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Shadowability of Statistical Averages in Chaotic Systems
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We ask whether statistical averages in chaotic systems can be computed or measured reliably under
the influence of noise. Situations are identified where the invariance of such averages breaks down as the
noise amplitude increases through a critical level. An algebraic scaling law is obtained which relates the
change of the averages to the noise variation. This breakdown of shadowability of statistical averages, as
characterized by the algebraic scaling law, can be expected in both low- and high-dimensional chaotic
systems.
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p is a system parameter, D is the noise amplitude, and �n variability [6–11] along a continuous trajectory. Such a
An important problem in statistical and nonlinear
physics is whether the statistical averages can be com-
puted or measured reliably. The problem is particularly
relevant when the underlying physical system exhibits
chaos. For chaotic systems, it has been known that
numerical trajectories are not always shadowable by
true trajectories [1–6]. In particular, for typical low-
dimensional chaotic systems, the existence of tangencies
between stable and unstable manifolds can result in di-
vergence between any numerical trajectory from a true
one after a time that depends on the computational error
[2–5]. Severe obstruction to shadowing can occur in
high-dimensional chaotic systems when one of the
Lyapunov exponents fluctuates about zero [6]. All these
results concern the shadowability of individual numerical
trajectories. For statistical averages, one tends to argue
that because of the ergodicity of chaos, the effects of
computational errors or noise are averaged out and,
hence, the computed values of long-term statistical aver-
ages should be reliable. The purpose of this paper is to
show that this intuition is not always correct. In fact there
are common situations where the statistical averages
change with noise and, hence, shadowing of computed
statistical averages is not always guaranteed. A relevant
situation is where measurements of average physical
quantities take place. Our findings imply that if an iden-
tical experiment is to be performed in two different
environments or at two different times where the noise
levels are different, the measured averages of some physi-
cal quantities may vary. Since computing or measuring
averages is an extremely common practice in physics and
in many other scientific disciplines as well, we expect our
finding to be of fundamental importance.

The general setting of our investigation is as follows.
Consider a chaotic system described either by a discrete-
time map: xn�1 � f�xn; p� �D�n or by a continuous-
time flow: dx=dt � f�x; p� �D��t�, where x 2 RN and
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or ��t� is a Gaussian white noise term. Assume that the
parameter p is chosen such that the system is capable of
generating chaos. Let G�x� be a continuous function that
represents the physical quantity whose average is to be
computed or measured. In discrete-time systems, the
average is: G � limT!1

1
T

PT	1
i�0 G�xi; p�, where fxigT	1

0
is a typical trajectory generated from a random initial
condition. In continuous-time systems, the average is
given by G � limT!1

1
T

R
T
0 G�x�t�; pdt. For trajectories

on an ergodic invariant set, the above averages are equal
to the ensemble averages, which in practice, can be eval-
uated by utilizing a large number of short time series.

The principal result of this paper is that there are
situations in chaotic dynamical systems where, if the
noise amplitude D exceeds a critical value Dc, the statis-
tical average G can change with noise and scales with D
in the following algebraic manner:

�G�D� � G�D� 	G�Dc� � �D	Dc�
; for D * Dc;

(1)

where  > 0 is a scaling exponent that depends on the
details of the system such as the dimensionality, and
�G�D� � 0 for D<Dc. The scaling behavior holds in
both low and high dimensions, and it is expected to be
observable because it occurs in parameter regions of
positive Lebesgue measure. We are able to obtain explicit
expressions for the scaling exponent in all dimensions.
The implication is the following. In numerical computa-
tions, if different precisions or different computers are
used, the ergodic average can have different values. In a
laboratory experiment, measurements performed under
nonidentical circumstances may yield different results.

To derive the scaling law (1), we consider situations
where there are two coexisting dynamical invariant sets
with distinct unstable dimensions and, noise can link
the two sets and thereby induce unstable dimension
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situation is by no means rare. For instance, it can occur in
any periodic window where a periodic attractor and a
nonattracting chaotic saddle coexist. The periodic attrac-
tor has no unstable direction (unstable dimension zero),
while the chaotic saddle can have at least one unstable
direction. In this case, the critical amplitude of the noise
for which unstable dimension variability arises for a
continuous trajectory is proportional to the phase-space
distance between the attractor and the chaotic saddle in
the absence of noise, which in turn is proportional to the
size of the periodic window in the parameter space. For
illustrative purpose, we focus on a periodic window.
Let GA�0� and GS�0� be the statistical averages of the
physical function G�x� associated with the periodic at-
tractor and the chaotic saddle, respectively, in the absence
of noise. In particular, if fxAi g

p
i�1 denotes the stable peri-

odic orbit of period p on the Poincaré map, then we have
GA�0� � 1

p

Pp
i�1G�x

A
i �. For the chaotic saddle, let fxSi g

1
i�1

be a dense trajectory embedded in it which, numerically,
can be obtained by the procedure in Ref. [12]. The average
is given by GS�0� � limL!1

1
L

P
L
i�1G�x

S
i �. For D<Dc,

the periodic attractor is isolated from the chaotic saddle
so that asymptotic trajectories of system are confined in
the neighborhood of the periodic attractor. This is true
even when an initial condition is chosen in the vicinity of
the chaotic saddle, in which case the resulting trajectory
may wander near the saddle for a finite amount of time
but, asymptotically, the trajectory approaches the peri-
odic attractor. We thus have

G�D� � GA�0�; for D<Dc; (2)

because in the asymptotic time limit, the effect of noise
vanishes on average. ForD * DC, the periodic attractor is
dynamically connected with the chaotic saddle. Let
PA�D� and PS�D� be the probabilities of a typical trajec-
tory to visit the periodic attractor and the chaotic saddle,
respectively, in the asymptotic time limit. The trajectory
is intermittent in the sense that the switching time, i.e.,
the time for the trajectory to ‘‘hop’’ between the periodic
attractor and the chaotic saddle, is negligible, compared
with the times that the trajectory spends near these sets.
(Of course this is expected to be true only for D * Dc.)
Thus, for D * Dc, we have G�D� � PA�D�GA�D� �
PS�D�GS�D�. Because of the averaging effect of noise,
the average quantities for trajectories restricted to the
periodic attractor and the chaotic saddle are approx-
imately invariant: GA�D� � GA�0� and GS�D� � GS�0�.
Under these approximations and noting that, since D is
only slightly above Dc, we have PS�D� � PA�D�, which
means PA�D� � 1, we obtain

�G�D� � G�D� 	GA�0� � PS�D�GS�0�; for D * Dc;

(3)

where the dependence of the probability PS�D� on noise is
the major factor that determines the scaling of �G�D�.
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This probability is proportional to the natural measure of
the stable manifold of the chaotic saddle in the neighbor-
hood of the periodic attractor due to noise, which
is determined by the fractal dimension of the stable
manifold.

For nonattracting chaotic saddles, Hunt et al. [13]
obtain explicit formulas for the Lyapunov dimension ds
of the stable manifold. In particular, suppose the chaotic
saddle in an N-dimensional phase space has Ku positive
and Ks negative Lyapunov exponents (Ku � Ks � N),
which are ordered as follows: ��

Ku
� ��

Ku	1 � � � ���
1 >

0 > 	�	
1 � � � � � 	�	

Ks	1 � 	�	
Ks

. The forward
entropy of the chaotic saddle is H �

PKu
i�1 �

�
i 	 1=�,

where � is the lifetime of the chaotic saddle. Then, the
dimension of the stable manifold of the chaotic saddle is

ds � Ks � J�
H 	 ���

1 � � � � � ��
J �

��
J�1

; (4)

where J is determined by ��
1 � � � � � ��

J � ��
J�1 � H �

��
1 � � � � � ��

J . Similar formulas exist for du and d, the
Lyapunov dimensions of the unstable manifold and the
chaotic saddle itself, respectively [13].

Utilizing the dimension formula Eq. (4), we can derive
the scaling law (1) and the scaling exponent  in both low
and high dimensions. In particular, for chaotic saddles
arising in one-dimensional maps, there is only one posi-
tive Lyapunov exponent � > 0. We have Ks � 0, Ku � 1,
and du � 1. The Lyapunov dimensions of the chaotic
saddle and its stable manifold are equal: ds � d �
H=� � 1	 1=����. For an interval of size �, the natural
measure of the stable manifold is proportional to �ds .
When the noise is slightly above the critical level: D *

Dc, the length in which the stable manifold falls in the
original basin of the periodic attractor is proportional to
�D	Dc�. We thus have PS�D� � �D	Dc�

ds � �D	
Dc�

1	�1=���, which is the scaling law (1) with the follow-
ing scaling exponent:

 � 1	
1

��
; for one-dimensional maps: (5)

For two-dimensional Poincaré maps (equivalently
three-dimensional flows), consider a circle of size �.
The natural measure of the stable manifold contained
within the circle is proportional to �ds � ��2�ds=2, where
�2 is proportional to the area of the circle and � is the
lifetime of the chaotic saddle of the Poincaré map (� is
thus in the unit of T, the average time that a typical
trajectory crosses the Poincaré section). Let �1 > 0 >
	�2 be the Lyapunov exponents of the chaotic saddle.
For D * Dc, the area in which the stable manifold of
the chaotic saddle penetrates the original basin of the
periodic attractor is proportional to �D2 	D2

c�. In two
dimensions, Eq. (4) gives ds � 2	 1=��1��.We thus have
PS�D� � �D2 	 D2

c�
ds=2 � �D 	 Dc�

1	1=�2�1��, which,
when substituted into Eq. (3), gives the scaling law (1)
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FIG. 1. For the Lorenz system, (a) Statistical average of the
function G�x� � z2�t� versus the noise amplitude, where the
average is constant for D<Dc, increases for D > Dc, and
Dc � 10	2:61. (b) Algebraic scaling between �G�D� and D	
Dc, where the dashed line represents the theoretical slope.
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FIG. 2. For the coupled Rössler system, (a) Statistical average
of the function G�x� � sinx versus the noise amplitude. (b)
Algebraic scaling between �G�D� and D	Dc, where the
dashed line represents the theoretical slope.
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with the following scaling exponent:

 � 1	
1

2�1�
;

for two-dimensional maps or three-dimensional flows:

(6)

For an N-dimensional map [or an �N � 1�-dimensional
flow], a similar derivation gives the scaling law (1) with
the following scaling exponent:

 �
1

N

�
Ks � J�

H 	 ���
1 � � � � � ��

J �

��
J�1

�
: (7)

A feature to notice in all these cases is that in common
situations where the lifetime of the chaotic saddle in a
periodic window is long: � � 1, the scaling exponent is
expected to be close to unity.

We now provide numerical support for the scaling law
(1) and the scaling-exponent formulas (5)–(7) in low and
high dimensions. In one dimension, we consider the noisy
logistic map: xn�1 � axn�1	 xn� �D!n. We choose a �
3:008 for which there is a period-8 window. The physical
function is chosen to be G�x� � sinx.We observe that G is
constant for D<Dc and it starts to increase for D > Dc,
where Dc � 10	5. A plot of �G versus D on a logarith-
mic scale indicates that it is algebraic. A least-squares fit
gives the following estimate of the scaling exponent:
0:94� 0:06. For the logistic map in this period-8 window,
the Lyapunov exponent and the chaotic-transient lifetime
are estimated to be � � 0:425 and � � 645:4. The theo-
retical exponent is thus close to unity, which is consistent
with the numerical value.

For a two-dimensional example (or a three-
dimensional flow), we consider the following noisy
Lorenz system [14]: dx=dt � 10�y	 x� �D!1�t�,
dy=dt � 71:45x 	 y 	 xz � D!2�t�, and dz=dt �
	�8=3�z� xy�D!3�t�. At this parameter setting, there
is a periodic window of period-4. Invariance of the sta-
tistical average holds only for small noise D<Dc, as
shown in Fig. 1(a) for the physical function G�x� �
z2�t�, where the critical noise amplitude is estimated to
be Dc � 10	2:61. Figure 1(b) shows the algebraic scaling
between �G�D� � z2 	 z2c and D	Dc, where z2c �
4564:7 and the numerical scaling exponent is estimated
to be 0:99� 0:03, which agrees very well with the theo-
retical slope  � 1:0 (� � 588:0 � 1 and �S1 � 0:63).

For a high-dimensional example, we consider the
following system of two coupled Rössler chaotic
oscillators [15] under noise: dx1;2=dt � 	y1;2 	 z1;2 �
��x2;1 	 x1;2� � D!1�t�, dy1;2=dt � x1;2 � 0:2y1;2 �
D!2�t�, dz1;2=dt � 0:2� z1;2�x1;2 	 5:3� �D!3�t�, where
� is the coupling strength. For small coupling, the chaotic
set of the system can have two positive Lyapunov expo-
nents. There is a period-3 window for � � 0:01 in which
there is a periodic attractor and a chaotic saddle with two
positive exponents. Figure 2(a) shows the statistical aver-
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age of the function G�x� � sinx as a function of the noise
amplitude D, where we obtain Dc � 10	2:25. Figure 2(b)
shows the algebraic scaling of �G � hsinxi 	 hsinxic
with D	Dc, where the numerical scaling exponent is
approximately 1:01� 0:08. The theoretical exponent is
about 0.99 [N � 5, Ks � 3, J � 1, ��

1 � 0:34, ��
2 �

0:29, � � 113:2, and H � ��
1 � ��

2 	 1=� � 0:62,
so  � �1=5��3� 1� ���

2 	 �	1�=��
2 � 0:99 ], which

agrees very well with the numerical one.
In summary, we have identified common circumstan-

ces in chaotic dynamical systems under which statistical
averages of dynamical variables and their functions de-
pend on the noise amplitude in an algebraic manner when
it exceeds a critical level [16]. Our results suggest that,
even in low-dimensional chaotic systems, computations
or measurements of statistical or ergodic averages may
not necessarily be invariant under noise. For instance, if a
physical experiment is to be carried out in different times
184101-3
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or in different laboratories, the measurement of average
quantities may not yield the same result because of the
possible variations in the noise level. The algebraic scal-
ing established in this paper suggests that this ‘‘failure of
shadowability’’ of statistical averages is, however, quite
mild as compared with the breakdown of shadowing of
individual numerical trajectories, particularly in situ-
ations of unstable dimension variability where numerical
trajectories diverge exponentially from the true trajecto-
ries and this can occur frequently in time [6,8–10]. The
interplay between chaos and stochasticity is of fundamen-
tal importance for both nonlinear dynamics and statisti-
cal physics, we believe that our scaling results provide
new insights into the problem.

We stress that our scaling result is general because it is
expected to be valid for chaotic systems of all dimensions.
While the scaling law is derived under some assumptions,
it is relevant to and important for real experiments be-
cause its characteristic feature is independent of the de-
tails of the system and of the type of the noise [19] as
well, as numerical computations using different model
chaotic systems yield qualitatively the same scaling re-
sult. This means that, although there exists no precise
model for any experimental system and the internal
and/or environmental noise level may be high, the alge-
braic scaling behavior of statistical averages with noise is
expected to be observable. While the required critical
noise level seen in some of our numerical examples is
relatively small (e.g., 10	5 for the Lorenz system), its
value is determined by the size of the periodic window
in the parameter space. In a situation where an experi-
mental system operates in a relatively large periodic
window, the critical noise level may well exceed the total
intrinsic and environmental noise strength, rendering the
algebraic scaling law of statistical averages experimen-
tally testable.
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