic scale, for 100 values ofin [1072,107'].
The data can be fitted by a straight line with slope
1.13 = 0.11, which agrees with the theoretical expo-
nent. It can be seen that the fluctuations /itu) —
h(a.) increase ast — a. decreases. This is caused by
the numerical precision in the computation bf The
typical confidence interval fok is about10~3. This in-
dicates that the values @fare indistinguishable for vari-
ations of the parameter less than approximatelj0 29,
given that y = 1.12. Our numerical computation indi-
cates that no reliable scaling behavior can be obtained
fora — a. < 1072, imposing the smallest scale of confi-
dence in the parameter variation, above which our compu-
tation (Fig. 3) gives a scaling exponent which agrees with
the theoretical prediction.

In summary, in this work we have given a qualitative [4]
explanation for the fundamental phenomenon of gap-filling
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FIG. 3. Numerically obtained scaling of the excess topologi-
cal entropy near the crisis shown in Figs. 1(a)—1(c). The nu-
merical gap-filling exponent iy = 1.13 = 0.11, which agrees
with the theoretical predictioy = 1.12.
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