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Unstable dimension variability and complexity in chaotic systems
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We examine the interplay between complexity and unstable periodic orbits in high-dimensional chaotic
systems. Argument and numerical evidence are presented suggesting that complexity can arise when the
system is severely nonhyperbolic in the sense that periodic orbits with a distinct number of unstable directions
coexist and are densely mixed. A quantitative measure is introduced to characterize this unstable dimension
variability. [S1063-651X%99)51404-9

PACS numbd(s): 05.45.Ac

Complexity has become an issue of recent intef@t sion variability. Our study represents one approach to study
While there is no general definition of complexity at present,complexity in terms of dynamical quantities that are well
previous works suggest that complex systems should havenderstood in the context of low-dimensional chaotic sys-
the following three propertiegl) they consist of many com- tems[17], knowledge of which has now become relatively
ponents that are interconnected in a complicated mag®er, ample.
the components can be either regular or irregular,(@nthe Before we describe the detail of our work, we wish to
components exist on different length and/or time scales, i.estress that unstable dimension variability provides g
a complex system exhibits a hierarchy of structures6].  possible mechanism for complexity. The description of com-
These are also called thhree traitsof a complex system plexity in terms of the three traits, as stated above, is math-
[1-5]. Complex systems are common in many natural sysematically inexact, while unstable dimension variability is a
tems such as the Rayleigh4B&rd convectiori7], neuronal nonhyperbolic property of chaotic systems that can be de-
activity [8], extended nonlinear optical systef, fluidized  fined rigorously{13—16. There are undoubtedly many other
beds[10], etc. One manifestation of complexity in chaotic scenarios to complexity that need to be explored. The main
systems is the basin structure. Take, for example, the doubl®otivation for us to study unstable dimension variability is
rotor map: a mechanical system of two degrees of freedorthat it has been considered as a fundamental dynamical prop-
subject to external periodic kickL1]. The map exhibits all erty of high-dimensional chaotic systeni$3—-16 where
three traits of a complex system in wide parameter regimesomplicated behaviors, such as riddled ba§ii@, can arise.

[5]. Often, there are many coexisting periodic attractorsEven then, as we will see in numerical examples, unstable
whose basins of attraction are interconnected via chaotidimension variability alone cannot guarantee complexity.
saddles on the boundaries in a complex way, and the baskor instance, another necessary condition for riddled basins
boundaries permeate most of the phase space. to occur is that there must be multiple coexisting attractors in

In order to better understand and manipulate complex syghe phase space. Complex systems can also exhibit highly
tems, it is important to study the dynamical origin of com- simplified global behavior in certain parameter rangdes6|.
plexity. In particular, one wishes to understand how com-At present, it is not clear whether unstable dimension vari-
plexity arises in terms of the fundamental dynamicalability can account for such simple behaviors.
guantities of the underlying system. And there is nothing To argue that unstable dimension variability can lead to
more fundamental than studying complexity in terms of thephysically observable, complex behaviors, we consider the
unstable periodic orbitembedded in the invariant set, which system ofN coupledd-dimensional maps. Assume that the
are commonly regarded as the basic building blocks of system has a synchronization manifold [19,20, and the
nonlinear systemgl2]. The aim of this paper is to present individual maps, when decoupled, exhibit a chaotic attractor
explicit evidence elucidating the interplay between complexwith one positive Lyapunov exponent that is not close to
ity and unstable periodic orbits in high-dimensional chaoticzero so that there is no unstable dimension variability. Note
systems. Our principal result is that complexity can be acthat this chaotic attractor is the one . Since such a
companied by a particular type of nonhyperbolicityistable  system of coupled maps represents a spatiotemporal system,
dimension variabilityf 13—16. Roughly, unstable dimension a systematic analysis of unstable periodic orbits in the full
variability means that unstable periodic orbits embedded in @hase space is extremely difficult. We thus focus on unstable
chaotic set have distinct numbers of unstable directions. As periodic orbits inM. The local eigenspace of each periodic
consequence, a trajectory typically moves in regions withorbit in M is Nd dimensional, and each orbit has at least one
different unstable dimensions, leading to fluctuations abouunstable direction, the one associated with the chaotic attrac-
zero of some Lyapunov exponerjts4,15. We introduce a tor in M. There areN—1 subspaces that are transverse to
quantity, acontrastmeasure, to characterize the degree ofM: each isd dimensional. Foe=0 (uncoupled caseeach
unstable dimension variability. We then study a system, fotransverse subspace is unstable and, hence, all periodic orbits
which a subclass of unstable periodic orbits can be computeldave N unstable directions and there is no unstable dimen-
explicitly, to demonstrate the existence of extremely compli-sion variability. In this caseM is transversely unstable and
cated basin boundaries among multiple coexisting attractorthe asymptotic attractor of the system is a trivial combination
in parameter regimes where there is severe unstable dimenf N chaotic attractors of the individual maps. There is thus
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no difficulty of predicting it for almost all initial conditions
chosen from its basin. As the couplirgis increased from
zero, a periodic orbit if?M can become stable in some of its
transverse subspaces, leading to unstable dimension variabil-
ity. To see how complexity can arise, imagine the situation
where there are slightly more periodic orbits that are stable in <
all transverse subspaces than those that are unstable in at
least one transverse subspace, so that, on average, a chaotic
trajectory in M is transversely stable. Call the former set
St and the latter se¥ 1. Initial conditions in the vicinity
of a periodic orbit inX+g, but off M, can be attracted to- 2 016 0.18 02 0922 0924
wards M and will asymptote towards it. For these initial €
conditions, the asymptotic attractor is the chaotic ongvin
and synchronization can be achieved for these initial condi-  FIG. 1. The Lyapunov spectrum \sfor N=2 in Eq. (1).
tions in a noiseless situatidr20]. An initial condition near ) o ) _
one of the periodic orbits iX 1, however, can be repelled The fluctuatlons indicate the coemstepce of multiple attrac-
away temporally fromM along one of the transversely un- tors, and the wildness of the fluctuations suggests that the
stable directions. If there are other attractors coexisting wittPoundaries between the basins of these attractors may be
the one inM in the phase space, there is a nonzero probduite complicated23]. Similar behavior persists for Eql)
ability that such an initial condition can asymptote towardsfor N>2 [23]. _ _
one of the attractors that are not.v. SinceS ;s andS 1y To see that complex behavior actually occurs in parameter
are typically intermingled in the chaotic attractor, prac- ~ €gions where the Lyapunov exponents fluctuate widely, we
tically, it is not possible to trace a specific initial condition to €xamine the basin structure of the coexisting attractors. Fig-
its asymptotic attractor. In this case, the basin of the attractdi’® 2 shows, foN=2 ande=0.18, the behavior of initial
in M is riddled[18]. Regarding each attractor, together with conditions chosen from the two-dimensional ared.0
its basin, as a component of the system of coupled maps, wel[X(1).x(2)]<1.0 withy(1)=y(2)=0. The blue diagonal
see that complexity can arise as a consequence of unstatiée denotes the synchronization manifold, and the green,
dimension variability. yellow, and red regions are the basins of the attractoystin

In order to explicitly demonstrate the interplay between©ff M, and at=, respectively. Regarding each attractor to-
unstable dimension variability and complexity, we study thegether with its basin as one component of the system, we see

following system of globally coupled H@n maps: that (1) there are multiple components that are intercon-
nected in a very complicated manné2) both regularn(e.g.,

] ] e ) 2 ] the attractor ato) and irregulane.g., the chaotic attractor in
Xn+a(l)=a—| (1= ex()+ 5= i Xn(1) | +bya(i), M) components coexist, art@) there is a hierarchy of struc-
’ 2 ture for these componenf®4]. These are the three traits
Ynsa(D)=xp(i), i=1,...N, characterizing complexity. Thus, for E€l), complexity can
occur.
where the synchronization stafef, x(1)=---=x(N), is a We now examine the behavior of unstable periodic orbits

solution of Eg.(1). In M, Eq. (1) reduces to the two- in parameter regimes where there is complexity. In order to
dimensional Heon map[21] for which a andb are param-  facilitate the counting of possibilities of different unstable
eters. Unstable periodic orbits of the mte map can be ex- djrections, we choosbl=2 in Eq.(1). We compute all pe-
plicitly computed with high precision by using the method in riodic orbits embedded in the iHen attractor inM up to
Ref. [22]. In our numerical experiments, we choase 1.4 period 30 and compute the Lyapunov spectrum for each or-
and b=0.3, the standard parameter setting for which thepijt. SinceN=2, a periodic orbit can have either one or two
Henon map exhibits a chaotic attractor for most initial con- ynstable directions: Those with ofisvo) unstable direction
ditions chosen from the regior 2<(x,y)<2. There is at  are the orbits that are transversely stablestabl¢. Our prin-
least another attractor, the attractor -at. The boundary cipal finding is that unstable dimension variability appears to
between the basins of the chaotic attractor and the one ®e severe for 0.16e<0.22—the parameter regime where
infinity is apparently smooth. Thus, for the singlertd®@  there is complexity.

map, there is no complexity, which characterizes the dynam- To quantify the severeness of unstable dimension vari-

ics in M. For e=0, Eq. (1) reduces to a set dfl isolated  ability, we introduce the followingontrast[25] measure:
Henon maps, and there is no complexity. In this case, every

periodic orbit embedded in the chaotic attractor i is
unstable in all N— 1) transverse subspaces and, hence, there P
is no unstable dimension variability either. To characterize

the global dynamical behavior of El) as € is increased where,ulyz(p)EE}“:l’f(p)e*”jl(p’p, andN,(p) andN,(p) are

from zero, we compute the Lyapunov spectrum of EQ. Lo . A
Figure 1 shows, foN=2, the four Lyapunov exponents ver- the number§ of perlod|c orblts_ of pe_nqnjwf[h one and two
unstable directions, respectivelyy)(p) is the largest

suse, where 1000 values afare uniformly distributed in the ; e ) :
interval [0.15, 0.2 and for eache, 107 iterations(with 1¢  Lyapunov exE)onent of thih periodic orbit of periog, and
preiterations are used to compute the exponents. We notdhe factore *1(PP approximates the natural measure associ-
that there are wild fluctuations of the Lyapunov exponentsated with this orbif26]. The quantitiesu; o(p) are then the

Ho(P) = p1(P)
m2(p)+ pa(p)|’

@
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FIG. 2. (Color Basins of attraction for attractors i (greer), off M (yellow), and at infinity(red) for N=2 ande=0.18 in Eq.(2).

weightednumbers of periogh orbits with one and two un- (@)
stable directions, respectively. When there is no unstable di- 0.4 Sgggfgx?tf?; i ,
mension variability, we have eithé&t,(p)=0 or N,(p)=0, 0.2
which yieldsC,=1. The contrasC, starts to decrease from ]
one when unstable dimension variability occurs, and the j) o Y0 R | | - . I
worst case iSC,=0, corresponding to the situation where « \J&/
unstable dimension variability is most sevefe.;(p) <02 1
=u,(p)]. Figure 3 showsC,; (filled circleg, C,, (open 0.4 A,
circles, C,5 (open squargsandC,g (open diamondsversus E— :/
€. Apparently, for all four periodsC, is minimum near -0.6 4 A
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FIG. 3. The contrast ve for all periodic orbits of four different
periods forN=2 in Eq. (1). The regime where the contrasts are  FIG. 4. (a) The Lyapunov spectrum vs the coupling strength
well below 1 is the one in which severe unstable dimension vari-and(b) the contrast measu@, vs e for p=15, 17, and 19 for the
ability occurs. system of coupled lkeda-Hammel-Jones-Moloney maps.
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€=0.18, for which severe complexity is observéeigs. 1  Lyapunov spectrum is plotted as a functioneofTo examine
and 2. An examination of other periodic orbits of periods, unstable dimension variability, we use the recent method re-
say, larger than 15, reveals a similar behavior. Thus, thgorted in Ref[28] to compute unstable periodic orbits em-
contrast measur€, is not sensitive to the choice of the bedded in the chaotic attractor in the synchronization mani-
periodp, insofar ag is large enough so that there are a largefold. Figure 4b) shows the contrast measutg versuse for
number of orbits. This can be understood by noting Bat p=15, 17, and 19. There is apparently a close correlation
is a statistical quantity and, hence, it is meaningful onlybetween complexity and unstable dimension variability. In
when a large number of unstable periodic orbits is involvedparticular, we see that complex behavior occurs when there
For small values op, the number of orbits is usually too is severe unstable dimension variabilig{<0.5). Note that
small for any reliable statistical estimate to be performed. complex behavior seems to have disappeared w@gn

Can the correlation between the contrast meaSyrand  reaches minimum a¢~0.11. This is due to the disappear-
complex behavior also be observed in any other systems? Tance of multiple coexisting attractors at0.11. This ex-
address this question, we consider the following system ofimple also indicates that unstable dimension variability is, at
two coupled Ikeda-Hammel-Jones-Moloney mafa7]:  most, a necessary condition for complexity.
z...=at+bze? 7z . =ath feiqsr'], wherez=(x,y) and In cor_lclusion, we have gxa_mineo! the int_e_rplay between
tr';g 1coup|in;noccuranirnl the phzr\]se variablgs an(d (;2: &, complexity and unstab_le periodic ort_)lt_s by ut|I|Z|ng two sys-
=k—p/(1+22)+27re(x’—x ), and ¢! =k—p/[1+(2)?] tems of poupled Ch?.OtIC maps. Explicit computation of_pen-

n noon n n odic orbits and their Lyapunov spectra suggest that, in pa-

+2me(X,—Xy). Here,a, b, k andp are parameters, aBd  meter regimes where there is complexity, the system can
represents the coupling strength. The Ikeda-

Hammel-Jonegg eyiremely nonhyperbolic, as characterized by severe un-

Moloney map models the dynamics of an optical pulsegiaphie dimension variability. This type of nonhyperbolicity
propagating in a ring cavity, subject to partial reflection

; . ; . 'may thus provide us with a hint to understand complex be-
phase and amplitude modulation, and distortion due to a NoNs4viors in deterministic chaotic systems.

linear optical medium in the cavity. To search for complex

behaviors, we choosea(b,k,p)=(0.85,0.9,0.4,5.18) so

that the lkeda-Hammel-Jones-Moloney map, in the absence | thank Dr. Y. Nagai and Dr. R. Davidchack for assiting

of coupling, exhibits a chaotic attractor. As the couplingin the computation of periodic orbits. This work was sup-
strength is increased from zero, we find a complicated basiported by the NSF under Grant No. PHY-9722156, and by
structure neak=0.1, as suggested by Fig(a}, where the the AFOSR under Grant No. F49620-98-1-0400.
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