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I. UPPER BOUNDS FOR CONTROL TIME AND ENERGY COST

We provide mathematical estimates of the upper bounds for control time and the associated
energy cost with the proposed closed-loop controller uS .

A. Preliminaries

We list two Lemmas that will be used in our analysis.

Lemma S1.1 ([1]). Let ξ1, ξ2, . . . , ξn ≥ 0 and 0 < p < 1. The following inequality holds:

n∑
i=1

ξpi ≥

(
n∑
i=1

ξi

)p

.

Lemma S1.2 ([2]). For any 0 < q ≤ p, there exist two positive numbers ζ1,2 such that

ζ1‖ · ‖p ≤ ‖ · ‖q ≤ ζ2‖ · ‖p,

where ‖ · ‖h (h = p, q) is the Lh-norm for the n-dimensional space Rn. Specifically, ζ1 = 1 and
ζ2 = n

1
q
− 1
p .

B. Estimate of control time

For the general closed-loop controlled network dynamics in the main text, we introduce the
following Lyapunov function:

V (x) =
N∑
i=1

x>i xi =
N∑
i=1

‖xi‖2 = ‖x‖2, (S1.1)

where x =
[
x>1 , · · · , x>N

]> ∈ RNd and ‖ · ‖ represents the L2-norm of the given vector. We
assume x(0) /∈ U =

{
‖x(0)‖ < 1

}
. Differentiating the function V along a typical trajectory

of the system, we obtain

dV

dt
= 2

N∑
i=1

x>i f(xi) + 2
N∑
i=1

x>i

N∑
j=1

cijΓxj − 2k
N∑
i=1

x>i xi (S1.2)

≤ 2(l − k)
N∑
i=1

x>i xi − 2x>Hx ≤ −2(k − l − ηmax)V (t),

where H ≡ 1
2

[
(C ⊗ Γ)> + C ⊗ Γ

]
is a matrix and ηmax is its maximum eigenvalue. The

global Lipschitz condition on f can be relaxed to the one-sided uniform Lipschitz condition (a
function f is said to be one-sided uniformly Lipschitzian if for some l > 0, we have |x>f(x)| ≤
l‖x‖2 for all x ∈ Rn). Choosing k > l + ηmax and integrating the differential inequality (S1.2)
from 0 to t, we get V [(x(t)] = ‖x(t)‖2, which is circumscribed by an exponentially decreasing
quantity. We thus have V (x(t∗)) = 1 and

‖x(t∗)‖ = 1 with t∗ ≤ ln ‖x(0)‖
ρ

> 0, (S1.3)
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where ρ = k − l − ηmax (as defined in the main text).
We next prove that ‖x(t)‖ < 1 for all t ∈ (t∗,+∞). Intuitively, this is a result of system

dissipation. The proof is carried out by contradiction. Specifically, assume this is not the case.
We can then obtain the first time instant at which the trajectory x(t), after entering the unit ball
U , hits the ball again. Denote this time by

t′ = inf
{
t ∈ [t̂, t1)

∣∣∣ ‖x(t)‖ = 1
}
,

where the time instants t̂ and t1 satisfy ‖x(t)‖ < 1 with t∗ < t < t̂ < t′ < t1 < +∞. All the
time instants can be found because of the continuity of the trajectory x(t) and the assumption
that x(t) can hit the unit ball. For t ∈ [t̂, t′), taking the derivative of V (t) with respect to t yields

dV

dt
= 2

N∑
i=1

x>i f(xi) + 2
N∑
i=1

x>i

N∑
j=1

cijΓxj − 2k
N∑
i=1

x>i sig(xi)
α

≤ 2(l + ηmax)x
>x− 2k

N∑
i=1

x>i sig(xi)
α.

(S1.4)

From Lemma S1.1, we have

N∑
i=1

x>i sig(xi)
α =

N∑
i=1

d∑
j=1

|xij|α+1 ≥

(
N∑
i=1

d∑
j=1

|xij|2
)α+1

2

,

which gives a further estimation for dV/dt:

dV

dt
≤ 2(l + ηmax)V (t)− 2k [V (t)]

α+1
2 . (S1.5)

Since V (t) = ‖x(t)‖2 ≤ 1 for all t ∈ [t̂, t′), we have V (t) ≤ V
α+1
2 (t) for all t ∈ [t̂, t′). Hence,

the estimation in (S1.5) can be refined as:

dV

dt
≤ −2ρV

α+1
2 (t), for all t ∈ [t̂, t′). (S1.6)

This implies dV /dt ≤ 0 for all t ∈ [t̂, t′), so we have

1 > ‖x(t̂)‖2 = V [x(t̂)] ≥ V [x(t)]

for all t ∈ [t̂, t′). In the limit t → t′, we have 1 > V (x(t̂)) ≥ V (x(t′)) = 1. This is a
contradiction, which implies that for all t ∈ (t∗, t1), x(t) ∈ U holds, where t1 can be extended
to +∞.

We can now prove that the trajectory x(t) of the general nonlinear network system in the
main text approaches the desired target within a finite-time duration in (t∗,+∞). In particular,
from the estimation in (S1.6) and the theory of differential inequalities [3], we have V (t) ≤
W (t), where t ∈ (t∗,+∞) and W (t) satisfies the following equation:

dW

dt
= −2ρW

α+1
2 (t), for all t > t∗, (S1.7)
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with the initial condition W (t∗) = V (t∗) = 1. From (S1.7), we have

1

1− α
W

1−α
2 (t) = −ρt+ c0, for all t > t∗, (S1.8)

where c0 = ρt∗ + 1
1−αV

1−α
2 (t∗) and t∗ is defined in (S1.3). From (S1.8), we have

V (t) ≤ W (t) = [(1− α)(−ρt+ c0)]
2

1−α . (S1.9)

Letting W (t) = 0, we obtain the upper bound for the time T Sf to achieve control:

T Sf ≤ t∗ +
‖x(t∗)‖1−α

ρ(1− α)
= t∗ +

1

ρ(1− α)
.

For the case of x(0) ∈ U , a similar argument leads to the upper bound for T Sf as

T Sf ≤
‖x(0)‖1−α

ρ(1− α)
.

The estimated upper bound for T Sf can thus be summarized as

T
Sup

f =

{
1
ρ
ln ‖x(0)‖+ 1

ρ(1−α) , x(0) /∈ U ,
1

ρ(1−α)‖x(0)‖1−α, x(0) ∈ U .
(S1.10)

For the special case of controlled linear network dynamics ẋ = Cx +
[
uS
]>, we set l = 0,

Γ = 1, bii = 1, and all other bim = 0. The upper bound of the required control time can be
estimated as

T
Sup

f =

{
1
ρ
ln ‖x(0)‖+ 1

(k−µmax)(1−α) , x(0) /∈ U ,
1

(k−µmax)(1−α)‖x(0)‖1−α, x(0) ∈ U ,

where µmax is the maximal eigenvalue of the matrix 1
2

[
C + C>

]
.

C. Estimate of control energy cost

Case 1: x(0) /∈ U . From the definition in the main text, the energy cost is given by

ESc =

∫ Tf

0

N∑
i=1

∥∥uSi (t)
∥∥2 dt =

∫ t∗

0

N∑
i=1

∥∥uLi (t)
∥∥2 dt+

∫ Tf

t∗

N∑
i=1

∥∥uFi (t)
∥∥2 dt.

Outside the unit ball U , the energy cost can be estimated as∫ t∗

0

N∑
i=1

∥∥uLi (t)
∥∥2 dt = k2

∫ t∗

0

∥∥x(t)
∥∥2dt = k2

∫ t∗

0

V (t)dt.

From the estimate (S1.2), we get

k2
∫ t∗

0

V (t)dt ≤ k2V (0)

∫ t∗

0

e−2ρtdt

= k2V (0)

(
− 1

2ρ
e−2ρt

∗
+

1

2ρ

)
k2
[

1

2ρ
− 1

2ρ‖x(0)‖2

]
. (S1.11)
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Note that

N∑
i=1

∥∥uFi (t)
∥∥2 = k2

N∑
i=1

d∑
j=1

|xij(t)|2α = k2
∥∥x(t)

∥∥2α
2α
≤ ζk2

∥∥x(t)
∥∥2α = ζk2V α(t),

where the inequality follows from Lemma S1.2 and ζ = (ζ2)
2α =

[
(Nd)

1
2α
− 1

2

]2α
= (Nd)1−α.

This, with (S1.9), gives an estimate of the energy cost inside U :∫ Tf

t∗

N∑
i=1

∥∥uFi (t)
∥∥2 dt ≤ ζk2

∫ Tf

t∗
V α(t)dt ≤ ζk2

∫ Tf

t∗
(1− α)

2
1−α (−ρt+ c0)

2α
1−αdt

= ζk2
1

ρ(1 + α)
(1− α)

1+α
1−α

[
(−ρt∗ + c0)

1+α
1−α − (−ρTf + c0)

1+α
1−α

]
, (S1.12)

where c0 = 1/(1− α). Substituting the estimation of Tf into (S1.12), we get

∫ Tf

t∗

N∑
i=1

∥∥uFi (t)
∥∥2 dt ≤ ζk2

1

ρ(1 + α)
. (S1.13)

Finally, from (S1.11) and (S1.13), we obtain the upper bound estimate of the energy-cost as

ESup
c = k2

1

2ρ

[
1− ‖x(0)‖−2 +

2ζ

1 + α

]
.

Case 2: x(0) ∈ U . The energy cost is

Ec =

∫ Tf

0

N∑
i=1

∥∥uFi (t)
∥∥2 dt ≤ ζk2

∫ Tf

0

V α(t)dt.

Following the argument for Case 1, we get

Ec ≤ ζk2
∫ Tf

0

(1− α)
2

1−α (−ρt+ c̃0)
2α
1−αdt

= ζk2
1

ρ(1 + α)
(1− α)

1+α
1−α

[
(c̃0)

1+α
1−α − (−ρTf + c̃0)

1+α
1−α

]
,

where c̃0 = 1
1−α‖x(0)‖1−α. From the estimated Tf in (S1.10), we get

ESup
c =

ζk2

ρ(1 + α)
‖x(0)‖1+α.

To summarize, the analytical estimate for the upper bound of the energy cost is given by

ESup
c =

{
k2 1

2ρ

[
1− ‖x(0)‖−2 + 2ζ

1+α

]
, x(0) /∈ U ;

k2 ζ
ρ(1+α)

‖x(0)‖1+α, x(0) ∈ U ,

where ζ = (Nd)1−α.
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TABLE S1. Results of controlling 22 nonlinear food-web networks with the controllers uS,F,L, where
Ki = 5, Ai = 1, k = 2, and α = 1

2 . The dynamical variables in the initial state are chosen randomly
from the interval [0, 5]. Each data point is the result of averaging 100 control realizations.

Food-web name # of nodes # of edges TSf TFf TLf
Chesapeake 39 177 2.88 5.45 7.32
ChesLower 37 166 2.84 5.37 7.05
ChesMiddle 37 203 2.85 5.34 6.96
ChesUpper 37 206 2.90 5.43 7.30
CrystalC 24 125 2.91 5.49 7.34
CrystalD 24 100 2.91 5.48 7.15
Everglades 69 916 2.92 5.50 7.35
Florida 128 2106 2.92 5.50 7.25
Maspalomas 24 82 2.80 5.27 7.48
Michigan 39 221 2.91 5.49 7.18
Mondego 46 400 2.90 5.44 7.18
Narragan 35 220 2.94 5.52 7.50
Rhode 20 53 2.90 5.46 7.22
St. Marks 54 356 2.87 5.37 7.28
baydry 128 2137 2.92 5.50 7.36
baywet 128 2106 2.92 5.49 7.06
cypdry 71 640 2.90 5.47 7.16
cypwet 71 631 2.90 5.48 7.05
gramdry 69 915 2.92 5.50 7.28
gramwet 69 916 2.93 5.52 7.30
Mangrove Dry 97 1491 2.92 5.50 7.28
Mangrove Wet 97 1492 2.93 5.52 7.31

II. CONTROLLING FOOD-WEB NETWORKS: DATA AND ANALYSES

All the results on control time for controlling the 22 food-web networks are shown in Tab. S1.
The food-web data are from the website:
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm

As shown in Fig. S1, the required control time and energy cost for controlling the Florida
food-web network exhibit exactly the opposite trends with increasing k and α. This, together
with Fig. 2 in the main text, reveals a control trade-off between the time and the energy cost
inherent to the controller uS .

III. EIGENVALUE DISTRIBUTIONS OF ECOLOGICAL NETWORKS

Here we prove that, for May’s classic ecosystem, H’s eigenvalues are distributed in the
interval

[
−r −

√
2NPσ0,−r +

√
2NPσ0

]
in a probabilistic sense asN →∞. Thus, to realize
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control requires
k > ηmax =

√
2NPσ0 − r (Condition-A).

For the mixed ecosystem, H’s eigenvalues are distributed in the interval[
−
√

2NP [D(Y) + E2(|Y|)]− r,
√

2NP [D(Y) + E2(|Y|)]− r
]

as N → ∞. Particularly, for Y ∼ N (0, σ2
0), this interval becomes

[
−
√

2NP (1 + 2/π)σ0 −
r,
√

2NP (1 + 2/π)σ0 − r
]
, yielding

k >
√

2NP (1 + 2/π)σ0 − r (Condition-B)

which ensures finite-time control in the probabilistic sense. For the PP system, we have

k >
√

2NP (1− 2/π)σ0 − r (Condition-C)

for realizing control in the probabilistic sense.

A. Wigner semicircle law

Lemma S3.1 (Semicircle Law [4, 5]). Let {Zi,j}1≤i<j and {Yi}1≤i be two independent families
of i.i.d., zero mean, and real-valued random variables with E(Z2

1,2) = 1. Further, assume that
for all integers k ≥ 1,

rk , max
{
E|Z1,2|k,E|Y1|k

}
<∞.

Set the elements of the symmetric N ×N matrix XN as:

XN(i, j) = XN(j, i) =

{
Zi,j/
√
N, i < j,

Yi/
√
N, i = j.

Let the empirical measure be LN = 1
N

∑N
i=1 δλi , where λi (1 ≤ i ≤ N) are the real eigenvalues

of XN . Let the standard semicircle distribution be the probability distribution σ(x)dx on R
with the density

σ(x) =
1

2π

√
4− x2I|x|<2,

where I is the indication function of a given set. Then, LN converges weakly probabilistically
to the standard semicircle distribution as N →∞.

B. Eigenvalue distributions of ecological networks

May’s classic ecosystem. For this system, we have cii = −r and the off-diagonal ele-
ments cij are mutually independent random variables that obey the Gaussian normal distri-
bution N (0, σ2

0) with probability P and are zero with probability 1 − P . Denote each ele-
ment of the symmetric matrix H = 1

2

[
C + C>

]
by ξij = 1

2
(cij + cji). The expectation is

E(ξij) = 1
2

[E(cij) + E(cji)] = 0 and the variance is given by

D(ξij) =
1

4
D(cij + cji) =

1

2
D(cij) =

1

2
E(c2ij)−

1

2
E2(cij) =

1

2
Pσ2

0.

From the semicircle law for random matrices (Lemma S3.1), the eigenvalues of H = 1
2
(C> +

C) are located in
[
−r −

√
2NPσ0,−r +

√
2NPσ0

]
in a probabilistic sense asN →∞. Thus,

to realize control requires k > ηmax =
√

2NPσ0 − r (Condition-A).
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Mixed ecosystem. In a mixed network with competition and mutualistic interactions, we
have cii = −r and the off-diagonal elements (cij, cji) have the same sign, which with probability
P are drawn from the distribution (±|Y|,±|Y|) and are zero with probability (1−P ). We then
have

D(ξij) =
1

4
D
(
cij + cji) =

1

4
[D(cij) + D(cji) + 2Cov(cij, cji)]

=
1

4
[2PD(Y) + 2E(cijcji)− 2E(cij)E(cji)]

=
1

2
[PD(Y) + E(cijcji)] =

1

2
P
[
D(Y) + E2(|Y|)

]
.

The semicircle law implies that the eigenvalues of 1
2
(C> + C) are located in[

− r −
√

2NP [D(Y) + E2(|Y|)],−r +
√

2NP [D(Y) + E2(|Y|)]
]

in the probabilistic sense as N →∞. In particular, for Y ∼ N (0, σ2
0), we have D(Y) = σ2

0 and

E(|Y|) =

∫ +∞

−∞
|y| 1√

2πσ0
e
− y2

2σ20 dy =

√
2

π
σ0.

In this case, the eigenvalues of 1
2
(C> + C) are located in[

−r −

√
2NP

(
1 +

2

π

)
σ0,−r +

√
2NP

(
1 +

2

π

)
σ0

]
in the probabilistic sense as N → ∞. Figure S2 shows the accuracy of the control criterion

k > k∗ =
√

2NP
(
1 + 2

π

)
σ0 − r (Condition-B) obtained from the above estimated interval

for the eigenvalue distributions. Figure S2 also shows how the growth of population size N
affects the required control time and energy cost. These results agree well with the analytical
estimates.

Predator-prey ecosystem. In this system, we have cii = −r and the off-diagonal elements
(cij, cji) have the opposite sign, which with probability P are drawn from the distribution
(±|Y|,∓|Y|), and are zero with probability (1− P ). We have

D(ξij) =
1

2
[PD(Y) + E(cijcji)] =

1

2
P
[
D(Y)− E2(|Y|)

]
.

Applying the semicircle law, we have that the eigenvalues of H = 1
2
(C> + C) are located in[

− r −
√

2NP [D(Y)− E2(|Y|)],−r +
√

2NP [D(Y)− E2(|Y|)]
]

in the probabilistic sense as N → ∞. Especially, for Y ∼ N (0, σ2
0), the eigenvalues of H =

1
2
(C> + C) are located in[

−r −

√
2NP

(
1− 2

π

)
σ0,−r +

√
2NP

(
1− 2

π

)
σ0

]
in the probabilistic sense as N → ∞. The control criterion in the probabilistic sense becomes
k >

√
2NP (1− 2/π)σ0 − r (Condition-C).
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IV. FLEXIBILITY OF CONTROL

We demonstrate the flexibility of control with different configurations of C and Bi using
the ecosystems. In particular, the off-diagonal elements cij (j 6= i) are constructed from an
undirected scale-free network (SFN) [6] while the diagonal elements are chosen to be cii =
ξ−
∑N

j=1,j 6=i cij with ξ > 0. We have λmax(C) = ξ > 0, so the uncontrolled system is unstable.
With our controller uS , setting k > ξ is sufficient for achieving control if we set bii = 1 for
all i. In applications, it is desired to reduce the number of controlled nodes. We thus randomly
select ND nodes for control (i.e., bijij = 1 for 1 ≤ j ≤ ND) and define nD ≡ ND/N .

We find that the energy cost decreases as nD is increased (a result consistent with that in
linear network control [7, 8]), as controlling more nodes can significantly reduce the control
time, and increasing the mean degree m of the network can reduce both the control time and
energy (for a given nD value), as shown in Fig. S3(a). We also find that controlling high-degree
nodes can reduce the time and energy for nD . 0.2. However, if many nodes are accessible to
control, controlling low-degree nodes can yield better performance, as shown in Fig. S3(b).

V. HINDMARSH-ROSE NEURONAL MODEL

We consider a small-world network of Hindmash-Rose (HR) neurons yi with the coupling
scheme

∑N
j=1 cijΓhij(yi, yj), where Γ = diag[1, 0, 0] and hSij = uSi |xi=yj−yi . In the network,

the i-th neuron yi (1 ≤ i ≤ N) is described of the HR type [9]:
ẏi1 = yi2 − yi3 + 3y2i1 − y3i1 + I,
ẏi2 = 1− yi2 − 5y2i1,
ẏi3 = −ryi3 + 4ν(yi1 + 1.6),

where yi1 is the membrane potential, yi2 stands for the recovery variable associated with the fast
current, yi3 is a slowly changing adaptation current, I = 3.281 is the external current input, and
ν = 0.0012 is the damping rate of the slow ion channel. Figure S4(a) shows that synchronization
can be achieved rapidly through control. Comparing with the linear coupling scheme hLij =
uLi |xi=yj−yi , our controller hSij leads to a faster transition, regardless of the network size N , as
shown in Fig. S4(b).

[1] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge,
1988).
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[7] Y.-Z. Chen and L.-Z. Wang and W.-X. Wang and Y.-C. Lai, Royal Soc. Open Sci. 3, 160064 (2016).
[8] L.-Z. Wang and Y.-Z. Chen and W.-X. Wang and Y.-C. Lai, Sci. Rep. 7, 40198 (2017).
[9] J. L. Hindmarsh and R. M. Rose, Nature 296 162 (1982).
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FIG. S1. Trade-off between required control time and energy cost. Effects of increasing k and α on
control time and energy cost for the Florida food-web network: (a) energy cost versus k, (b) control time
versus k, (c) energy cost versus α, and (d) control time versus α. The initial state values are randomly
taken from the interval [0, 5].
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FIG. S2. Eigenvalue distribution and estimates of the required control time and energy cost for
mixed ecosystems. (a) The probability of successfully controlling a mixed ecosystem when feedback

control strength k passes through the critical value k∗ =
√

2NP
(
1 + 2

π

)
σ0−r (indicated by the vertical

dashed line). The probability is calculated by simulating 100 random matrices withN = 250, P = 0.25,
σ0 = 1, and r = 1. (b,c) Required control time and energy cost, respectively, for the controlled mixed
ecosystem subject to controllers uS (circles), uF (squares) and uL (diamonds). The parameters are
P = 0.25, σ0 = 1, k = 1.1k∗, α = 0.8, and N ∈ [50, 1000]. All the initial state values of the networked
system are randomly chosen from the interval [−5, 5].
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m = 6 and driver nodes of high, medium, and low degrees. The network size is N = 500 and controller
parameters are ξ = 1 and k = 30. Other parameters are the same as those in Fig. 4 in the main text.
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FIG. S4. Controlled generation synchronization of spiking HR neuronal networks. (a) Time course
(upper) and color map (lower) of all potentials yi1 of a HR neuronal network, where α = 1/2, k = 0.15,
hSij is activated at t = 200, and the rewiring probability 0.1 and N = 200 are used for generating the
small-world network. (b) Synchronization transition time for different values of N .
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