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The outstanding problem of controlling complex networks is relevant to many areas of science and

engineering, and has the potential to generate technological breakthroughs as well. We address the

physically important issue of the energy required for achieving control by deriving and validating scaling

laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy

cost associated with control, and provide a step forward from the current research on controllability

toward ultimate control of complex networked dynamical systems.
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Complex networks are ubiquitous in natural, social, and
man-made systems, such as gene regulatory networks,
social networks, mobile sensor networks, and so on [1].
A network is composed of nodes and edges. The nodes
represent individual units (e.g., genes, persons, sensors)
and the edges represent connections or interactions be-
tween the nodes. The state of a node (e.g., protein being
expressed, opinion of a person, position of a sensor) nor-
mally evolves over time. And the evolution depends not
only on the node’s intrinsic dynamics but also on the
couplings with its nearest neighbors [2].

On one hand, the couplings between nodes increase
the complexity of collective behaviors, which stimulates
much interest of modeling, analyzing, and predicting dy-
namical processes on complex networks [3]. On the other
hand, one may utilize the couplings to control a whole
network, i.e., steering a network from any initial state
(vector) to a desired final state, by driving only a few
suitable nodes with external signals. In this direction there
are good attempts recently from physics [4–10], biology
[11,12], and engineering [13–16] research communities.
Among others, Liu et al. studied the controllability of
various real-world networks, i.e., the ability to steer a
complex network as measured by the minimum number
of driver nodes. Amain result was that the number of driver
nodes required for full control is determined by the
network’s degree distribution [8]. Issues such as achieving
control by using only one controller [9,16] and making
structural perturbations to the network to minimize
the number of control inputs [10] have also been
addressed.

When controlling a complex network, an important and
unavoidable issue is the cost of control. For instance, in
order to control a social network some effort has to be
devoted to change a few individuals’ opinions, while to

control an electronic or a mechanical network, some en-
ergy has to be consumed to drive a few elements. Even if a
network is controllable in principle, it may not be control-
lable in practice if it costs an infinite amount of energy or if
it requires too much time to achieve the control. In this
Letter, we address this outstanding issue of energy cost,
i.e., the amount of effort or energy that is necessary to
produce external signals for steering a complex network,
and focus on its lower and upper bounds. Suppose a com-
plex network is deemed to be controlled to a desired state
in finite time Tf, our main results [see Eqs. (7) and (8)]

show the scaling laws of the energy cost bounds with the
control time Tf in two different regimes separated by the

characteristic time. The results give faithful estimates for
the required energy and thus can provide significant in-
sights into bridging network controllability with actual
control.
To be able to analyze the energy cost, we study linear

networked systems subject to control inputs. This is the
currently standard framework, upon which the network
controllability analysis is built [6,8–10,16]. A typical sys-
tem of N nodes and M controllers can be written as

_x t ¼ Axt þBut; (1)

where xt ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xNðtÞ�T is the state vector of
nodes, ut ¼ ½u1ðtÞ; u2ðtÞ; . . . ; uMðtÞ�T is the input vector of
external signals,B ¼ fbimg is theN �M input matrix with
bim ¼ 1 if controller m connects to node i and bim ¼ 0
otherwise, A ¼ faijg is the weighted network’s adjacency

matrix including linear nodal dynamics faiig.
The typical situation of controlling a complex dynamical

network can be characterized as using external signals ut

to direct the system Eq. (1) from an arbitrary initial state
x0 toward an arbitrary desired state xTf

in the time interval

t 2 ½0; Tf�. Assuming that the networked system is
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controllable [8,17], our goal is to obtain an analytic esti-
mate of the energy cost required for achieving control,

which is defined as [18] EðTfÞ �
RTf

0 kutk2dt. Generally,
an infinite number of possibilities exist for choosing the
control input ut to steer the system Eq. (1) from x0 to xTf

.

Of all the possible inputs, the optimal control input is

given by ut ¼ BTeA
T ðTf�tÞW�1

Tf
vTf

, which minimizes the

energy cost [18,19]. The corresponding minimized

energy cost is then EðTfÞ ¼ vTTf
W�1

Tf
vTf

, where WTf
�

RTf

0 eAtBBTeA
Ttdt and vTf

� xTf
� eATfx0 denotes the

difference vector between the desired state under control
and the final state during free evolution. For convenience,
we set the origin as the desired state xTf

¼ 0 and rewrite

the energy cost as

E ðTfÞ ¼ xT
0H

�1x0; (2)

where HðTfÞ � e�ATfWTf
e�ATTf is the symmetric

Gramian matrix [18]. When the system is controllable, H
is positive definite (PD), otherwise it is noninvertible. In
the following we focus on the normalized energy cost

EðTfÞ ¼ EðTfÞ=kx0k2 ¼ xT
0H

�1x0

xT
0x0

: (3)

When x0 is parallel to the direction of one of H’s eigen-
vectors, the corresponding inverse of the eigenvalue has the
physical meaning of normalized energy cost associated
with controlling the system along the particular eigendir-
ection. Using the Rayleigh-Ritz theorem [20], we can
bound the normalized energy cost as

1

�max

� Emin � EðTfÞ � Emax � 1

�min

; (4)

where �max and �min are the maximal and minimal eigen-
values of the PD matrix H, respectively.

To proceed, we focus on the lower and upper bounds of
normalized energy cost for the case of single-node control.
To analytically calculate the quantities 1=�max and 1=�min,
for weighted undirected networks, we decompose the
matrixA in terms of its eigenvectors asA ¼ VSVT , where
V is the orthonormal eigenvector matrix that satisfies
VVT ¼ VTV ¼ I, S ¼ diagf�1; �2; . . . ; �Ng with de-

scending order �1 > �2 > . . .> �N. We thus have eAt ¼
eA

Tt ¼ VeStVT . Substituting these expressions into the
Gramian matrix and noting that V is time independent,
we have

H ¼ Ve�STf

�Z Tf

0
eStVTBBTVeStdt

�
e�STfVT: (5)

Denoting the only node under direct control as c, we have
that B is an N � 1 matrix, of which all elements are zeros
except the cth element, which is one. After some amount of
algebra, we obtain

Hij ¼
XN

�¼1

XN

�¼1

Vi�Vc�Vc�Vj�

�� þ ��

ð1� e�ð��þ��ÞTf Þ; (6)

where the Roman letters i, j, c are node indices in the real
space while the Greek letters �, � are running indices in
the eigenspace.
To carry the analysis further, we note that there are two

distinct regimes in terms of the control time Tf. In the small

Tf regime where Tf � 1=j�� þ ��j, we can expand

e�ð��þ��ÞTf � 1� ð�� þ ��ÞTf and obtain Hij �
Tf

P
N
�¼1

P
N
�¼1 Vi�Vc�Vc�Vj� ¼ Tc�ic�cj. In this case,

we have Hij � 0 for all i and j except Hcc � Tf so that

the maximal eigenvalue of matrix H can be approximated
as Tf. Consequently, for the small Tc regime, we have

Emin � 1=�max � 1=Tf, regardless of the form of the

matrix A and of the value of c. In contrast, in the large
Tf regime characterized by Tf � 1=j�� þ ��j, we can

approximate the maximal eigenvalue of H by its trace,
which has been numerically verified: �max�PN

�¼1���Tr½H�¼PN
i

P
N
�

PN
�
Vi�Vc�Vc�Vi�

��þ��
ð1�e�ð��þ��ÞTf Þ¼

P
N
�¼1

V2
c�

2��
ð1�e�2��Tf Þ. IfA is PD, the term e�2��Tf vanishes

for large Tf. We thus have Emin�1=�max�
1=

P
N
�¼1

V2
c�

2��
ð1�e�2��Tf Þ�1=

P
N
�¼1

V2
c�

2��
¼1=½ðAþATÞ�1�cc.

Note that, since thematrixA is independent ofTf, the factor

1=½ðAþATÞ�1�cc is time independent too. Thismeans that,
whenA is PD, the lower bound of the energy cost converges
to a constant value for large Tf. If A is not PD, i.e., at least

one of A’s eigenvalues is negative, the most negative ei-

genvalue �N will dominate the behavior of H: Hij �
ViNV

2
cNVjN

2�N
ð1� e�2�NTf Þ 	 e�2�NTf . As a result, the maximal

eigenvalue of H grows exponentially with Tf: �max 	
e�2�NTf so that Emin 	 e2�NTf . Since �N < 0, the lower
bound of the energy cost vanishes exponentially with the
control time Tf. In the borderline case where A

is semi-PD, i.e., �� > 0 for � ¼ 1; 2; . . . ; N � 1 and

�N ¼ 0, the behavior of H can be characterized as Hij �
lim�N!0

ViNV
2
cNVjN

2�N
ð1� e�2�NTf Þ 	 T�1

f .

Our theoretical estimates for the lower bound Emin of the
energy cost can be summarized as

Numerical support for Eq. (7) is shown in Fig. 1. We
use scale-free networks generated by the Barabási-Albert
(BA) model [21] and Erdös-Réyni (ER) type of
random networks [22]. The link weights are randomly
generated from the uniform interval [0.5, 1.5]. The linear
nodal dynamics are set as aii ¼ �ðaþ siÞ, where
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si ¼
P

N
j¼1;j�i aij is the strength of node i, and a is such a

tunable parameter that one can conveniently change A
between positive and negative definite. We note that other
node-dependent settings of aii will not affect our results.
Using the method proposed in [8] one can find the
weighted network is controllable, except some pathologi-
cal link-weights sets of measure zero, by any single driver
node. We numerically compute the lower bound according
to Eqs. (4) and (5). From Figs. 1(a) and the inset of 1(b), we
see that, for the small Tf regime, Emin decays as a power

law T�1
f , regardless of A and c, agreeing with our theo-

retical result. In the large Tf regime, the behavior of Emin is

determined by the signs of the eigenvalues of A. In par-
ticular, if the eigenvalues are all positive, the dynamics in
the absence of control, i.e., _xt ¼ Axt, will force the nodal
states to depart away from the zero state. Thus, even given
sufficiently large time, one has to consume some amount of
energy to steer the nodes back. As shown in Fig. 1(a), Emin

converges to a constant value as Tf is increased, which

agrees with our predicted value 1=½ðAþATÞ�1�cc. In con-
trast, if A is not PD, Emin vanishes exponentially, as shown
in Fig. 1(b). The corresponding exponent is 2�N , which is
consistent with our theoretical estimate in Eq. (7) as well.

We now turn to the upper bound of the energy cost
Emax � 1=�min. As indicated by Eq. (6), most elements
of the matrix H are small, especially for the small Tf

regime. Consequently, H is generally ill-conditioned [20]
and its minimal eigenvalue is typically very small (though
positive). Thus, to control a large-size network, Emax can
be very large. The underlying physical reason is that, when
only one node is subject to control, the effect on other
nodes will not be direct but instead will be indirect through
various paths on the network. The end result is that we need
to steer the whole system in the state space by following

highly circuitous, though smooth, routes [17], a process
that requires a large amount of energy.
Typical results computed from Eqs. (4) and (5) are

shown in Figs. 2(a)–2(c). For small Tf, the upper bound

Emax exhibits power-law decay, similar to the behavior of
the lower bound, but the decay exponent for Emax assumes
a much larger value that is independent of a and c [see
Fig. 2(d)]. For large Tf, Emax will converge to a constant

value if A is not negative definite (ND), or will vanish
exponentially if A is ND. The corresponding exponent is
given by 2�1, where �1 is the least negative eigenvalue of
A, as shown in Fig. 2(e). This is due to the fact that, in
the large Tf limit, the behavior of H�1

ij is dominated by the

mode with the least negative eigenvalue �1, which contrib-
utes the slowest increase to Hij. As a result, we have

Emax 	 ½H�1�ij 	H�1
ij 	 2�1

ð1�expð�2�1TfÞÞ 	 e2�1Tf . In the

borderline case, i.e.,A is semi ND, the upper bound decays

according to T�1
f : Emax 	 lim�1!0

2�1

ð1�expð�2�1TfÞÞ 	 T�1
f .

Such a behavior in both Emax and Emin has been numeri-
cally verified [17].

FIG. 2 (color online). Upper bound of the control energy cost
Emax � 1=�min for a weighted BA network with 20 nodes. In (a),
a ¼ 2 thusA is ND. In (b), a ¼ �5. In (c), a ¼ �20 so thatA is
PD. In (a)–(c), (d) represent the upper bound Emax while (b)
represent the corresponding lower bound Emin (included for
comparison). In (d) the decaying behavior of Emax is shown for
different sc and a values. The dashed line has a slope �36. In
(e) the exponential decay of Emax for large Tf is plotted for

different values of a. The slopes of dashed lines are 2�1, respec-
tively. In (f) the constant values of the energy cost in (c) are shown
as a function of jaþ scj. The slope of the dashed line is 2.

FIG. 1 (color online). Lower bound of the energy cost Emin �
1=�max versus the control time Tf. All networks are weighted

BA scale-free networks except one weighted ER random net-
work in (a), with the same size N ¼ 500 and hsi ¼ 20. The sc
denotes the strength of directly controlled node. In (a) a ¼ �150
which makes A PD. In (b) a ¼ �50 thus A is not PD. The
dashed line in the semilog plot in (b) has a slope 2�N . The
symbols represent the same quantities calculated numerically
and the solid lines represent the results from the estimation
�max � Tr½H�.
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The results for the upper bound can be summarized as

where "ðA; cÞ denotes a positive value that depends on the
matrix A and the controlled node c. For the constant value
of the lower bound as described in Eq. (7), one may
approximate 1=½ðAþATÞ�1�cc � 2acc so that Emin is pro-
portional to jaþ scj. However, as shown in Fig. 2(f), there
appears no proportional relationship between the constant
value "ðA; cÞ of Emax and acc of the controlled node. This
indicates that directly controlling a node with larger degree
does not generally result in less energy cost.

Actually, when the system matrix A is PD and the

control time Tf ! 1, Eq. (6) reduces to H1
ij ¼

P
N
�¼1

P
N
�¼1

Vi�Vc�Vc�Vj�

��þ��
which is the solution of AH1 þ

H1AT ¼ BBT and can be naturally interpreted as dynami-
cal correlation [23], between nodes i and j with respect to
controlled (driver) node c. So "ðA; cÞ is the inverse of the
smallest eigenvalue of the correlation matrix H1. From
this point of view, two indications come out immediately.
First, to find optimal driver node in a network, one should
consider the node viewing from which the rest nodes are
most dissimilar. The reason is that, controlling a central
hub node, though may transmit external signals fast, can
induce starlike structure which makes the rest nodes more
similar to each other. When nodes are more structurally
similar, they tend to have more similar dynamical correla-
tions with other nodes so that the corresponding rows in
H1 become more similar. As a consequence, the smallest
eigenvalue of H1 will be less. In other words, we have to
consume more energy to independently steer similar nodes
in order to fully control the network. Second, for random-
ized networks, the more heterogeneous the node degrees,
the higher the energy cost of control (see Sec. III of [17]).
Take randomized BA and ER networks, for example,
we compare the values of "ðA; cÞ, i.e., "BA and "ER in
Fig. 3(a). It shows that the upper bound of energy cost for
controlling BA networks is much larger than that for
controlling ER networks.

We have also studied the energy cost associated with
the control scheme proposed in a recent work [9], i.e.,
controlling more than one node by a common controller.
Figure 3(b) shows the effect of nc, the number of directly
controlled nodes, on the energy cost, which reveals that
controlling more nodes will induce smaller value of the
lower energy bound. This, however, does not hold for the
upper bound. In fact, adding a node with large degree into
the directly controlled node set may drastically increase the
energy cost. This result is consistent, to a certain degree,
with that found in Ref. [8] which shows the driver nodes
tend to avoid the high-degree nodes.

It is noteworthy that our results can be easily generalized
to weighted directed networks. If a network is controllable
by one driver node, the eigenvalues of the corresponding
system matrix A are nondegenerate [16] though they may
not all be real. Thus we have A ¼ VSV�1 where S ¼
diagf�1; �2; . . . ; �Ng with descending order of the real
part Re�1
Re�2
 . . .
Re�N . Similarly, eAt¼VeStV�1

and eA
Tt¼ðV�1ÞTeStVT . As a consequence, Eq. (6)

is replaced by Hij¼
P

N
�¼1

P
N
�¼1

Vi�ðV�1Þ�cðV�1Þ�cVj�

��þ��
�

ð1�e�ð��þ��ÞTf Þ. Therefore, the scaling laws in Eqs. (7)
and (8) keep unchanged while the decaying exponents
are replaced by 2Re�N and 2Re�1, respectively.
Moreover, for large Tf and PD A, the constant in Eq. (7)

is still proportional to 2acc by using first-order approxima-
tion in [23].
In conclusion, we have reduced the complexity of the

fundamental problem of control cost from the complicated
and intractable Gramian matrix to the simple system ma-
trix which is directly related to the network structure. Our
results have revealed that energy cost of controlling com-
plex networks has different scaling behaviors with control
time in two time scales, separated by the characteristic
time, 1

2jRe�N j and
1

2jRe�1j for the lower and the upper bound,

respectively. In the small-time regime, setting a relatively
longer time for control always leads to less energy cost.
While, in the large-time regime, there exists the situation
where we cannot reduce the energy cost even given much
more time. Furthermore, our results indicate that the lower
(upper) bound of energy cost is less when controlling a
randomized network with heterogeneous (homogeneous)
node degrees. These implications are important when
considering the trade-off between the energy cost and the
control time, which may find applications not only
for classical [5,8] but also for biological [11,12,19] and
quantum [24] networks. Although we have given some
heuristics, a method to choose an optimal control node

FIG. 3 (color online). (a) The ratio "BA="ER for different net-
work size N. In order to eliminate the effects of nodal dynamics
and strength, we fix the values of aii and hsi. The results include
the ratio for optimal driver node (b) and the ratio of averaging
over different driver nodes (d). The error bars are caused by
different generations of network topology and link weights.
(b) Emin (b, left) and Emax (d, right) versus nc, the number of
directly controlled nodes. The dot pointed by the arrow corre-
sponds to the node with largest degree in the network.
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set for minimizing the energy cost is lacking, which is a
promising future work.
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