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We demonstrate that some chaotic parameter subsets of a class of spatiotemporal chaotic systems
modeled by globally coupled maps are riddled. That is, for every point in the chaotic parameter subset,
there are parameter values arbitrarily nearby that lead to nonchaotic attractors. A consequence is an ex-
tremely sensitive parameter dependence characterized by a significant probability of error in numerical
computation of asymptotic attractors, regardless of the precision with which parameters are specified.

PACS numbers: 05.45.+b

The asymptotic behavior of a dynamical system is
determined both by initial conditions in phase space and
by choice of parameters specifying the system. In partic-
ular, chaotic dynamical systems exhibit sensitive depen-
dence on initial conditions. These dependencies are of
two types. The first is characterized by exponential sepa-
ration of trajectories originating from nearby initial con-
ditions. The second type of dependence can be observed
in chaotic systems with multiple attractors. Grebogi et
al. first demonstrated that for some systems basins of at-
traction are separated by a fractal set called the fractal
basin boundary [1]. It is impossible to predict, with cer-
tainty, the asymptotic attractor for initial conditions in
the neighborhood of this set. Systems with multiple at-
tractors may also exhibit “riddled basins” [2], in which
case at least one of the basins of attraction has the prop-
erty that any neighborhood about each point within that
basin contains points belonging to another basin of at-
traction. Finally, there can exist an extreme type of rid-
dled basin, the so-called intermingled basin [2], in which
all basins of attraction are riddled.

In this Letter, we present the first evidence of “riddled”
parameter sets in chaotic dynamical systems. A conse-
quence of such riddled parameter sets is an extreme sensi-
tive dependence on parameters. The dependence is suf-
ficiently strong so that no matter how precisely a param-
eter value is specified, there is a significant uncertainty in
numerical computation of the asymptotic attractor. This
uncertainty in parameter space means that statistical
properties [3] of asymptotic attractors, such as Lyapunov
exponents and dimensions, cannot be computed reliably
for specific parameter values.

Sensitive parameter dependence in dynamical systems
was first demonstrated by Farmer [4] using the one-
dimensional quadratic map x,+; =r(1 —2x2). This map
exhibits a unique attractor starting from almost all initial
conditions in (—1,1) for any given value of the parame-
ter r [S]. Attractors are of two types: chaotic and per-
iodic. Farmer [4] demonstrated that the set of r values
generating chaotic attractors (the chaotic parameter set)
is a fractal set with positive Lebesgue measure [6] and
box-counting dimension [7] one. Such sets have come to
be known as “fat fractals” [4,8]. Most importantly,
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Farmer demonstrated that because of the fractal nature
of the chaotic set, arbitrarily small perturbations € about
parameter values » drawn from this set yield parameters
r+e¢e with nonzero probability of producing asymptotic
attractors with completely different properties than those
generated using parameter ». Nonetheless, this parame-
ter sensitivity is sufficiently “weak’ so that specification
of parameters to a precision achievable on digital com-
puters makes possible the reliable prediction of statistical
quantities of asymptotic attractors such as the Lyapunov
exponent [4].

To quantify sensitive parameter dependence, one can
use the scaling exponent B introduced by Farmer [4,8,9].
Grebogi, Ott, and Yorke [10] noted subsequently that 8
is equivalent to the uncertainty exponent a first intro-
duced by Grebogi et al. to characterize fractal basin
boundaries [1]. The exponent a (or B) can be calculated
as follows. Randomly choose a parameter value rg in the
fat fractal set. Define r'=rg+e¢, where ¢ is a small per-
turbation. Determine whether the asymptotic dynamics
of the system using these two parameters is qualitatively
different (chaotic versus periodic). Estimate the proba-
bility P(¢) that parameters ro and r' yield different
asymptotic dynamical behavior by repeating the experi-
ment for many random choices of r¢ in the parameter
range of interest. In practice, P(¢) decreases with de-
creasing ¢, typically scaling with € as P(e) ~¢® [1,11].

In numerical simulation of orbits, ¢ can be viewed as
the precision with which the parameter r is specified.
Then the scaling exponent a determines the probability
[1 —P(e)] that the computed asymptotic behavior accu-
rately reflects the true dynamics of the system. If a> 1,
reducing ¢ can improve the probability of correct compu-
tation of the final state significantly. If a=1, then im-
provement in € results in an equal improvement in the
probability of correct computation of the final state. If
a <1, then reduction of € will result in only a small
reduction of P(e¢). In particular, in the extreme case
where a == 0, improvement in the precision € with which r
is specified (even over many orders of magnitude) may
result in only an incremental improvement in the ability
to predict the asymptotic state correctly. For the class of
quadratic maps, Farmer found that the fatness exponent
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B==0.45 [4], while Grebogi et al. found that the uncer-
tainty exponent a==0.41 [11]. To appreciate the mean-
ing of @ =0.41, assume that the parameter r can be deter-
mined to a precision of 10 ™', Then P(¢)~107¢ and,
hence, the probability of error in numerical prediction of
the final state of the quadratic map is roughly 1 in 10°.
This means that computer simulations are generally reli-
able for this class of systems, hence our use of the phrase
“weak dependence” on parameters.

In this Letter, we study a class of spatiotemporal
chaotic systems modeled by coupled map lattices [12].
For this class of systems the uncertainty exponent a
defined above is determined numerically to be close to
zero (it in fact cannot be distinguished from zero), which
indicates strongly that the parameter space is riddled.
Specifically, we consider globally coupled Hénon maps.
Our motivations for studying this class of systems are as
follows: (1) Globally coupled maps are approximations
of spatiotemporal dynamical systems described by non-
linear partial differential equations or coupled ordinary
differential equations [13,14]; and (2) the Hénon map
[15] is one of the most extensively studied chaotic sys-
tems. The model is expressed as follows:

2

i =a— U =&)xi+—2— 3 xi| +byi, Q)
N—1 jj=i

i=1,...,N,

Va+1 =Xn, ()
where i denotes discrete spatial sites, n denotes iteration
number, a and b are the parameters of the Hénon map,
and 8 is a parameter specifying coupling strength be-
tween maps at different sites. We assume that each map
couples to every other map with uniform coupling 8. The
Jacobian of the map is (—b)™ and, hence, for |b| <1 the
system is highly dissipative. In the numerical computa-
tions to be described, b is fixed at a value »=0.3 and
properties of the two-dimensional parameter space de-
fined by a and & are explored. Lyapunov exponents are
computed [16] in order to quantify the type of attractors
of Egs. (1) and (2). Let A; be the largest of the 2NV
Lyapunov exponents. Then A > 0 signifies the existence
of a chaotic attractor and A; <0 indicates nonchaotic
motion (quasiperiodic or periodic).

Figure 1 plots a chaotic parameter set in the (a,5)
space for N=10. This parameter space was sampled
over a two-dimensional 800% 460 uniform grid in a pa-
rameter region defined by 1.0<a4=<14 and 0=<6
=<0.35. The maximum Lyapunov exponent A; was com-
puted at each grid point. In Fig. 1, black dots denote pa-
rameter pairs for which A, > 0, while white blank regions
denote parameter regions of nonchaotic motion. Chaos
occurs for a > 1.06. The most interesting feature is the
presence of regions of interspersed black and blank dots.
In these regions, near every chaotic parameter combina-
tion, there are parameter pairs that give rise to nonchaot-
ic motion. Thus, chaotic parameter sets within these re-
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FIG. 1. Values of parameters a and § that lead to chaotic at-
tractor (black dots) and nonchaotic attractor (blank regions)
forl<a<14and 0<6=<0.35.

gions are riddled [2].

To examine “riddling” of chaotic parameter sets, we
plot A; and the number of positive Lyapunov exponents
N, versus § for a fixed a value, as shown in Figs. 2(a)
and 2(b) for a =1.4, respectively. There are three dis-
tinct dynamic regimes as & is increased from 0. For most
& values in regime 1 (0 <5=<0.14), N, =N, indicating
that maps on different sites behave independently [14,17).
For most values of & within regime 3 (6 > 0.32), there is
only one positive Lyapunov exponent, indicating the ex-
istence of a strong coherence among maps at different
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FIG. 2. (a) The largest Lyapunov exponent A; and (b) the
number of positive Lyapunov exponents N, versus § (coupling
strength) for a system of N =10 globally coupled Hénon maps.
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sites [17]. Riddling occurs in regime 2 (0.14 < § < 0.32),
where A fluctuates between positive and negative values,
and N, changes between 10 and 0. Figure 3(a) shows an
expanded view of Fig. 2(a) for & values in the range
0.248 < § <0.249. Sign changes in A persist even at this
much finer scale. The data of Figs. 1-3 suggest that for
any random choice of the coupling parameter & in regime
2, an arbitrarily small perturbation about that value of &
can give rise to completely different asymptotic dynami-
cal behavior (e.g., a transition from chaos to periodic
motion, or vice versa). To verify this consequence of rid-
dling of the parameter space in Figs. 1-3, we have com-
puted the uncertainty exponent a [11]. The procedure is
as follows. A coupling value § is drawn from a uniform
distribution defined over regime 2 for a fixed a value.
Maximum Lyapunov exponents are then computed for
both parameters § and 8§+ ¢ using the same initial condi-
tions, where ¢ is a small fixed perturbation factor. If the
two exponents have different sign, then & is defined as an
uncertain parameter value. This process is repeated for
many different randomly selected § values within regime
2 while holding the perturbation ¢ constant. Assume that
among /N, values of & chosen, there are N, uncertain pa-
rameter values. The fraction of uncertain & values is then
f(e)=N,/N,. In our numerical computation we increase
N, until N, reaches 200. This process is then repeated
for different values of the perturbation e.

Results of this calculation are shown in Fig. 3(b) for
a=1.4. The abscissa shows logjo(¢) and the ordinate
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FIG. 3. (a) An expanded view of Fig. 2(a) for the parameter
range 0.248 <§=<0.249. (b) The uncertainty fraction f(e)
versus the uncertainty € on a base-10 logarithmic scale.
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plots logiolf(e)]. These data show that f(e) scales with
€ as ~€® [1,11]. The slope of the straight line fit to the
data points is an estimate of the uncertainty exponent a.
This exponent is estimated to be 0.006 = 0.008 at a 95%
confidence level and, hence, the hypothesis that a =0 can-
not be rejected [18]. This suggests strongly that the
chaotic parameter set within regime 2 is riddled.

A consequence of a riddled chaotic parameter set is an
extremely sensitive dependence on parameter values of
the asymptotic dynamical behavior of the system. To ap-
preciate the implication of a = 0, assume that a takes its
upper bound value of 0.014 in Fig. 3. Assume the value
of & can be specified to within 10 ™'%; then there is a
probability of f(e)~10%0"*(=10) ~ (6 that the final
asymptotic state computed using & is incorrect. Improv-
ing the precision with which § is specified offers little im-
provement in the probability of computing the final state
of the system correctly. For example, suppose computer
precision is improved by 22 decades to 10 738, Then the
probability of incorrectly computing the asymptotic state
is still ~ 100'0'4"(_38)::0‘3, a small improvement in un-
certainty with respect to the magnitude of the improve-
ment in computer precision. This indicates that computer
calculation of the asymptotic state of the system in re-
gime 2 cannot be reliable.

We have examined different values of /V, the number of
maps coupled in the system [19]. When NV =28, for ex-
ample, the uncertainty exponent is estimated to be «a
=0.00066 £ 0.0068 at a confidence level of 95%. Hence,
the hypothesis that @ =0 cannot be rejected.

We therefore conclude that chaotic parameter sets
within some subregions of the parameter space of globally
coupled Hénon maps are riddled. Since these systems are
simplified models of spatiotemporal dynamical systems
[12,13], it is highly likely that the same type of sensitive
parameter dependence occurs in models of physical sys-
tems which are much more complicated than the model
investigated in this paper (e.g., fluid turbulence).

The extreme sensitive parameter dependence described
in the paper is not restricted only to systems of globally
coupled Hénon maps. We have also investigated the fol-
lowing model spatiotemporal systems: (1) diffusively
coupled logistic map lattices, the one most extensively
studied in the literature, (2) globally coupled Zaslavsky
map lattices, and (3) a system of diffusively coupled ordi-
nary differential equations (coupled Duffing’s oscillators)
[14]. For all three systems, the same type of sensitive pa-
rameter dependence has been observed [171, although de-
tails of the nature of asymptotic attractors differ from
system to system. For instance, in system (1), with
20 diffusively coupled logistic maps [f(x) =4x(1 —x)I,
when the coupling is between 0.7 and 0.9, there is one
chaotic and one quasiperiodic attractor. Within this re-
gime of coupling, the asymptotic attractors of the system
exhibit an extreme sensitive dependence on the parameter
(coupling strength) similar to Fig. 3(a). For systems (1)
and (2), uncertainty exponents have been computed for
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many choices of the number of coupled maps; they are all
near zero, similar to Fig. 3(b). For system (3), while no
computation of the uncertainty exponent has been carried
out due to the limitation of our computational source, ex-
tremely wild oscillations of the largest Lyapunov ex-
ponent in certain parameter regimes similar to that of
Figs. 2(a) and 3(a) have been observed [17], which sug-
gests a similar type of extreme sensitive parameter depen-
dence. The system of coupled Hénon maps, including
systems (1)-(3), are the only four spatiotemporal sys-
tems we have examined. Evidence of extreme sensitive
parameter dependence in all these four systems suggests
that the occurrence of riddled parameter space is a robust
dynamical phenomenon in spatiotemporal systems.

We remark that chaos in low-dimensional dynamical
systems (or temporal chaos) is characterized by a sensi-
tive dependence of system dynamic variables on initial
conditions in phase space. The work described herein, as
well as that of previous investigators [4], demonstrates
that dynamical systems may also exhibit sensitive depen-
dence of asymptotic attractors on system parameters.
For the quadratic map, this dependency is rather weak
(a=0.41) [4,11]. In spatiotemporal chaotic systems
such as the coupled Hénon maps studied in this paper,
the dependence of asymptotic attractors on parameters is
extremely sensitive because the uncertainty exponent is
near zero or is in fact zero. Thus, for such systems, we
cannot reliably predict the evolution of dynamic variables
in phase space, nor can we predict statistical properties of
the asymptotic attractors for particular parameter values.
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