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Unstable dimension variability in coupled chaotic systems
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Systems of coupled chaotic maps and flows arise in many situations of physical and biological interest. The
aim of this paper is to analyze and to present numerical evidence for a common type of nonhyperbolic behavior
in these systems: unstable dimension variability. We show that unstable periodic orbits embedded in the
dynamical invariant set of such a system can typically have different numbers of unstable directions. The
consequence of this may be severe: the system cannot be modeled deterministically in the sense that no
trajectory of the model can be realized by the natural chaotic system that the model is supposed to describe and
quantify. We argue that unstable dimension variability can arise for small values of the coupling parameter.
Severe modeling difficulties, nonetheless, occur only for reasonable coupling when the unstable dimension
variability is appreciable. We speculate about the possible physical consequences in this case.
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[. INTRODUCTION from an initial condition inM and evolves according to Eq.
(1) or Eg. (2), then the orbit remains synchronizéce., in
Coupled dynamical systems are relevant to a large variety) for all time. The synchronization manifold is thus an
of physical and biological phenomep#]. Arrays of Joseph- invariant manifold of the system.
son junctiong2] and coupled solid lasef8] are well known When the dynamics of each individual element in the sys-
examples in physics. In biology, vital organs such as theem is chaotic in the absence of coupling, as the coupling
heart and the auditory, ViSUaI, and central nervous Systenﬁrengthe increasesl the elements may or may not become
are complex networks of many small elements such as Ce”§ynchronized depending on the transverse stabilitybfA
and neurons. Typically, the collective behavior of all the \ymper of recent papers have examined various aspects of
units in the network can be extremely rich, ranging fromhe siapility of the synchronization manifold for coupled cha-

steady state or periodic oscillations to chaotic or turbulen{mC systems4]. In this paper, we wish to address the extent

motion. f .
. . .. .to which a real system of coupled chaotic maps or flows,
For the study and understanding of such behavior, it is Y P P

. ; ; qn‘fering slightly from a mathematical model due to model-
desirable to model the networks in the Newtonian sense. Bu errors. can be modeled by svstems such as the ones de-
do such models make any sense if elements in the networ]fgg.b d b, ither Eq(1. £ y2 y
are chaotic? Assume that one has a mathematically exact'ed by erther qd) or Eq. (2).

model of a system ol coupled maps or flows, written both Our principal result is that there are wide parameter re-
in discrete and continuous time, respectively, as follows: 9imMes for which these models do not accurately represent the
deterministic evolution of the real systems. Specifically, sup-

pose one constructs a system of coupled chaotic maps or

N
. . € .
X4 1= F(X,)— EZ GijH(x), i=1,...N, (1) flows in a laboratory, which is as close as possible to being
=1 described by either of the above equations, and one records
, N an experimental time seriegt). Thenno trajectories of the
in_ € - : mathematical model will remain close to the measured tra-

_FE(x)— — CH(x =

dt FO) 2,21 GiHOA, =1 N, @ jectory x(t) for appreciable lengths of time. We say in this

case that there is no model shadowabili]. Thus, one
wherex; e R™ is an m-dimensional vectore is a parameter should be extremely careful when interpreting results from
characterizing the coupling strength, aH@x) is a smooth models of coupled chaotic elements such as these repre-
function. The synchronization manifolth of the network is  sented by Eq(1) or Eqg. (2). Often, in such cases, the only
defined byx'=x?=---=xV. In a situation expected to arise results that can be trusted are statistical invariants obtained
frequently in physical and biological networks, the elementsfrom a large number of trajectories of the modé]. One
Gj; of the coupling matrix satisfy the conditidiyGj;=0 for  important implication is that in laboratory or industrial ex-
all'i. If, in the absence of noise, an orbit of the system startperiments involving a system of coupled chaotic oscillators,

it may be more advantageous to work directly with the ex-

perimentally measured time series rather than with the math-

*Present address: Department of Mathematics, Arizona State Unematical model when attempting to analyze the system, even

versity, Tempe, AZ 85287-1804. if the physical assumptions employed in the construction of
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the model are considered reasonable and as accurate as poss. For chaotic systems, the outcome of the system is sen-
sible. The actual solution of the real system resides, in thisitively dependent on the initial conditions in the sense that a
case, in the time-series data. slight difference in the initial conditions can result in vastly
The above strong conclusions are a consequence of thgifferent outcomes. In view of this, we consider a model to
recently documented phenomenon knowmiastable dimen- e robust if the sets of all possible outcomes of the two
sion variability, a type of nonhyperbolicity that is believed to yersions of the model are very similar. To illustrate this,
arise commonly in high-dimensional chaotic systdMs].  consider the simple case in which two very closely related
Roughly, unstable-dimension variability means that differenty,oqels are used to emulate a physical system in nature. De-
unstable periodic orbits, which are thought to be dense on thg,a these models as modeland modelB, and if the dif-

chaotic attractor, have different numbers of unstable direcr, ances between the two are small. we can regard one as a
tions. So, on a typical chaotic orbit, there is no continuousypyy gifferent version of the other. Some possible differ-

) S rétnces between modetsandB could be(i) a small change in
Into ;table and unstable sgpspaces, violating one of the basite of the parameter valugd, a slightly different external
req#rllremeljts forlhﬁpir.bohcn}p].. h blish th ._influence on each, diii) a different noise level in the mod-

e main goal of this paper Is then to establish the exisgg gy ccessful modeling requires that the set of all possible
tence of unstable dimension variability for systems ofgi.omes from modeh agrees closely with the set of all
coupled chaotic maps or flows SUCh. as those descrlped bé(ossible outcomes from modBl More precisely, model ro-
Eq. () or Eq. (2). S_pgmﬁcally,. we W.'" present theoretical bustness means that for every trajectoryAotthere exists at
arguments and explicit numerical evidence that unstable d'l'east one trajectory oB that stays uniformly close to, or
menS|onhvar||ab|I|ty " Er?'(l) occukrsufor ﬁm"’,‘”, coupling | shadows, the particular trajectory Afand vice versa. Diffi-
among the elements in the network. Usually, it Is extremely, a5 appear when trajectories from one model fail to be
difficult to analyze and even to numerically compute Un-ghadowable by trajectories from the other

stable periodic orbits for Eq). However, since the syn- o ooniem becomes critical in the case of unstable di-

chronization manifold\ is invariant, a typical trajectory in - engion variability when there are trajectoriesfothat do

the chaotic attractor i\ is also a'trajec'tory of the. full not closely followany trajectory ofB (or vice versafor all
system I_Eq.(l). Therefore, for Ic_va-dlmensmn_aI cha_ot|c - byt short periods of timgl2]. Because trajectories from the
tractors inM, such as thpse arising in two-_d|r_nen5|or_1al In- closely related models do not agree, both models are presum-
vertible maps or three-dimensional flows, it is possible to ly useless in representing thbysical systeniThis can be
enumerate the periodic orbits embedded in the attractor a derstood by considering a simple ergodic invariant set

to anIaIé/zHe their Sta?'“t.'es'f Forr:h'ﬁ purpobsle, we cdhoosg. th'Eontaining two unstable fixed points: one with a single local
coupled Heon map lattice for which unstable periodic orbits ,gapje direction and one with two local unstable directions

of reasonably high periods in the synchronization manifold 1 3 “1rajectories wandering in the invariant set can spend
/;]/l can be. cdqmpuggd exE[lg_ltly. Ourk)llnvgstlgat|pn shoyvsb.tlha arbitrarily long times near each point. Imagine a ball of ini-
these periodic orbits exhibit unstable dimension variability o conditions starting near the fixed point with the single

ﬁl}hough Welprgsenthour computatflonal reStl).Il“:S du;mg Fh%nstable direction. Under the dynamics, the complement of
enon map attice, the argument for unstable dimensiony . nsiaple direction is contracting, so the ball of true tra-
variability is general and our conclusions should hold for anY:octories will be squeezed into a very thin line along the

coupled chaotic system with an invariant synchronization\siapje direction. Due to the model inaccuracy, say, of size
manifold. A preliminary version of part of this material has e, points on any trajectory, e Will typically be found a

recently appearefl0]. distancee away from all true trajectories. All model trajec-

The remainder of this paper is organized as follows. I”tories, therefore, lie in a cigarlike tube of sizen the cross

Sec. Il, we describe the relationship between unstable dimeng, .iion of the tube. When the trajectories visit the neighbor-

sion variability and modeling shad_owabl_llty, an(_j We gIVe 31554 of the second fixed point with two unstable directions,
general argument that unstable d|men§|on yarlab|llty anS€he small distance between, qei@nd all true trajectories will
commonly in systems of coupled chaotic oscillators. In Secincrease exponentially along tiew unstable direction at a

;II, w el study ‘Tm dlIIHgstratlve exalnlwplfe : theh.s)éstem tOL}W%.d'f' rate determined by the average expanding eigenvalue associ-
usively coupled Heon maps{11] for which unstable di- ated with this direction, as shown schematically in the cross

mension variability can be explicitly demonstrated by a SYSsection of the tube in Fig. 1. Thus, whenever this happens,

tematic_computation of unstable per|0d|c. orbits and the'rthe model trajectories immediately diverge exponentially
transver;e stgblhues. In Sec. IV, we conS|d¢r system!;l of from the true ones. For a chaotic set with unstable dimension
(N>2) diffusively coupled Haon maps and give theoretical variability, this is by no means a rare phenomenon. In fact
and numerical analyses_for unstable d_imens_,ion variability. Irhnstable beriodic orbits with different numbers of unstable,
S.ec. V, we address the issue of generic orblt_s. In Sec. VI, W8irections aredensein the chaotic set, which substantially
discuss our results and offer some speculation. reduces the time a model trajectory can be expected to re-
main close to any true trajectory of the natural system.
IIl. UNSTABLE DIMENSION VARIABILITY IN SYSTEMS Qualitatively, the occurrence of an unstable dimension
OF COUPLED CHAOTIC OSCILLATORS variability in a system of coupled chaotic maps or flows can
be seen as follows. Recall that the synchronization manifold
Generally, a necessary requirement for a model is robustAM contains a chaotic attractor, which is identical to that of
ness under small perturbations. One can easily generate tvemy individual uncoupled unit. Assume that there is no un-
versions of the model using slightly different parameter val-stable dimension variability for this attractor and that the
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Cross section of cigar-like tube (X1,X2, . .. Xp) be an orbit of periogh in M whose stability
in the kth m plane is determined by the magnitudes of the
eigenvalues of the following matrix product:

Fixed Fixed

point #1

P €
i[[l DF(x;) =5 »DH(X)|, k=01,...N=1. (7

Y

In the transverse subspaces, typically~ 0 so that a finites
causes a shift in the spectrum of this product. Consider all
: i , the orbits of periodp embedded in the chaotic attractor in
Range of model Exponential dlvei:gence M, where p is large. The distribution of the largest
trajectories of model trajectories from Lyapunov exponent of these orbits has a finite width and is
the true one centered ah (independent of the periodwhere\ >0 is the
FIG. 1. A schematic illustration of the cross section of the cigar-Lyapunov exponent of the chaotic attractor. Suppose there is
like tube that characterizes the dynamics of an ergodic set consis@ subset of periodic orbits for which the eigenvalues are just
ing of two fixed points with unstable dimension variability. Diver- outside the unit circle. For these orbits, wher 0, one or
gence between model trajectories and the true one is apparent. more of the eigenvalues can cross the unit circle inward and
lead to the loss of some unstable directions. Similarly, eigen-
dimension ofM is m. Coupling of theN individual elements  values just inside the unit circle can move outward leading to
immediately introduces an additional(N—1) dimensional an increase in unstable directions. Unstable dimension vari-
tangent subspace which isansverseto M. For zero cou- ability can thus arise foe=0 when there are unstable peri-
pling strength, there is no problem, but as the coupling isodic orbits with Lyapunov exponents near zero embedded in
turned on, some of the unstable periodic orbitshi will the chaotic attractor of each individual element. In the next
lose or gain stable transverse directions. Since there are a®ction, we shall see that this behavior does indeed occur,
infinite number of unstable periodic orbits, differing amongeven in the simplest case of two coupled chaotic maps.
themselves in the number of local transversely unstable di-
rections, we encounter an unstable Qimen_sion va_rial_a?lity. IIl. SYSTEM OF TWO COUPLED HE NON MAPS
We now argue that an unstable dimension variability can
occur even whem is small by examining the stability of the As an illustrative example, we investigate the following
unstable periodic orbits embedded in the synchronizatiosystem of two coupled H®n mapg11]:
manifold. The variational equation for the model in Ef.is

2
Xn+1:a_xn+byn+ €(Xy—Up),

N
. . . € . .
n+1=DFOG) - 80— 5 2, GiiDHOG) - %, (3) _
j=1 Yn+1=Xp,
- 8
whereDF andDH denote the derivatives. Qf, wherex! u +1=a—u2+bv +e(Un—Xp)
=-..=xN=x, this can be written concisely as " nooen noonh
Vn+1=Up,

SX,s 1= ( | y® DF(X) — gc;@ DH(x)) X, (@)

where{x,y} and{u,\} are the dynamical variables of the two
wheresX=(8x%, ..., oxM)T, andly denotes thélx N iden-  Henon maps, respectively andb are the parameters of the
tity matrix. If G=T~I'T with '=diag(y, . . . ,yx_1), then ~ Henon map, anc is the coupling parameter. The synchro-

the systent4) can be decoupled into the block diagonal form Nization manifoldM is the plane given bx=u andy=v
and the transverse subspace is likewise two-dimensional. We

€ choosea=1.4 andb=0.3, a parameter setting for which it is
In®DF(x) — §F®DH(X)) OYn, ©) believed that the Heon map possesses a chaotic attractor.
This attractor is then the one embedded\ih Unstable pe-
wheresY =(sy?, ..., oyM)T and sy' ZEJT} Sx). Interms of  riodic orbits of the Haon map can be computed by using the

the individual components, we havevariational equations algorithm in Ref.[14]. Explicit demonstration of unstable
in R™ dimension variability for the coupled system E®) then

becomes possible.
‘ We can characterize the transverse stability of a typical
0, k=01,...N-1. chaotic trajectory inM by following the evolution of a small
(6)  connecting vectobz, which is transverse td1. Under the
dynamics, this vector can either grow or shrink, depending
Note that the conditio ;G;; =0 implies thatG has at least on whether the synchronization manifold is transversely un-
one zero eigenvalue, which we take to bg; the corre- stable or stable. Typically, we expect, at timehe follow-
sponding equation quantifies the stability of an orbith.  ing:
The remainingN — 1 equations determine the stability of the
orbit in the m(N—1) directions transverseto M. Let | 6z(t)|~exp(t\1)|52(0)], 9)

OYni1=

€

Yn+1= ( DF(x) ~ 5 %DH(X)
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where At is the transverse Lyapunov exponent.\f>0,

then M is unstable and the two coupled maps cannot be

synchronized.
Since Eq.(8) only involves two coupled maps, the Jaco-

bian matrix in the eigenspace transverse to the synchronize

tion manifold can be written down explicitly. Introducing the
orthogonal coordinates

1
n=—(X+u),

1
= (y+v),
V2 o= sV

(10

1o
ﬂ(x u),

¢

- (y—=v)
= — —V),
p 7 y
we obtain a coupled map ifw, o, ¢, p):
(17,0,.:0)n11=F(7n,00,{n,pn),

where

2a— (%4 9 +V2bo
V27

—2{np+V2bp+2V2el
v2¢

1

= > (11

In Eq.(11), { andp are the dynamical variables in the trans-
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FIG. 2. The largest transverse Lyapunov exponepws e for
two period-6 orbits and one of the ten period-10 orbits. The flat
regions indicate parameter intervals in which the transverse eigen-

values of the orbit become complex.

We can now address the existence of unstable dimension
variability in Eq. (8). In the absence of coupling, each peri-
odic orbit has two unstable directions with identical expo-
nents, and the unstable dimension is constant. However, as
the coupling parameter is turned on, unstable dimension

verse subspace, so the synchronization manifold is given byariability may occur. To provide evidence for that, we com-
{=p=0. Thus, the Jacobian matrix governing the transvers@ute the largest transverse Lyapunov exponent for every pe-

evolution along an orbit is given by thex2 block,

of

(12

—27p+2V2e
V2

DFT:

0

v2b
1

1( (—2X+26
o)

Note thatDF; is independent of and p. In numerical ex-
periments, we choose a random unit vecdurin the trans-
verse subspace:

OX—du
oy — ov

5§)
op

1
v
V2

and compute

1
A= Iimﬁln|DF$- oV,

n—oo

the largest transverse Lyapunov exponent.
When there is no couplinge&0), DF; reduces to the
Jacobian matrix of the H®n map, as expected, and, hence

riodic orbit of up to period 30 asis systematically increased
from zero. Figure 2 showks versuse for a period-6 orbit
and a period-10 orbit, respectively. We see that msreases
up to e~0.6, A\ decreases. An explanation for the flat re-
gions in one of the plots is deferred to Sec. IV. For jite
periodic orbit of periocp, the number of unstable dimensions
is reduced by one when’(p) passes through zero at
Eer (J=1,... Np). The value ofeJp depends on the period
p and also varies from orbit to orbit among tNg orbits of
period p. For a chaotic attractor, typicall), grows expo-
nentially with p: Np~eth, whereh;>0 is the topological
entropy of the chaotic attract¢+0.46 in the present case for
the attractor inM). Let €, be the value of the coupling
constant at which the first orbit of periqgulbecomes trans-
versely stable. That iss, signifies the onset of unstable di-
mension variability for the orbits of periog: for exep,
some of the periogh-orbits are transversely stable and there-
fore have only one unstable direction.M, while others are
still transversely unstable and therefore have two unstable
directions. To estimate,, we compute the distributions of
N (p) at different values of for all the orbits of periodp.

;Figures 3a)—3(d) show, forp=25, the histograms dth(p)

the transverse Lyapunov exponents are equal to those of ther all 4498 orbits ate=0.0, 0.5, 1.0, and 1.5, respectively.
Henon map. The transverse stability of any periodic orbitat ¢=0, the probability distribution of!(p) is centered at

embedded in the chaotic attractor restrictedAt6 can be

A~0.42, the positive Lyapunov exponent of théridae at-

computed in a similar manner: we simply replace the trajecyactor. Ase increases up te~0.6, the mean of the distri-

tory by the finite periodic orbit in Eq.12). Let)\iT(p) be the
largest transverse Lyapunov exponent of ftieperiodic or-
bit of periodp. If N}(p)>0, this orbit has two unstable di-
rections: one tangent td1 and one transverse to it. How-
ever, if \}(p)<O0, the only unstable direction lies in the
synchronization manifold.

bution is translated towards the left and the variance in-
creases. For large values of (=~0.5) [Fig. 3b)], a
substantial fraction of the period-25 orbits have become
transversely stable. This behavior occurs for all periods; an-
other example is given in Figs(@-4(d), where the distri-
butions ofA4(p) for all 16 031 periodic orbits of period 28
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FIG. 3. Forp=25, the histograms Oth(p) for all 4498 orbits at o, s 1 5 YRR 30
€=0.0(a), 0.5(b), 1.0(c), and 1.5(d). Period
are shown fore=0.0, 0.5, 1.0, and 1.5, respectively. FIG. 5. The minimum value of the coupling strength for the

What is the critical value of for the onset of unstable ©nset of unstable dimension variability for all periodic orbits of
dimension variability in Eq(8)? To address this question, Period less than or equal I epin(P), as a function of the. This
we compute, for each periguup to p= 30, €y,in(p), which is function is nonincreasing.
defined to be the minimum value ef, for all periods which
are less than or equal to,fas shown in Fig. 5. We see that
for p=10, €yin(p)~0.051, but forp=28, we havee;,(p)
~0.002. The key observation is thgt;,(p) is anonincreas-
ing function of p. (We note that fop= 30, there are 37 936
unstable periodic orbits, and it was not feasible to carry ou

the computations for larger values As o, it is Sl ) . ) L
P g Pl p— riodic orbits are dense in the attracta(t) is arbitrarily close

apparent thate,,;,(p) becomes smaller and smaller. This i ber of th bi .
means that the onset of unstable dimension variability ma% an infinite number of these orbit components at any time.

occur at very small values of the coupling parameter. e therefore expeckr to be well approximated by the
We now ask, what are some of the dynamical manifestavéighted average @f'T(P) whenp is large enough so that

tions of unstable dimension variability in coupled systemsthe Ny, orbits of periodp are effectively sprinkled over the

such as Eq(8)? To address this, we note that unstable peri-€ntire chaotic attractor. In general, we can wfité]

odic orbits embedded in a chaotic attractor angical orbits

in the sense that they are not traversed by realistic trajecto-
ries. What is dynamically accessible to a typical trajectory
are the neighborhoods of periodic orbits visited by the tra-
jectory. Letx(t) be such a trajectory wandering in the cha-
tic attractor in M, and let\; be the largest transverse
yapunov exponent computed alor@). Since unstable pe-

N

p
o o A= lim o 2 (p)IAK(p), (13)
0.2 0.06 p—oe 1=1
0.15 0.04 wherep;(p) is the weight, or the natural measure, associated
01 with the jth periodic orbit of periodp. In Ref.[15], an ap-
0.02 proximate formula foru;(p) is given by
0.05
1L (p)
9 9 ) = ]—, 14
1 (% 1 1 (% 1 mi(p) SAIETRY (14)
0.03 0.04
where Ll-l(p) is the largest eigenvalue of theh periodp
0.02 0.03 orbit. From Eq.(13), we see that for a system of coupled
_ 0.02 chaotic oscillators, as the coupling constatmcreases from
0.01 zero, A\t must decrease from its value a0 (the largest
0.01 Lyapunov exponent of the chaotic attractor in the synchroni-
0 0 zation manifold because for alp, and particularly for larger
] PT 1 -1 PT 1 values ofp, the distribution of\}(p) is translated towards

the left (Figs. 3 and # as € increases up te&~0.8. This
FIG. 4. Forp= 28, the histograms ot)(p) for all 16 031 orbits ~ behavior is shown in Fig. 6, whebe; versuse is plotted for
at e=0.0 (a), 0.5(b), 1.0(c), and 1.5(d). Eq. (8). To obtain Fig. 6, the transverse Lyapunov exponent
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015 05 ] 15 FIG. 7. For the system of two coupled &ber chaotic oscilla-

€ tors Eq.(15), At vs e. This plot is similar to that in Fig. @).
FIG. 6. For Eq.(8), the largest transverse Lyapunov exponent . ) .
A7 of a typical trajectory in the chaotic attractor vs the coupling Where in the absence of coupling=0), the two oscillators
parametere. We see that the slope of the curve is negativee at are chaotid16]. Introducing the coordinate transformation
=0%, meaning that there is a decrease)gf as the coupling is

turned on. The inset shows a blowup of one portion where we see 1 1
dips in the plot ofA; vs e. These dips are due to the occurrence of X=—(X1—Xp), pm=—(X1+X5),
complex-conjugate transverse eigenvalues occurring for individual V2 V2
periodic orbits.
1 1
is computed by using a random trajectory of pdints in the Y= %()ﬁ_ y2), v= 5()’# y2), (16)

Henon attractor(with 10° iterations of transient time (The

immediate decrease ity as the coupling is turned on is also

seen with larger numbers of coupledné®m maps. A careful

examination of the plot reveals the presence of a large num- Z= 5(21_22)' p= E(Zﬁzz)'

ber of dips occurring at various values ef one of these

regions is blown up and displayed in the inset. The origin ofWe obtain orthogonal coordinates RF for which the syn-

these dips can be inferred from the plot\df(p) versuse for L . T o

individual periodic orbits such as those in Fig. 2. The dips inchronlzatlon manifold\ is given byX=Y=2=0. At each
i T cRomt of the chaotic attractor iM, the vectors

N1(p) occur whenever the transverse Lyapunov exponents

the periodic orbit become pairwise degenerate due to the

appearance of complex eigenvalues in the transverse spec- e1=—, €y=-—o, Ee3=—— (17)

trum. Because of Eq13), a corresponding dip iRt occurs 20

when the transverse eigenvalues of some dominant periodic .
orbits in the sum are complex. This is explained in detail inform an orthonormal basis for the tangent transverse sub-

the next section. spaceTM™. An arbitrarily small vector in the transverse
We wish to emphasize that, in order for an unstable di-Subspacesr=Xe]+5Ye;+ 8Zej thus evolves according

mension variability to be felt by a typical trajectory, itnet 10

necessary that itself be negative, or even close to zero. It

is enough that? be negative for a nonzero fraction of the dérr v T T
periodic orbits of sufficiently long period. A typical trajec- dt =(—2e0X=0Y=5Z)€ + (X +0.16%Y)e,
tory will then visit the neighborhoods of these orbits infi- T

nitely often. +[26X+(x=10.0 6Z]e;, (18)

The decrease of the transverse Lyapunov exponent as the
coupling parameter is increased from zero appears to be feom which the change in the length of the vectizr can be
general phenomenon in systems of coupled chaotic oscillasomputed, yielding the largest transverse Lyapunov expo-
tors as well. To illustrate this, we have studied the followingnent\ ;. Figure 7 shows\; versuse for 0<e<1.6. We see

system of two coupled Rsler[16] oscillators: that A+ decreases immediately as the couplaigcreases, a
behavior also observed for E(B). Thus, we conclude that
X1 0= = Y1 9~ 21 o+ €(Xp 17— X1 2), unstable dimension variability also occurs in H@5) for

small e. Note that there is a range efvalues where\t is
. actually negative, indicating that the synchronization mani-
Y127 %127 0.1691 5, (15 fold is transversely stable. Physically, this means that, in the
absence of noise, the two chaotic oscillators are synchro-
2, ,= 0.2+ 2; (X1 ,—10.0), nized[4].
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IV. N COUPLED HENON MAPS

We now consider a system df coupled Haon maps on
a circle with periodic boundary conditions:

X 1=1.4—(x)?+0.3y + E(Zx'n—x'rf'l—x:1 b,

i i ; (19
Yne1=Xp, 1=1,... N,

where the coupling is assumed to be nearest-neighbor typ: <

For Eqg.(19), the matricedDF(x), G, andH of Eq. (4) are
given by

(—Zx b)
DF(x) =
1 -2
G= 1 -2 0 ,
1 0 0 -2/
1 0 )
H= :
0 0 (20)

Diagonalization of Eq(4) in this case gives the followiny
variational equations in the plane:

€
—2x— =y, b
Sy 1=Di(X) - Syk= 2 - OYK,
1 0
(21)
k=0,1,... N—1.

The stability of a periogs orbit lying in M is determined by
the eigenvalues of

p €
—2Xi— =y b
DE(X)——H1 27 7)) k=01,...N-1L
=

1 0
(22)

We remark on an interesting “symmetry” here: the

Lyapunov exponents for the periodic orbits. .M occur in
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
€

FIG. 8. Lyapunov exponents fdl=4 coupled Haon maps
along a period-6 orbit as a function of the coupling strengtNote
the symmetry about the line= «. There are two smak intervals
in which this orbit becomes transversedable (i.e., all six trans-
verse Lyapunov exponents are negative

pairs of Lyapunov exponents are necessarily equal to each
other and hence ta. Note that, generically, the pair of de-
generate Lyapunov exponents remains so over a finite inter-
val.

For illustrative purposes, we have undertaken a series of
numerical computations to demonstrate unstable dimension
variability in Eq. (19) for N=5. The full dynamical system
lies in R? but the invariant synchronization plane is sRff.

We first compute all the orbits of pericd28. We then vary

the coupling strengtle in the range[0,1.6], and for each
chosen value of in this range we compute the Lyapunov
spectrum in each transverse plane for all the unstable peri-
odic orbits. SinceN=5, whene=0, each periodic orbit has
five degenerate unstable directions with equal eigenvalues.
The matrix G has the following set of eigenvalues fof

=5: =0, y1=v,=-—1.382, andy;=vy,=—3.618. So

for € fixed but positive, the Heon periodic orbits can have
five, three, or one unstable directions, corresponding to four,
two, or zero transversely unstable directions. Figures 9
and 9b) show the histograms of the largest two transverse

pairs which are equidistant and on opposite sides of the poirityapunov exponents)\(%=)\$) for all orbits of period 28 at

a=3 In(b). This happens because, for eaglhe product of
the two relevant eigenvalues is equal det(DR)| = bP (inde-
pendent ofx). So

1
2= 5|n|de(DE)|:)\lk+)\2k. (23)

€=0.4 and 0.8, respectively. It can be seen thatefer0.4,
almost all orbits of period 28 have at least two transversely
unstable directions, while foe=0.8, a small fraction of
these orbits are transversely stable. Periodic orbits can also
have two or four transversely unstable directions. This is
shown in Figs. &) and 9d), where the histograms of the
third and the fourth largest transverse Lyapunov exponents

In particular, theN smallest Lyapunov exponents can be de—()\$=)\$) of all period-28 orbits are shown far=0.4 and

termined by subtracting thH largest from 2 as shown in

0.8, respectively. We see that fer=0.4, a substantial frac-

Fig. 8. The “flat” regions seen here and in Fig. 2 for which tion of orbits have negative values bf and\7, indicating
A=« result from the occurrence of cpmplex elgenvallues inthat these orbits can have at most two transversely unstable
the spectrum ofDf. These appear in complex-conjugate directions. Foe=0.8, a large fraction of the period-28 orbits

pairs with equal moduli, so the correspondifiegenerate

have a similar behavior. These results thus clearly indicate
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FIG. 9. ForN=5,a=1.4, andb=0.3 in Eq.(19): (a) and(b) 0
histograms om# and x% ()\%:)@) for all periodic orbits of period 0
28 ate=0.4 and 0.8, respectively) and(d) histograms of3 and €
AT (\3=\%) for all period-28 orbits fore=0.4 and 0.8, respec-

FIG. 10. (a) ForN=5,a=1.4, andb=0.3 in EQ.(19), €y, VS
the periodp. (b) Fractions of all period-28 orbits with four, two, and

unstable dimension variability in E19) for e>0 zero transversely unstable directionsefer 0<e<1.6. Blow-up in
How large must the coup)lling parameter be.for unstablethe range & e<0.5 is shown in the inset, which indicates an ap-

dimension variability to occur? To address this question, wé)mx'mately linear behavior of the fraction nea-0.
again compute, for a given periqd ein(p), the minimum . . ) .
value of the coupling for which unstable dimension variabil-that @ generic trajectory encounters this varying transverse
ity occurs forall periodic orbits of period less than or equal Stability as time progresses. For an infinite trajectory, this
to p, as shown in Fig. 1@) for p<28. The functione,(p) happens infinitely often of course. Thg main point here is
is a nonincreasing, non-negative functionpoimplying that ~ that, even for small values of the coupling constant, the nu-
€. can be small ap— . This means that unstable dimen- merical simulations !ndlcate that there will be an infinite
sion variability can occur at small values of the coupling®Umber of UPO’s with a number of transversely unstable
strength. To understand to what extent one encounters uidlirections different from the expected number determined by
stable dimension variability for periodic orbits of a given the values of the transverse Lyapunov exponents computed
(large) period, we compute the fractions of all period-28 or- over thg trajectory. The consequence is that shadowing is
bits which have four, two, and zero transversely unstabldMPossible, even for short time intervals.
directions as functions of. The results are plotted in Fig.
10(b) for 0<e=<1.6. The fraction of orbits with four unstable
directions decreases linearly asincreased from zero, as
shown in the inset of Fig. 1B) for 0<e<0.5. The linear Up to this point, we have concentrated on unstable peri-
behavior fore=0 can be understood from the histogramsodic orbits embedded in the invariant synchronization mani-
shown in Figs. €8)-9(d). For smalle, almost all period-28 fold since(a) these do not change wiid) so they only need
orbits have at least two transversely unstable directibits ~ to be computed once, arftl) the subject of synchronization
9(a)] and, hence, the fraction of orbits with four transverselyis itself of considerable current interggt]. However, it is
unstable directions is proportional to the area of the historeasonable to ask whether a generic chaotic orbit embedded
grams ofA? and\$ on the positive side. This area decreasesn the full attractor will also encounter unstable dimension
approximately linearly as the mean of the histogram movewariability. Briefly, the answer is that essentially the same
towards the negative side asncreases, and when the center reasoning applies.
of the histogram is far away from zero. However, for lagge Consider the case af coupled chaotic maps wite=0
the fraction of orbits with four transversely unstable direc-initially. If A is the single attractor ilR™, the attractor for
tions decreases sharply, as the means of the histogranﬁs of the uncoupled system iR™" is just AX---X A (ntimes. If
and )\$ become close to zero. there areN, orbits of periodp in A, then there are roughly
Any generic trajectory, which by definition is ergodic P"~*(N,)" periodp orbits on the attractor ilR™". Now let
with respect to the invariant measure, necessarily comes aF(x) be the coupled map oR™". A standard argument
bitrarily close to any given periodic orbit infinitely often. using the implicit function theorem shows thatx§ is an
Once we have established that a positive fraction of unstablisolated fixed point of® (i.e., a point of periocp) when e
periodic orbits of different dimensionality exist, it follows =0, then there is an interval of width, aboute=0 for

tively.

V. GENERIC ORBITS
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difficulties with deterministic modelingi) Minor modeling
over, if x, is hyperbolic, so i, . difficulties hyperbolic chaotic systems exhibiting a sensitive

So, except at nongeneric points where the mabi® dependence on initial conditions. For these systems, trajec-
—1 is singular, each periodic orbit persists for some finitelories of a model can always be shadowed by trajectories of

interval aboute=0. However, there are infinitely many such the natural system for an infinite time8]. (i) Moderate
periodic orbits, and it is again the case that lim () =0. modellng difficulties chaotic systems Wlth nonhyperbolic
0 tangencies. For these systems, trajectories of a model are

Thatl dls’ onc? tagam, forta typlizaélorg!t on t_he attracgf?_rt Weshadowed by trajectories of the natural system for a long but
would expect to encounter unstable dimension vanability a§;;.e amount of timg 19]. (iii) Severe modeling difficulties

soon as the coupling is turned on. If the global attraCtornonhyperbolic chaotic systems with unstable-dimension vari-

p.er'sist§ for sufficiently large values ef severe modeling ability [6—8,20. For these systems, the model shadowing
d|ff||Cl#It|ets can be _expel():_tted. the attractor of the full set ftimes are surprisingly shoff.2].

nl %C’ a gene_lrllcbor ! Or:j. € gihrac or Ot " ethu set 0 | The principal result of this paper is that unstable dimen-
coupie .mhaps Wl't ﬁl ergodic xwth respeﬁ 0 t"a haturalgiqap variability occurs in systems of coupled chaotic maps
P%asugi, .TnCT ! \INI appfrloic ebsyncf trpmza 'o.?hThan'énd flows, and that therefore these systems exhibit severe
old aritrarily Clos€ly an Infinite nUmMber of times, wi € modeling difficulties. We have given theoretical justification
result that unstable dimension variability on the synchroni-, | "\ Corical evidence for the occurrence of unstable di-
zation manifold implies its existence on the full attractor. mension variability in these systems, and argued that it can
occur at small values of the coupling parameters. We expect

V1. DISCUSSION these results to be general for coupled systems since the ex-

Scientists and engineers rely heavily on quantitative modi_ste_nce_ of chaotic dynami(_:s and_ s_ynchro_nization manifold is
els to understand natural phenomena and technological sy§Pical in such systems. Finally, it is possible that our results
tems. Usually, for a particular process, data from laboratoryn@ shed some light on the well-known difficulties of ob-
experiments or from observations are analyzed and, togeth&ining physically realistic simulations from systems of par-
with physical laws, a model of the process is formulated. Thdial differential equations if they are integrated numerically
models are then used to understand the particular process, Y§t & spatial discretization leading to a finite-dimensional
make predictions, and to control its dynamics. An importan@dynamical system.
class of models consists deterministicdynamical systems
in Which the relevant phys'ical variables evolve in timg ac- ACKNOWLEDGMENTS
cording to a set of prescribed rules. A natural question is
then to what extent predictions from a deterministic model Y.C.L. was supported by AFOSR under Grant No.
are expected to be valid. This is particularly germane wher-49620-98-1-0400, and by NSF under Grants No. PHY-
the system is chaaotic, that is, when the system has a sensitigg22156 and No. DMS-962659. C.G. was supported by
dependence on initial conditions. Previous work has sugONR (Physics Division and by the CNPg/NSF-INT Pro-
gested[17] that there is a hierarchy of levels of dynamical gram.
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