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Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimension
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One of the major routes to chaotic scattering is throughalrupt bifurcation by which a nonattracting
chaotic saddle is created as a system parameter changes through a critical value. In a previously investigated
case, however, the fractal dimension of the set of singularities in the scattering function changes continuously
through the bifurcation. We describe a type of abrupt bifurcation to chaotic scattering where this physically
relevant dimension changelscontinuouslyat the bifurcation. The bifurcation is illustrated using a class of
open Hamiltonian systems consisting of Morse potential Hi84.063-651X99)51112-4

PACS numbd(s): 05.45.Ac

Chaotic scattering1-9] is a manifestation of transient unstable periodic orbits correspond to particle trajectories
chaos[10-17 in open physical systems. What is usually bouncing permanently between the potential hills. It was also
measured in a scattering experiment is scattering function@rgued that the fractal dimension of the set of singularities in

i.e., plots of some output variables after the scattering versu§ie scattering function starts to increase from zerdas

some input variables before the scattering. The scattering décreased fromVy, in the following manner: Do(E)

e _ _l . ~ B . .
chaotic when such a function contains a set of an uncounts Y/!N[(Vm—E) "], whereD, is the box-counting dimension.

ably infinite number of singularities. The output of the sys-A feature to notice in this route to chaotic scattering is that
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tem then depends sensitively on the input because, a sm%ﬁgr?h?ebi?:r%;?gﬁ %EVV’)“) ,w[()aO(hivevﬁngoz, OO’DV:(hllzl)e
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change in the input variable chosen in the vicinity of a sin-_ Thus, although the bifurcation & is calledabrupt

gularity can cause a Iarge change in the output. Th's. IS thﬁwe fractal dimensiomy(E) is still continuous at the bifur-
hallmark of chaos. Despite unboundedness of scattering tra- i

jectories both in the physical space and in the phase space, | this Rapid Communication, we describe a different
the dynamical invariant set responsible for chaotic scatteringype of abrupt bifurcation to chaotic scattering in two-
is still bounded. These amonattracting chaotic saddles degree-of-freedom open Hamiltonian systemid(p,q)
the scattering region, where the interaction of the particle=p?/2m+V(q), wheremis the particle mass=(x,y) and
with the scatterers occurs. The set of singularities in the scap=(p,,py) are the conjugate coordinate and momentum
tering function is in fact the set of interacting points betweenvectors, respectively, and(q) is a potential function. Let
the stable manifold of the chaotic saddle and the line fronihe particle energ§ be the bifurcation parameter akd be
which scattering particles are initiat¢d,11]. Chaotic scat- the bifurcation point. Before the bifurcatiogsay, E<E,),
tering has been identified in a variety of physical contextdN€re exists a bounded chaotic region in the phase space sur-
such as tomic pysids) asvophysicss), fud dynamics [N by Sessealy el peerte bariers, Toe
[5], chemical reactiori6], electron transport in mesoscopic of a hierarchy of K)é)ﬁ)’mogorov-ArrEol’d-MosngAM) tori.
SVStemSm’ and even quantum cosmolog]. . .. Particles from outside cannot enter this bounded chaotic re-
An important problem in the study of chaotic scattering ISgion so that the scattering dynamics is regular.EAt the
to understand how it arises as a system parameter changeSyfyriers disappear, and the bounded Hamiltonian chaos be-
major route to chaotic scattering is thabrupt bifurcation -, mes transient, allowing scattering particles to access the
route in which a chaotic saddle is suddenly created. Thigyeyiously forbidden region. Scattering then becomes chaotic
route to chaotic scattering was described and analyzed iy, g~ E.. The key difference between this scenario to cha-
Ref. [9] by using a representative two-degree-of-freedomyic scattering and the previously studied 4 is that in
Hamiltonian syst2em2W|th the following potential function: pe present route, there igdéscontinuoushange in the frac-
V(x,y)=x%y?e”"*¥) This potential is appreciable in the tal dimension of the set of singularities in the scattering func-
scattering region near the origin,{/) = (0,0) but it is negli- tion due to the sudden access of scattering particles to an
gible at large distances from the origin. There are four idenalready developed chaotic set. In what follows, we choose a
tical potential hills located atx(y)=(=1,=1). When the class of potential functions to demonstrate how naturally this
particle energyE is greater thanVv,,, the height of each abrupt bifurcation to chaotic scattering can occur in physi-
potential hill, the dynamics is smooth because a scatteringally realistic situations. We then analyze the basic dynami-
particle can simply penetrate each hill and exit to infinity. cal characteristics of the bifurcation.
However, whenE is smaller thanV,,, a particle can be To construct a model, we consider physical situations
trapped in the scattering region and the dynamics can behere particles are scattered off by molecules. Assume that
complicated. It was argued in RgB] that a chaotic saddle there are three molecules located at the vertiogsy() (j
containing an infinite number of unstable periodic orbits is=1,2,3) of a triangle of equal length in the plane. For each
created wherk is decreased throughi,,. Physically, these molecule, its interaction with a scattering particle can be
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FIG. 2. (8 and (b): Scattering functionsp(x,) for E=1, and
-1 E=4, respectively(c) and (d): Delay-time functionsT(x,) for E
-1 0 1 =1, andE=4, respectively.
X

FIG. 1. Contour plots of the Morse potential configuratice: fqrbidde_n one, and foE=4, the regions enclosed by three
E=1, and(b) E=4. circularlike curves are the classically forbidden regions.
Thus, forE=1, particles coming from far away cannot enter

modeled by the Morse potentigl3], which has been a para- the scgttering region and are simply bounced back from the
d|gm for Studying various phenomena in chemical andpotentlal. In this case, the Scattering is regular. However, for

atomic physic§14]. The dimensionless potential function of E=4, the potential configuration is similar to that of three
our Scattering System can then be written as hard dlSkS[lG] for which the Scattering is chaotic. FigUreS

2(a) and 2b) show the scattering functions f&=1 andE
V. B2 =4, respectively, where the outgoing anglep
V(X,y)= -0 2 [1—e 2(fi~Te]2, 1) Etanfl(py/px) of the particle trajectory after the scattering
2 =1 (px andp, are thex andy components of the momenturis
plotted against the impact parametgr To make these plots,
wherer ;= \(x—x;)*+(y—y;)* (j=1,2,3), and/y, a, and 5000 particles uniformly distributed in the intervad,
r. are parameters of the Morse potential. Due to conservae[—0.2,0.2 at yo=—8 are launched upwards in they
tion of energy, the phase-space dimension is three. In outirection, and the scattering variahteis recorded when the
numerical experiments, we fix the following set of parametemparticles exit the scattering region, say, when x>+ y?
valuesm=1, Vo=1, =6, andr,=0.68. The locations of =10. We see that scattering is regular Eb+=1 because the
the vertices of the triangle arex{y,)=(1/2,—1/(2y3)), scattering function is smooth, while f&=4, the scattering
(X2,Y,)=(—1/2—1/(23)), and (Ks,y3)=(0,y1/3). The becomes chaotic as there appears to be an infinite number of
Hamilton’s equations of motion are integrated by using thesingularies in the scattering function. Figure®)2and 2d)
standard Staner-Verlet method, which preserves the sym-show the corresponding delay-time plots fle=1 and E
plecticity of the systen{15]. The potential distribution is =4, respectively, wher@& is the time that a particle spends
highly localized and we denote the region aroundyj in the scattering region before exiting it.
=(0,0), whereV(x,y) is appreciable, thecattering region The absence and presence of chaotic scatterirg=at
The difference between our scattering model and the previandE=4, respectively, suggest that there is a bifurcation to
ously studied ong9] is that our potential function is more chaotic scattering ag is increased from 1 to 4. Here we
realistic and the height of the potential is large so that in argue that this bifurcation is abrupt. Note thaEat 1, there
practical sense, the potential hills are classically impenis a triangularlike area in the center of the scattering region
etrable. As such, the abrupt bifurcation in our system occurfFig. 1(a)] in which the value of the potential is actually
at low energies when the energy is increased through a crittower thanE and, hence, this area is classically allowed for
cal value, in contrast to the case treated in R&fwhere the  particle trajectories. This region, however,jisiccessibleo
bifurcation occurs at high energies when the particle energgcattering particles from outside because it is surrounded by
is decreasedhrough a critical value. a larger classically forbidden region. Dynamics inside the
We focus on the physically realistic energy regime wheretriangularlike potential region can be chaotic. In fact, we find
the particle energy is much smaller than the height of thehat forE=1, the corresponding phase space contains both
potential hills: E<V(x;,y;) (j=1,2,3). Figures (@ and Kol'mogorov-Arnol'd Moser (KAM) tori and Hamiltonian
2(b) show the contours of the potential fe=1 and forE chaotic seas, as shown in FigaB where thex coordinate
=4, respectively, where foE=1, the region enclosed be- and its momentum of particle trajectories are plotted on the
tween the inner and outer closed curves is the classicallPoincaresurface of section defined by=0. Chaos in this
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FIG. 4. Fractal dimensio®, of the set of singularities in the
scattering function v&. There is a discontinuous changeDry at
E., the abrupt bifurcation point to chaotic scattering.

-0.1 0 o041 abrupt bifurcation leads thyperbolic chaotic scatteringAn
X alteration in the scattering configuration can easily lead to
abrupt bifurcation to nonhyperbolic chaotic scattering. For

FIG. 3. Phase-space structure on Poincardéace of section of instance, when the Morse molecule on thexis is pulled
the classically allowed region that is inaccessible to scattering par- ’ P

ticles for: (8 E=1, and(b) E=2.5<E.. There are both KAM Clpser to the pair in thg_direction, say ay3:0.'45’ there are.
surfaces and bounded chaotic seaBor1. ForE=25. all KAM still KAM surfaces left in the scattering region after the bi-

surfaces have apparently disappeared. furcation t.hat connects the inner and outside classically al-
lowed regions.
case is bounded. AE is increased, the triangularlike area  The major physically measurableconsequence of the
enlarges and the phase-space structure inside also evolves aprupt bifurcation to chaotic scattering described above is
particular, KAM tori are destroyed and the chaotic sea isthat there is a discontinuous change in the fractal dimension
enlarged, as shown by the phase-space structure on the Polde Of the set of singularities in the scattering function. From
care surface of section in Fig. (B) for E=2.5. At some Figs. 2a-2(d) it is apparent that foE<E_ (before the bi-
critical energy valueE, where the inner classically allowed furcation, both the scattering and the delay-time functions
region connects with the outside one, the previously boundedre smooth, and, hencB,=0. For E>E, (after the bifur-
chaotic sea becomes transient because trajectories can esc&p8on, the scattering and the delay-time functions suddenly
through one of the openings. Now, particles coming fromcontain a Cantor set of singularities with,>0. To compute
outside can get access to the transient chaotic region so thé#e values ofD,, we use the uncertainty algorithfiz0].
the scattering becomes chaotic. The appearance of chaofipecifically, we randomly choose a large number of pairs of
scattering is abrupt because fBE., the scattering dy- particles with distances apart from a line segment af

namics is smooth, while it is chaotic f&>E.. Numeri- ~=—10and compute, for each pair, whether the two particles
cally, for the scattering configuration described, we fifd  €Xit the scattering region through different open channels
~2.55. shown in Fig. 1b). The fraction of these uncertain paff&e)

Depending on whether there are still KAM tori left for typically scales withe as f(e)~e'~P0 [20]. In the actual
E=E,., the chaotic scattering can be either hyperbolic orcomputation, for each energy valuge) is approximated by
nonhyperbolic. In hyperbolic chaotic scattering, all the peri-Ny/No, whereN,, is the number of uncertain pairs amoNg
odic orbits are unstable and there are no KAM surfaces in thgairs of initial conditions chosefwe fix N,=200). Figure 4
scattering region. A characteristic feature of hyperbolic chashowsD versusk for 1.0<E=<4.0, where the sudden jump
otic scattering is that the survival probability of a particle inin Dy at E. is apparent. Theoretically, foE immediately
the scattering region decays exponentially with tinRét) above E. when the bounded chaotic sea in the scattering
~e ", wheret is time andr=1/y is the lifetime of the region just becomes transient, the valueDf is unity be-
chaotic saddlg11]. On the other hand, in nonhyperbolic cause by continuity, the box-counting dimension of the cha-
chaotic scattering, there are both KAM surfaces and chaotiotic saddle foE=E, is the same as that of the Hamiltonian
regions in the phase spafk7,18. Due to the “stickiness” chaotic sea foE<E_, which is the phase-space dimension.
of KAM surfaces, the survival probability of a scattering Numerically, we find thaDy~0.9 for E=2.6>E.. On the
particle decays algebraically with tinjd9]: P(t)~t~? for ~ other hand, the jump iDy will be unity at the abrupt bifur-
larget. In the present route to chaotic scattering, dependingation if it leads to nonhyperbolic chaotic scattering, al-
on whether there are still KAM tori left fOE=E,, the scat- though it is unlikely to obtairD,=1 in numerical computa-
tering can be either hyperbolic or nonhyperbolic. Numeri-tions [21]. We note that this discontinuous change in the
cally, we find that for the scattering configuration describedfractal dimension is the key ingredient that distinguishes our
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abrupt route to chaotic scattering from the previously studied¢ontinuous increase in the fractal dimension of the set of

one[9]: in that case the dimension scales wihinversely  singularities in the scattering function. We expect this bifur-

logarithmically and the dimension is in fact continuous at thecation to be observable because the model that we have uti-

bifurcation. lized to illustrate this bifurcation is constructed in a physi-
In summary, we analyzed an alternate type of abrupt bically realistic way.

furcation to chaotic scattering. The bifurcation occurs when a .

closed Hamiltonian chaotic sea, hyperbolic or nonhyper- This work was supported by AFOSR under Grant No.

bolic, suddenly becomes accessible to scattering trajectorids#9620-98-1-0400 and by NSF under Grant No. PHY-
as a system parameter changes. Consequently, there is a #g22156.
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