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Unstable dimension variability and complexity in chaotic systems
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We examine the interplay between complexity and unstable periodic orbits in high-dimensional chaotic
systems. Argument and numerical evidence are presented suggesting that complexity can arise when the
system is severely nonhyperbolic in the sense that periodic orbits with a distinct number of unstable directions
coexist and are densely mixed. A quantitative measure is introduced to characterize this unstable dimension
variability. @S1063-651X~99!51404-9#
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Complexity has become an issue of recent interest@1#.
While there is no general definition of complexity at prese
previous works suggest that complex systems should h
the following three properties:~1! they consist of many com
ponents that are interconnected in a complicated manner~2!
the components can be either regular or irregular, and~3! the
components exist on different length and/or time scales,
a complex system exhibits a hierarchy of structures@1–6#.
These are also called thethree traitsof a complex system
@1–5#. Complex systems are common in many natural s
tems such as the Rayleigh-Be´nard convection@7#, neuronal
activity @8#, extended nonlinear optical systems@9#, fluidized
beds@10#, etc. One manifestation of complexity in chaot
systems is the basin structure. Take, for example, the do
rotor map: a mechanical system of two degrees of freed
subject to external periodic kick@11#. The map exhibits all
three traits of a complex system in wide parameter regim
@5#. Often, there are many coexisting periodic attract
whose basins of attraction are interconnected via cha
saddles on the boundaries in a complex way, and the b
boundaries permeate most of the phase space.

In order to better understand and manipulate complex
tems, it is important to study the dynamical origin of com
plexity. In particular, one wishes to understand how co
plexity arises in terms of the fundamental dynamic
quantities of the underlying system. And there is noth
more fundamental than studying complexity in terms of
unstable periodic orbitsembedded in the invariant set, whic
are commonly regarded as the basic building blocks o
nonlinear systems@12#. The aim of this paper is to presen
explicit evidence elucidating the interplay between compl
ity and unstable periodic orbits in high-dimensional chao
systems. Our principal result is that complexity can be
companied by a particular type of nonhyperbolicity:unstable
dimension variability@13–16#. Roughly, unstable dimensio
variability means that unstable periodic orbits embedded
chaotic set have distinct numbers of unstable directions. A
consequence, a trajectory typically moves in regions w
different unstable dimensions, leading to fluctuations ab
zero of some Lyapunov exponents@14,15#. We introduce a
quantity, acontrast measure, to characterize the degree
unstable dimension variability. We then study a system,
which a subclass of unstable periodic orbits can be comp
explicitly, to demonstrate the existence of extremely com
cated basin boundaries among multiple coexisting attrac
in parameter regimes where there is severe unstable dim
PRE 591063-651X/99/59~4!/3807~4!/$15.00
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sion variability. Our study represents one approach to st
complexity in terms of dynamical quantities that are w
understood in the context of low-dimensional chaotic s
tems @17#, knowledge of which has now become relative
ample.

Before we describe the detail of our work, we wish
stress that unstable dimension variability provides onlyone
possible mechanism for complexity. The description of co
plexity in terms of the three traits, as stated above, is ma
ematically inexact, while unstable dimension variability is
nonhyperbolic property of chaotic systems that can be
fined rigorously@13–16#. There are undoubtedly many othe
scenarios to complexity that need to be explored. The m
motivation for us to study unstable dimension variability
that it has been considered as a fundamental dynamical p
erty of high-dimensional chaotic systems@13–16# where
complicated behaviors, such as riddled basins@18#, can arise.
Even then, as we will see in numerical examples, unsta
dimension variability alone cannot guarantee complex
For instance, another necessary condition for riddled ba
to occur is that there must be multiple coexisting attractors
the phase space. Complex systems can also exhibit hi
simplified global behavior in certain parameter ranges@1–6#.
At present, it is not clear whether unstable dimension va
ability can account for such simple behaviors.

To argue that unstable dimension variability can lead
physically observable, complex behaviors, we consider
system ofN coupledd-dimensional maps. Assume that th
system has a synchronization manifoldM @19,20#, and the
individual maps, when decoupled, exhibit a chaotic attrac
with one positive Lyapunov exponent that is not close
zero so that there is no unstable dimension variability. N
that this chaotic attractor is the one inM. Since such a
system of coupled maps represents a spatiotemporal sys
a systematic analysis of unstable periodic orbits in the
phase space is extremely difficult. We thus focus on unsta
periodic orbits inM. The local eigenspace of each period
orbit inM is Nd dimensional, and each orbit has at least o
unstable direction, the one associated with the chaotic att
tor in M. There areN21 subspaces that are transverse
M: each isd dimensional. Fore50 ~uncoupled case!, each
transverse subspace is unstable and, hence, all periodic o
haveN unstable directions and there is no unstable dim
sion variability. In this case,M is transversely unstable an
the asymptotic attractor of the system is a trivial combinat
of N chaotic attractors of the individual maps. There is th
R3807 ©1999 The American Physical Society
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no difficulty of predicting it for almost all initial conditions
chosen from its basin. As the couplinge is increased from
zero, a periodic orbit inM can become stable in some of i
transverse subspaces, leading to unstable dimension var
ity. To see how complexity can arise, imagine the situat
where there are slightly more periodic orbits that are stabl
all transverse subspaces than those that are unstable
least one transverse subspace, so that, on average, a c
trajectory inM is transversely stable. Call the former s
STS and the latter setSTU . Initial conditions in the vicinity
of a periodic orbit inSTS, but offM, can be attracted to
wardsM and will asymptote towards it. For these initi
conditions, the asymptotic attractor is the chaotic one inM
and synchronization can be achieved for these initial con
tions in a noiseless situation@20#. An initial condition near
one of the periodic orbits inSTU , however, can be repelle
away temporally fromM along one of the transversely un
stable directions. If there are other attractors coexisting w
the one inM in the phase space, there is a nonzero pr
ability that such an initial condition can asymptote towar
one of the attractors that are not inM. SinceSTS andSTU
are typically intermingled in the chaotic attractor inM, prac-
tically, it is not possible to trace a specific initial condition
its asymptotic attractor. In this case, the basin of the attra
inM is riddled@18#. Regarding each attractor, together w
its basin, as a component of the system of coupled maps
see that complexity can arise as a consequence of uns
dimension variability.

In order to explicitly demonstrate the interplay betwe
unstable dimension variability and complexity, we study t
following system of globally coupled He´non maps:

xn11~ i !5a2F ~12e!xn~ i !1
e

N21 (
j , j Þ i

N

xn~ j !G2

1byn~ i !,

~1!
yn11~ i !5xn~ i !, i 51, . . . ,N,

where the synchronization stateM, x(1)5¯5x(N), is a
solution of Eq. ~1!. In M, Eq. ~1! reduces to the two-
dimensional He´non map@21# for which a andb are param-
eters. Unstable periodic orbits of the He´non map can be ex
plicitly computed with high precision by using the method
Ref. @22#. In our numerical experiments, we choosea51.4
and b50.3, the standard parameter setting for which
Hénon map exhibits a chaotic attractor for most initial co
ditions chosen from the region22<(x,y)<2. There is at
least another attractor, the attractor at2`. The boundary
between the basins of the chaotic attractor and the on
infinity is apparently smooth. Thus, for the single He´non
map, there is no complexity, which characterizes the dyn
ics inM. For e50, Eq. ~1! reduces to a set ofN isolated
Hénon maps, and there is no complexity. In this case, ev
periodic orbit embedded in the chaotic attractor inM is
unstable in all (N21) transverse subspaces and, hence, th
is no unstable dimension variability either. To character
the global dynamical behavior of Eq.~1! as e is increased
from zero, we compute the Lyapunov spectrum of Eq.~1!.
Figure 1 shows, forN52, the four Lyapunov exponents ve
suse, where 1000 values ofe are uniformly distributed in the
interval @0.15, 0.25# and for eache, 107 iterations~with 106

preiterations! are used to compute the exponents. We n
that there are wild fluctuations of the Lyapunov exponen
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The fluctuations indicate the coexistence of multiple attr
tors, and the wildness of the fluctuations suggests that
boundaries between the basins of these attractors ma
quite complicated@23#. Similar behavior persists for Eq.~1!
for N.2 @23#.

To see that complex behavior actually occurs in param
regions where the Lyapunov exponents fluctuate widely,
examine the basin structure of the coexisting attractors. F
ure 2 shows, forN52 ande50.18, the behavior of initial
conditions chosen from the two-dimensional area21.0
<@x(1),x(2)#<1.0 with y(1)5y(2)50. The blue diagonal
line denotes the synchronization manifoldM, and the green,
yellow, and red regions are the basins of the attractors inM,
off M, and at`, respectively. Regarding each attractor t
gether with its basin as one component of the system, we
that ~1! there are multiple components that are interco
nected in a very complicated manner,~2! both regular~e.g.,
the attractor at̀ ! and irregular~e.g., the chaotic attractor in
M! components coexist, and~3! there is a hierarchy of struc
ture for these components@24#. These are the three trait
characterizing complexity. Thus, for Eq.~1!, complexity can
occur.

We now examine the behavior of unstable periodic orb
in parameter regimes where there is complexity. In orde
facilitate the counting of possibilities of different unstab
directions, we chooseN52 in Eq. ~1!. We compute all pe-
riodic orbits embedded in the He´non attractor inM up to
period 30 and compute the Lyapunov spectrum for each
bit. SinceN52, a periodic orbit can have either one or tw
unstable directions: Those with one~two! unstable direction
are the orbits that are transversely stable~unstable!. Our prin-
cipal finding is that unstable dimension variability appears
be severe for 0.16,e,0.22—the parameter regime whe
there is complexity.

To quantify the severeness of unstable dimension v
ability, we introduce the followingcontrast@25# measure:

Cp5Um2~p!2m1~p!

m2~p!1m1~p!
U, ~2!

wherem1,2(p)[S j 51
N1,2(p)e2l1

j (p)p, andN1(p) and N2(p) are
the numbers of periodic orbits of periodp with one and two
unstable directions, respectively,l1

j (p) is the largest
Lyapunov exponent of thej th periodic orbit of periodp, and

the factore2l1
j (p)p approximates the natural measure asso

ated with this orbit@26#. The quantitiesm1,2(p) are then the

FIG. 1. The Lyapunov spectrum vse for N52 in Eq. ~1!.
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FIG. 2. ~Color! Basins of attraction for attractors inM ~green!, off M ~yellow!, and at infinity~red! for N52 ande50.18 in Eq.~1!.
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weightednumbers of period-p orbits with one and two un-
stable directions, respectively. When there is no unstable
mension variability, we have eitherN2(p)50 or N1(p)50,
which yieldsCp51. The contrastCp starts to decrease from
one when unstable dimension variability occurs, and
worst case isCp50, corresponding to the situation whe
unstable dimension variability is most severe@m1(p)
5m2(p)#. Figure 3 showsC17 ~filled circles!, C20 ~open
circles!, C25 ~open squares!, andC28 ~open diamonds! versus
e. Apparently, for all four periods,Cp is minimum near

FIG. 3. The contrast vse for all periodic orbits of four different
periods forN52 in Eq. ~1!. The regime where the contrasts a
well below 1 is the one in which severe unstable dimension v
ability occurs.
i-

e

i-
FIG. 4. ~a! The Lyapunov spectrum vs the coupling strengthe

and~b! the contrast measureCp vs e for p515, 17, and 19 for the
system of coupled Ikeda-Hammel-Jones-Moloney maps.
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e50.18, for which severe complexity is observed~Figs. 1
and 2!. An examination of other periodic orbits of period
say, larger than 15, reveals a similar behavior. Thus,
contrast measureCp is not sensitive to the choice of th
periodp, insofar asp is large enough so that there are a lar
number of orbits. This can be understood by noting thatCp
is a statistical quantity and, hence, it is meaningful o
when a large number of unstable periodic orbits is involv
For small values ofp, the number of orbits is usually to
small for any reliable statistical estimate to be performed

Can the correlation between the contrast measureCp and
complex behavior also be observed in any other systems
address this question, we consider the following system
two coupled Ikeda-Hammel-Jones-Moloney maps@27#:

zn115a1bzneifn, zn118 5a1bzn8e
ifn8, wherez5(x,y) and

the coupling occurs in the phase variablesfn and fn8 : fn

5k2p/(11zn
2)12pe(xn82xn), and fn85k2p/@11(zn8)

2#
12pe(xn2xn8). Here, a, b, k, and p are parameters, ande
represents the coupling strength. The Ikeda-Hammel-Jo
Moloney map models the dynamics of an optical pu
propagating in a ring cavity, subject to partial reflectio
phase and amplitude modulation, and distortion due to a n
linear optical medium in the cavity. To search for compl
behaviors, we choose (a,b,k,p)5(0.85, 0.9, 0.4, 5.18) so
that the Ikeda-Hammel-Jones-Moloney map, in the abse
of coupling, exhibits a chaotic attractor. As the coupli
strength is increased from zero, we find a complicated ba
structure neare50.1, as suggested by Fig. 4~a!, where the
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Lyapunov spectrum is plotted as a function ofe. To examine
unstable dimension variability, we use the recent method
ported in Ref.@28# to compute unstable periodic orbits em
bedded in the chaotic attractor in the synchronization ma
fold. Figure 4~b! shows the contrast measureCp versuse for
p515, 17, and 19. There is apparently a close correlat
between complexity and unstable dimension variability.
particular, we see that complex behavior occurs when th
is severe unstable dimension variability (Cp,0.5). Note that
complex behavior seems to have disappeared whenCp
reaches minimum ate'0.11. This is due to the disappea
ance of multiple coexisting attractors ate&0.11. This ex-
ample also indicates that unstable dimension variability is
most, a necessary condition for complexity.

In conclusion, we have examined the interplay betwe
complexity and unstable periodic orbits by utilizing two sy
tems of coupled chaotic maps. Explicit computation of pe
odic orbits and their Lyapunov spectra suggest that, in
rameter regimes where there is complexity, the system
be extremely nonhyperbolic, as characterized by severe
stable dimension variability. This type of nonhyperbolici
may thus provide us with a hint to understand complex
haviors in deterministic chaotic systems.
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