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Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimension
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One of the major routes to chaotic scattering is through anabrupt bifurcation by which a nonattracting
chaotic saddle is created as a system parameter changes through a critical value. In a previously investigated
case, however, the fractal dimension of the set of singularities in the scattering function changes continuously
through the bifurcation. We describe a type of abrupt bifurcation to chaotic scattering where this physically
relevant dimension changesdiscontinuouslyat the bifurcation. The bifurcation is illustrated using a class of
open Hamiltonian systems consisting of Morse potential hills.@S1063-651X~99!51112-4#
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Chaotic scattering@1–9# is a manifestation of transien
chaos@10–12# in open physical systems. What is usua
measured in a scattering experiment is scattering functi
i.e., plots of some output variables after the scattering ve
some input variables before the scattering. The scatterin
chaotic when such a function contains a set of an unco
ably infinite number of singularities. The output of the sy
tem then depends sensitively on the input because, a s
change in the input variable chosen in the vicinity of a s
gularity can cause a large change in the output. This is
hallmark of chaos. Despite unboundedness of scattering
jectories both in the physical space and in the phase sp
the dynamical invariant set responsible for chaotic scatte
is still bounded. These arenonattracting chaotic saddlesin
the scattering region, where the interaction of the part
with the scatterers occurs. The set of singularities in the s
tering function is in fact the set of interacting points betwe
the stable manifold of the chaotic saddle and the line fr
which scattering particles are initiated@2,11#. Chaotic scat-
tering has been identified in a variety of physical conte
such as atomic physics@3#, astrophysics@4#, fluid dynamics
@5#, chemical reaction@6#, electron transport in mesoscop
systems@7#, and even quantum cosmology@8#.

An important problem in the study of chaotic scattering
to understand how it arises as a system parameter chang
major route to chaotic scattering is theabrupt bifurcation
route in which a chaotic saddle is suddenly created. T
route to chaotic scattering was described and analyze
Ref. @9# by using a representative two-degree-of-freed
Hamiltonian system with the following potential function
V(x,y)5x2y2e2(x21y2). This potential is appreciable in th
scattering region near the origin (x,y)5(0,0) but it is negli-
gible at large distances from the origin. There are four id
tical potential hills located at (x,y)5(61,61). When the
particle energyE is greater thanVm , the height of each
potential hill, the dynamics is smooth because a scatte
particle can simply penetrate each hill and exit to infini
However, whenE is smaller thanVm , a particle can be
trapped in the scattering region and the dynamics can
complicated. It was argued in Ref.@9# that a chaotic saddle
containing an infinite number of unstable periodic orbits
created whenE is decreased throughVm . Physically, these
PRE 601063-651X/99/60~6!/6283~4!/$15.00
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unstable periodic orbits correspond to particle trajector
bouncing permanently between the potential hills. It was a
argued that the fractal dimension of the set of singularities
the scattering function starts to increase from zero asE is
decreased fromVm in the following manner: D0(E)
;1/ln@(Vm2E)21#, whereD0 is the box-counting dimension
A feature to notice in this route to chaotic scattering is th
before the bifurcation (E.Vm), D0(E5Vm10)50, while
after the bifurcation (E,Vm), we have limE→Vm20D0(E)
50. Thus, although the bifurcation atVm is calledabrupt,
the fractal dimensionD0(E) is still continuous at the bifur-
cation.

In this Rapid Communication, we describe a differe
type of abrupt bifurcation to chaotic scattering in tw
degree-of-freedom open Hamiltonian systems:H(p,q)
5p2/2m1V(q), wherem is the particle mass,q5(x,y) and
p5(px ,py) are the conjugate coordinate and moment
vectors, respectively, andV(q) is a potential function. Let
the particle energyE be the bifurcation parameter andEc be
the bifurcation point. Before the bifurcation~say, E,Ec),
there exists a bounded chaotic region in the phase space
rounded by classically forbidden potential barriers. T
bounded chaos is typically developed through the destruc
of a hierarchy of Kol’mogorov-Arnol’d-Moser~KAM ! tori.
Particles from outside cannot enter this bounded chaotic
gion so that the scattering dynamics is regular. AtEc , the
barriers disappear, and the bounded Hamiltonian chaos
comes transient, allowing scattering particles to access
previously forbidden region. Scattering then becomes cha
for E.Ec . The key difference between this scenario to ch
otic scattering and the previously studied one@9# is that in
the present route, there is adiscontinuouschange in the frac-
tal dimension of the set of singularities in the scattering fu
tion due to the sudden access of scattering particles to
already developed chaotic set. In what follows, we choos
class of potential functions to demonstrate how naturally t
abrupt bifurcation to chaotic scattering can occur in phy
cally realistic situations. We then analyze the basic dyna
cal characteristics of the bifurcation.

To construct a model, we consider physical situatio
where particles are scattered off by molecules. Assume
there are three molecules located at the vertices (xj ,yj ) ( j
51,2,3) of a triangle of equal length in the plane. For ea
molecule, its interaction with a scattering particle can
R6283 © 1999 The American Physical Society
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modeled by the Morse potential@13#, which has been a para
digm for studying various phenomena in chemical a
atomic physics@14#. The dimensionless potential function o
our scattering system can then be written as

V~x,y!5
V0

2 (
j 51

3

@12e2a(r j 2r e)#2, ~1!

wherer j5A(x2xj )
21(y2yj )

2 ( j 51,2,3), andV0 , a, and
r e are parameters of the Morse potential. Due to conse
tion of energy, the phase-space dimension is three. In
numerical experiments, we fix the following set of parame
valuesm51, V051, a56, andr e50.68. The locations of
the vertices of the triangle are (x1y1)5„1/2,21/(2A3)…,
(x2 ,y2)5„21/2,21/(2A3)…, and (x3 ,y3)5(0,A1/3). The
Hamilton’s equations of motion are integrated by using
standard Sto¨rmer-Verlet method, which preserves the sy
plecticity of the system@15#. The potential distribution is
highly localized and we denote the region around (x,y)
5(0,0), whereV(x,y) is appreciable, thescattering region.
The difference between our scattering model and the pr
ously studied one@9# is that our potential function is mor
realistic and the height of the potential is large so that i
practical sense, the potential hills are classically imp
etrable. As such, the abrupt bifurcation in our system occ
at low energies when the energy is increased through a c
cal value, in contrast to the case treated in Ref.@9# where the
bifurcation occurs at high energies when the particle ene
is decreasedthrough a critical value.

We focus on the physically realistic energy regime wh
the particle energy is much smaller than the height of
potential hills: E!V(xj ,yj ) ( j 51,2,3). Figures 1~a! and
2~b! show the contours of the potential forE51 and forE
54, respectively, where forE51, the region enclosed be
tween the inner and outer closed curves is the classic

FIG. 1. Contour plots of the Morse potential configuration:~a!
E51, and~b! E54.
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forbidden one, and forE54, the regions enclosed by thre
circularlike curves are the classically forbidden region
Thus, forE51, particles coming from far away cannot ent
the scattering region and are simply bounced back from
potential. In this case, the scattering is regular. However,
E54, the potential configuration is similar to that of thre
hard disks@16# for which the scattering is chaotic. Figure
2~a! and 2~b! show the scattering functions forE51 andE
54, respectively, where the outgoing anglef
[tan21(py /px) of the particle trajectory after the scatterin
(px andpy are thex andy components of the momentum! is
plotted against the impact parameterx0. To make these plots
5000 particles uniformly distributed in the intervalx0
P@20.2,0.2# at y0528 are launched upwards in the1y
direction, and the scattering variablef is recorded when the
particles exit the scattering region, say, whenr 5Ax21y2

>10. We see that scattering is regular forE51 because the
scattering function is smooth, while forE54, the scattering
becomes chaotic as there appears to be an infinite numb
singularies in the scattering function. Figures 2~c! and 2~d!
show the corresponding delay-time plots forE51 and E
54, respectively, whereT is the time that a particle spend
in the scattering region before exiting it.

The absence and presence of chaotic scattering atE51
andE54, respectively, suggest that there is a bifurcation
chaotic scattering asE is increased from 1 to 4. Here w
argue that this bifurcation is abrupt. Note that atE51, there
is a triangularlike area in the center of the scattering reg
@Fig. 1~a!# in which the value of the potential is actuall
lower thanE and, hence, this area is classically allowed
particle trajectories. This region, however, isinaccessibleto
scattering particles from outside because it is surrounded
a larger classically forbidden region. Dynamics inside t
triangularlike potential region can be chaotic. In fact, we fi
that for E51, the corresponding phase space contains b
Kol’mogorov-Arnol’d Moser ~KAM ! tori and Hamiltonian
chaotic seas, as shown in Fig. 3~a!, where thex coordinate
and its momentum of particle trajectories are plotted on
Poincare´ surface of section defined byy50. Chaos in this

FIG. 2. ~a! and ~b!: Scattering functionsf(x0) for E51, and
E54, respectively.~c! and ~d!: Delay-time functionsT(x0) for E
51, andE54, respectively.
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case is bounded. AsE is increased, the triangularlike are
enlarges and the phase-space structure inside also evolv
particular, KAM tori are destroyed and the chaotic sea
enlarged, as shown by the phase-space structure on the
caré surface of section in Fig. 3~b! for E52.5. At some
critical energy valueEc where the inner classically allowe
region connects with the outside one, the previously boun
chaotic sea becomes transient because trajectories can e
through one of the openings. Now, particles coming fro
outside can get access to the transient chaotic region so
the scattering becomes chaotic. The appearance of ch
scattering is abrupt because forE,Ec , the scattering dy-
namics is smooth, while it is chaotic forE.Ec . Numeri-
cally, for the scattering configuration described, we findEc
'2.55.

Depending on whether there are still KAM tori left fo
E*Ec , the chaotic scattering can be either hyperbolic
nonhyperbolic. In hyperbolic chaotic scattering, all the pe
odic orbits are unstable and there are no KAM surfaces in
scattering region. A characteristic feature of hyperbolic c
otic scattering is that the survival probability of a particle
the scattering region decays exponentially with time:P(t)
;e2gt, where t is time andt51/g is the lifetime of the
chaotic saddle@11#. On the other hand, in nonhyperbol
chaotic scattering, there are both KAM surfaces and cha
regions in the phase space@17,18#. Due to the ‘‘stickiness’’
of KAM surfaces, the survival probability of a scatterin
particle decays algebraically with time@19#: P(t);t2z for
large t. In the present route to chaotic scattering, depend
on whether there are still KAM tori left forE*Ec , the scat-
tering can be either hyperbolic or nonhyperbolic. Nume
cally, we find that for the scattering configuration describ

FIG. 3. Phase-space structure on Poincare´ surface of section of
the classically allowed region that is inaccessible to scattering
ticles for: ~a! E51, and ~b! E52.5,Ec . There are both KAM
surfaces and bounded chaotic sea forE51. For E52.5, all KAM
surfaces have apparently disappeared.
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abrupt bifurcation leads tohyperbolic chaotic scattering. An
alteration in the scattering configuration can easily lead
abrupt bifurcation to nonhyperbolic chaotic scattering. F
instance, when the Morse molecule on they axis is pulled
closer to the pair in thex direction, say aty350.45, there are
still KAM surfaces left in the scattering region after the b
furcation that connects the inner and outside classically
lowed regions.

The major physically measurableconsequence of the
abrupt bifurcation to chaotic scattering described above
that there is a discontinuous change in the fractal dimens
D0 of the set of singularities in the scattering function. Fro
Figs. 2~a!–2~d! it is apparent that forE,Ec ~before the bi-
furcation!, both the scattering and the delay-time functio
are smooth, and, hence,D050. For E.Ec ~after the bifur-
cation!, the scattering and the delay-time functions sudde
contain a Cantor set of singularities withD0.0. To compute
the values ofD0, we use the uncertainty algorithm@20#.
Specifically, we randomly choose a large number of pairs
particles with distancee apart from a line segment aty0
5210 and compute, for each pair, whether the two partic
exit the scattering region through different open chann
shown in Fig. 1~b!. The fraction of these uncertain pairsf (e)
typically scales withe as f (e);e12D0 @20#. In the actual
computation, for each energy value,f (e) is approximated by
Nu /N0, whereNu is the number of uncertain pairs amongN0
pairs of initial conditions chosen~we fix Nu5200). Figure 4
showsD0 versusE for 1.0<E<4.0, where the sudden jum
in D0 at Ec is apparent. Theoretically, forE immediately
aboveEc when the bounded chaotic sea in the scatter
region just becomes transient, the value ofD0 is unity be-
cause by continuity, the box-counting dimension of the c
otic saddle forE*Ec is the same as that of the Hamiltonia
chaotic sea forE&Ec , which is the phase-space dimensio
Numerically, we find thatD0'0.9 for E52.6.Ec . On the
other hand, the jump inD0 will be unity at the abrupt bifur-
cation if it leads to nonhyperbolic chaotic scattering,
though it is unlikely to obtainD051 in numerical computa-
tions @21#. We note that this discontinuous change in t
fractal dimension is the key ingredient that distinguishes

r-

FIG. 4. Fractal dimensionD0 of the set of singularities in the
scattering function vsE. There is a discontinuous change inD0 at
Ec , the abrupt bifurcation point to chaotic scattering.
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abrupt route to chaotic scattering from the previously stud
one @9#: in that case the dimension scales withE inversely
logarithmically and the dimension is in fact continuous at
bifurcation.

In summary, we analyzed an alternate type of abrupt
furcation to chaotic scattering. The bifurcation occurs whe
closed Hamiltonian chaotic sea, hyperbolic or nonhyp
bolic, suddenly becomes accessible to scattering trajecto
as a system parameter changes. Consequently, there is
os
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continuous increase in the fractal dimension of the set
singularities in the scattering function. We expect this bifu
cation to be observable because the model that we have
lized to illustrate this bifurcation is constructed in a phy
cally realistic way.
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Blümel, Phys. Rev. A46, 4661~1992!.

@19# J. D. Meiss, J. R. Cary, C. Grebogi, C. Grebogi, J. D. Cra
ford, A. N. Kaufman, and H. D. I. Abarbanel, Physica D6, 375
~1983!; C. F. F. Karney,ibid. 8, 360 ~1983!; B. V. Chirikov
and D. L. Shepelyanskyibid. 13, 395 ~1984!; J. D. Meiss and
E. Ott, Phys. Rev. Lett.55, 2741~1985!.

@20# S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke, Physi
D 17, 125 ~1985!.

@21# Y. T. Lau, J. M. Finn, and E. Ott, Phys. Rev. Lett.66, 978
~1991!.


