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Unstable dimension variability in coupled chaotic systems
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Systems of coupled chaotic maps and flows arise in many situations of physical and biological interest. The
aim of this paper is to analyze and to present numerical evidence for a common type of nonhyperbolic behavior
in these systems: unstable dimension variability. We show that unstable periodic orbits embedded in the
dynamical invariant set of such a system can typically have different numbers of unstable directions. The
consequence of this may be severe: the system cannot be modeled deterministically in the sense that no
trajectory of the model can be realized by the natural chaotic system that the model is supposed to describe and
quantify. We argue that unstable dimension variability can arise for small values of the coupling parameter.
Severe modeling difficulties, nonetheless, occur only for reasonable coupling when the unstable dimension
variability is appreciable. We speculate about the possible physical consequences in this case.
@S1063-651X~99!09711-1#

PACS number~s!: 05.45.Jn, 0.5.45.Pq
ie

th
em
e

he
m
en

t
B
o

xa
h

e
nt

r

.

n

ys-
ling
me

ts of
a-
nt
s,
l-

s de-

re-
t the
up-
s or
ing
ords

tra-
is

om
pre-
y
ined

x-
rs,
x-

ath-
ven
of

U

I. INTRODUCTION

Coupled dynamical systems are relevant to a large var
of physical and biological phenomena@1#. Arrays of Joseph-
son junctions@2# and coupled solid lasers@3# are well known
examples in physics. In biology, vital organs such as
heart and the auditory, visual, and central nervous syst
are complex networks of many small elements such as c
and neurons. Typically, the collective behavior of all t
units in the network can be extremely rich, ranging fro
steady state or periodic oscillations to chaotic or turbul
motion.

For the study and understanding of such behavior, i
desirable to model the networks in the Newtonian sense.
do such models make any sense if elements in the netw
are chaotic? Assume that one has a mathematically e
model of a system ofN coupled maps or flows, written bot
in discrete and continuous time, respectively, as follows:

xn11
i 5F~xn

i !2
e

2 (
j 51

N

Gi j H~xn
j !, i 51, . . . ,N, ~1!

dxi

dt
5F~xi !2

e

2 (
j 51

N

Gi j H~xj !, i 51, . . . ,N, ~2!

wherexiPRm is an m-dimensional vector,e is a parameter
characterizing the coupling strength, andH(x) is a smooth
function. The synchronization manifoldM of the network is
defined byx15x25¯5xN. In a situation expected to aris
frequently in physical and biological networks, the eleme
Gi j of the coupling matrix satisfy the conditionS jGi j 50 for
all i. If, in the absence of noise, an orbit of the system sta
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from an initial condition inM and evolves according to Eq
~1! or Eq. ~2!, then the orbit remains synchronized~i.e., in
M! for all time. The synchronization manifold is thus a
invariant manifold of the system.

When the dynamics of each individual element in the s
tem is chaotic in the absence of coupling, as the coup
strengthe increases, the elements may or may not beco
synchronized depending on the transverse stability ofM. A
number of recent papers have examined various aspec
the stability of the synchronization manifold for coupled ch
otic systems@4#. In this paper, we wish to address the exte
to which a real system of coupled chaotic maps or flow
differing slightly from a mathematical model due to mode
ing errors, can be modeled by systems such as the one
scribed by either Eq.~1! or Eq. ~2!.

Our principal result is that there are wide parameter
gimes for which these models do not accurately represen
deterministic evolution of the real systems. Specifically, s
pose one constructs a system of coupled chaotic map
flows in a laboratory, which is as close as possible to be
described by either of the above equations, and one rec
an experimental time seriesx(t). Thenno trajectories of the
mathematical model will remain close to the measured
jectory x(t) for appreciable lengths of time. We say in th
case that there is no model shadowability@5#. Thus, one
should be extremely careful when interpreting results fr
models of coupled chaotic elements such as these re
sented by Eq.~1! or Eq. ~2!. Often, in such cases, the onl
results that can be trusted are statistical invariants obta
from a large number of trajectories of the model@6#. One
important implication is that in laboratory or industrial e
periments involving a system of coupled chaotic oscillato
it may be more advantageous to work directly with the e
perimentally measured time series rather than with the m
ematical model when attempting to analyze the system, e
if the physical assumptions employed in the construction

ni-
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5446 PRE 60LAI, LERNER, WILLIAMS, AND GREBOGI
the model are considered reasonable and as accurate as
sible. The actual solution of the real system resides, in
case, in the time-series data.

The above strong conclusions are a consequence o
recently documented phenomenon known asunstable dimen-
sion variability, a type of nonhyperbolicity that is believed t
arise commonly in high-dimensional chaotic systems@7,8#.
Roughly, unstable-dimension variability means that differ
unstable periodic orbits, which are thought to be dense on
chaotic attractor, have different numbers of unstable dir
tions. So, on a typical chaotic orbit, there is no continuo
decomposition of the tangent space at each trajectory p
into stable and unstable subspaces, violating one of the b
requirements for hyperbolicity@9#.

The main goal of this paper is then to establish the e
tence of unstable dimension variability for systems
coupled chaotic maps or flows such as those described
Eq. ~1! or Eq. ~2!. Specifically, we will present theoretica
arguments and explicit numerical evidence that unstable
mension variability in Eq.~1! occurs for small coupling
among the elements in the network. Usually, it is extrem
difficult to analyze and even to numerically compute u
stable periodic orbits for Eq.~1!. However, since the syn
chronization manifoldM is invariant, a typical trajectory in
the chaotic attractor inM is also a trajectory of the ful
system Eq.~1!. Therefore, for low-dimensional chaotic a
tractors inM, such as those arising in two-dimensional i
vertible maps or three-dimensional flows, it is possible
enumerate the periodic orbits embedded in the attractor
to analyze their stabilities. For this purpose, we choose
coupled He´non map lattice for which unstable periodic orb
of reasonably high periods in the synchronization manif
M can be computed explicitly. Our investigation shows th
these periodic orbits exhibit unstable dimension variabil
Although we present our computational results using
Hénon map lattice, the argument for unstable dimens
variability is general and our conclusions should hold for a
coupled chaotic system with an invariant synchronizat
manifold. A preliminary version of part of this material ha
recently appeared@10#.

The remainder of this paper is organized as follows.
Sec. II, we describe the relationship between unstable dim
sion variability and modeling shadowability, and we give
general argument that unstable dimension variability ar
commonly in systems of coupled chaotic oscillators. In S
III, we study an illustrative example: the system of two d
fusively coupled He´non maps@11# for which unstable di-
mension variability can be explicitly demonstrated by a s
tematic computation of unstable periodic orbits and th
transverse stabilities. In Sec. IV, we consider systems oN
(N.2) diffusively coupled He´non maps and give theoretica
and numerical analyses for unstable dimension variability
Sec. V, we address the issue of generic orbits. In Sec. VI,
discuss our results and offer some speculation.

II. UNSTABLE DIMENSION VARIABILITY IN SYSTEMS
OF COUPLED CHAOTIC OSCILLATORS

Generally, a necessary requirement for a model is rob
ness under small perturbations. One can easily generate
versions of the model using slightly different parameter v
pos-
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ues. For chaotic systems, the outcome of the system is
sitively dependent on the initial conditions in the sense tha
slight difference in the initial conditions can result in vast
different outcomes. In view of this, we consider a model
be robust if the sets of all possible outcomes of the t
versions of the model are very similar. To illustrate th
consider the simple case in which two very closely rela
models are used to emulate a physical system in nature.
note these models as modelA and modelB, and if the dif-
ferences between the two are small, we can regard one
slightly different version of the other. Some possible diffe
ences between modelsA andB could be~i! a small change in
one of the parameter values,~ii ! a slightly different external
influence on each, or~iii ! a different noise level in the mod
els. Successful modeling requires that the set of all poss
outcomes from modelA agrees closely with the set of a
possible outcomes from modelB. More precisely, model ro-
bustness means that for every trajectory ofA, there exists at
least one trajectory ofB that stays uniformly close to, o
shadows, the particular trajectory ofA and vice versa. Diffi-
culties appear when trajectories from one model fail to
shadowable by trajectories from the other.

The problem becomes critical in the case of unstable
mension variability when there are trajectories ofA that do
not closely followany trajectory ofB ~or vice versa! for all
but short periods of time@12#. Because trajectories from th
closely related models do not agree, both models are pres
ably useless in representing thephysical system. This can be
understood by considering a simple ergodic invariant
containing two unstable fixed points: one with a single lo
unstable direction and one with two local unstable directio
@13#. Trajectories wandering in the invariant set can spe
arbitrarily long times near each point. Imagine a ball of in
tial conditions starting near the fixed point with the sing
unstable direction. Under the dynamics, the complemen
the unstable direction is contracting, so the ball of true t
jectories will be squeezed into a very thin line along t
unstable direction. Due to the model inaccuracy, say, of s
e, points on any trajectoryxmodel will typically be found a
distancee away from all true trajectories. All model trajec
tories, therefore, lie in a cigarlike tube of sizee in the cross
section of the tube. When the trajectories visit the neighb
hood of the second fixed point with two unstable directio
the small distance betweenxmodeland all true trajectories will
increase exponentially along thenewunstable direction at a
rate determined by the average expanding eigenvalue as
ated with this direction, as shown schematically in the cr
section of the tube in Fig. 1. Thus, whenever this happe
the model trajectories immediately diverge exponentia
from the true ones. For a chaotic set with unstable dimens
variability, this is by no means a rare phenomenon. In fa
unstable periodic orbits with different numbers of unsta
directions aredensein the chaotic set, which substantiall
reduces the time a model trajectory can be expected to
main close to any true trajectory of the natural system.

Qualitatively, the occurrence of an unstable dimens
variability in a system of coupled chaotic maps or flows c
be seen as follows. Recall that the synchronization manif
M contains a chaotic attractor, which is identical to that
any individual uncoupled unit. Assume that there is no u
stable dimension variability for this attractor and that t
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dimension ofM is m. Coupling of theN individual elements
immediately introduces an additionalm(N21) dimensional
tangent subspace which istransverseto M. For zero cou-
pling strength, there is no problem, but as the coupling
turned on, some of the unstable periodic orbits inM will
lose or gain stable transverse directions. Since there ar
infinite number of unstable periodic orbits, differing amo
themselves in the number of local transversely unstable
rections, we encounter an unstable dimension variability

We now argue that an unstable dimension variability c
occur even whene is small by examining the stability of th
unstable periodic orbits embedded in the synchroniza
manifold. The variational equation for the model in Eq.~1! is

dxn11
i 5DF~xn

i !•dxn
i 2

e

2 (
j 51

N

Gi j DH~xn
i !•dxn

j , ~3!

whereDF andDH denote the derivatives. OnM, wherex1

5¯5xN5x, this can be written concisely as

dXn115S IN^ DF~x!2
e

2
G^ DH~x! D •dXn , ~4!

wheredX5(dx1, . . . ,dxN)T, andIN denotes theN3N iden-
tity matrix. If G5T21GT with G5diag(g0, . . . ,gN21), then
the system~4! can be decoupled into the block diagonal for

dYn115S IN^ DF(x)2
e

2
G^ DH~x! D •dYn , ~5!

wheredY5(dy1, . . . ,dyN)T anddyi5S jTj
i dxj . In terms of

the individual components, we haveN variational equations
in Rm:

dyn11
k 5S DF~x!2

e

2
gkDH~x! D •dyn

k , k50,1, . . . ,N21.

~6!

Note that the conditionS jGi j 50 implies thatG has at least
one zero eigenvalue, which we take to beg0 ; the corre-
sponding equation quantifies the stability of an orbit inM.
The remainingN21 equations determine the stability of th
orbit in the m(N21) directions transverse to M. Let

FIG. 1. A schematic illustration of the cross section of the cig
like tube that characterizes the dynamics of an ergodic set con
ing of two fixed points with unstable dimension variability. Dive
gence between model trajectories and the true one is apparen
s

an

i-

n

n

(x1 ,x2 , . . . ,xp) be an orbit of periodp in M whose stability
in the kth m plane is determined by the magnitudes of t
eigenvalues of the following matrix product:

)
i 51

p S DF~xi !2
e

2
gkDH~xi ! D , k50,1, . . . ,N21. ~7!

In the transverse subspaces, typicallygkÞ0 so that a finitee
causes a shift in the spectrum of this product. Consider
the orbits of periodp embedded in the chaotic attractor
M, where p is large. The distribution of the larges
Lyapunov exponent of these orbits has a finite width and
centered atl ~independent of the period!, wherel.0 is the
Lyapunov exponent of the chaotic attractor. Suppose ther
a subset of periodic orbits for which the eigenvalues are
outside the unit circle. For these orbits, whene*0, one or
more of the eigenvalues can cross the unit circle inward
lead to the loss of some unstable directions. Similarly, eig
values just inside the unit circle can move outward leading
an increase in unstable directions. Unstable dimension v
ability can thus arise fore*0 when there are unstable per
odic orbits with Lyapunov exponents near zero embedde
the chaotic attractor of each individual element. In the n
section, we shall see that this behavior does indeed oc
even in the simplest case of two coupled chaotic maps.

III. SYSTEM OF TWO COUPLED HE´ NON MAPS

As an illustrative example, we investigate the followin
system of two coupled He´non maps@11#:

xn115a2xn
21byn1e~xn2un!,

yn115xn ,
~8!

un115a2un
21bvn1e~un2xn!,

vn115un ,

where$x,y% and $u,v% are the dynamical variables of the tw
Hénon maps, respectively,a andb are the parameters of th
Hénon map, ande is the coupling parameter. The synchr
nization manifoldM is the plane given byx5u and y5v
and the transverse subspace is likewise two-dimensional.
choosea51.4 andb50.3, a parameter setting for which it i
believed that the He´non map possesses a chaotic attrac
This attractor is then the one embedded inM. Unstable pe-
riodic orbits of the He´non map can be computed by using t
algorithm in Ref. @14#. Explicit demonstration of unstable
dimension variability for the coupled system Eq.~8! then
becomes possible.

We can characterize the transverse stability of a typ
chaotic trajectory inM by following the evolution of a small
connecting vectordz, which is transverse toM. Under the
dynamics, this vector can either grow or shrink, depend
on whether the synchronization manifold is transversely
stable or stable. Typically, we expect, at timet, the follow-
ing:

udz~ t !u'exp~ tlT!udz~0!u, ~9!

-
st-
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5448 PRE 60LAI, LERNER, WILLIAMS, AND GREBOGI
where lT is the transverse Lyapunov exponent. IflT.0,
then M is unstable and the two coupled maps cannot
synchronized.

Since Eq.~8! only involves two coupled maps, the Jac
bian matrix in the eigenspace transverse to the synchron
tion manifold can be written down explicitly. Introducing th
orthogonal coordinates

h5
1

&
~x1u!, s5

1

&
~y1v !,

~10!

z5
1

&
~x2u!, r5

1

&
~y2v !,

we obtain a coupled map in~h, s, z, r!:

~h,s,z,r!n115F~hn ,sn ,zn ,rn!,

where

F5
1

& S 2a2~z21h2!1&bs
&h

22zh1&br12&ez
&z

D . ~11!

In Eq. ~11!, z andr are the dynamical variables in the tran
verse subspace, so the synchronization manifold is given
z5r50. Thus, the Jacobian matrix governing the transve
evolution along an orbit is given by the 232 block,

DFT5
1

&
S 22h12&e &b

& 0 D 5S 22x12e b

1 0D .

~12!

Note thatDFT is independent ofz and r. In numerical ex-
periments, we choose a random unit vectordv in the trans-
verse subspace:

dv5
1

&
S dz
dr D5S dx2du

dy2dv D ,

and compute

lT5 lim
n→`

1

n
lnuDFT

n
•dvu,

the largest transverse Lyapunov exponent.
When there is no coupling (e50), DFT reduces to the

Jacobian matrix of the He´non map, as expected, and, hen
the transverse Lyapunov exponents are equal to those o
Hénon map. The transverse stability of any periodic or
embedded in the chaotic attractor restricted toM can be
computed in a similar manner: we simply replace the traj
tory by the finite periodic orbit in Eq.~12!. Let lT

j (p) be the
largest transverse Lyapunov exponent of thej th periodic or-
bit of periodp. If lT

j (p).0, this orbit has two unstable di
rections: one tangent toM and one transverse to it. How
ever, if lT

j (p),0, the only unstable direction lies in th
synchronization manifold.
e

a-

by
e

,
he
t

-

We can now address the existence of unstable dimen
variability in Eq. ~8!. In the absence of coupling, each pe
odic orbit has two unstable directions with identical exp
nents, and the unstable dimension is constant. Howeve
the coupling parametere is turned on, unstable dimensio
variability may occur. To provide evidence for that, we com
pute the largest transverse Lyapunov exponent for every
riodic orbit of up to period 30 ase is systematically increase
from zero. Figure 2 showslT versuse for a period-6 orbit
and a period-10 orbit, respectively. We see that ase increases
up to e'0.6, lT decreases. An explanation for the flat r
gions in one of the plots is deferred to Sec. IV. For thej th
periodic orbit of periodp, the number of unstable dimension
is reduced by one whenlT

j (p) passes through zero ate
[ep

j ( j 51, . . . ,Np). The value ofep
j depends on the period

p and also varies from orbit to orbit among theNp orbits of
period p. For a chaotic attractor, typicallyNp grows expo-
nentially withp: Np;ehTp, wherehT.0 is the topological
entropy of the chaotic attractor~'0.46 in the present case fo
the attractor inM!. Let ep be the value of the coupling
constant at which the first orbit of periodp becomes trans-
versely stable. That is,ep signifies the onset of unstable d
mension variability for the orbits of periodp: for e*ep ,
some of the period-p orbits are transversely stable and the
fore have only one unstable direction inM, while others are
still transversely unstable and therefore have two unsta
directions. To estimateep , we compute the distributions o
lT

j (p) at different values ofe for all the orbits of periodp.
Figures 3~a!–3~d! show, forp525, the histograms oflT

j (p)
for all 4498 orbits ate50.0, 0.5, 1.0, and 1.5, respectivel
At e50, the probability distribution oflT

j (p) is centered at
l'0.42, the positive Lyapunov exponent of the He´non at-
tractor. Ase increases up toe'0.6, the mean of the distri
bution is translated towards the left and the variance
creases. For large values ofe ('0.5) @Fig. 3~b!#, a
substantial fraction of the period-25 orbits have beco
transversely stable. This behavior occurs for all periods;
other example is given in Figs. 4~a!–4~d!, where the distri-
butions oflT

j (p) for all 16 031 periodic orbits of period 28

FIG. 2. The largest transverse Lyapunov exponentlT vs e for
two period-6 orbits and one of the ten period-10 orbits. The
regions indicate parameter intervals in which the transverse ei
values of the orbit become complex.
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are shown fore50.0, 0.5, 1.0, and 1.5, respectively.
What is the critical value ofe for the onset of unstable

dimension variability in Eq.~8!? To address this question
we compute, for each periodp up top530,emin(p), which is
defined to be the minimum value ofep for all periods which
are less than or equal to p, as shown in Fig. 5. We see tha
for p510, emin(p)'0.051, but forp528, we haveemin(p)
'0.002. The key observation is thatemin(p) is anonincreas-
ing function of p. ~We note that forp530, there are 37 936
unstable periodic orbits, and it was not feasible to carry
the computations for larger values ofp.! As p→`, it is
apparent thatemin(p) becomes smaller and smaller. Th
means that the onset of unstable dimension variability m
occur at very small values of the coupling parameter.

We now ask, what are some of the dynamical manifes
tions of unstable dimension variability in coupled syste
such as Eq.~8!? To address this, we note that unstable pe
odic orbits embedded in a chaotic attractor areatypicalorbits

FIG. 3. Forp525, the histograms oflT
j (p) for all 4498 orbits at

e50.0 ~a!, 0.5 ~b!, 1.0 ~c!, and 1.5~d!.

FIG. 4. Forp528, the histograms oflT
j (p) for all 16 031 orbits

at e50.0 ~a!, 0.5 ~b!, 1.0 ~c!, and 1.5~d!.
t

y

-
s
i-

in the sense that they are not traversed by realistic traject
ries. What is dynamically accessible to a typical trajector
are the neighborhoods of periodic orbits visited by the tra
jectory. Letx(t) be such a trajectory wandering in the cha-
otic attractor inM, and let lT be the largest transverse
Lyapunov exponent computed alongx(t). Since unstable pe-
riodic orbits are dense in the attractor,x(t) is arbitrarily close
to an infinite number of these orbit components at any time
We therefore expectlT to be well approximated by the
weighted average oflT

j (p) when p is large enough so that
the Np orbits of periodp are effectively sprinkled over the
entire chaotic attractor. In general, we can write@15#

lT5 lim
p→`

(
j 51

Np

m j~p!lT
j ~p!, ~13!

wherem j (p) is the weight, or the natural measure, associate
with the j th periodic orbit of periodp. In Ref. @15#, an ap-
proximate formula form j (p) is given by

m j~p![
1/L j

1~p!

(k51
Np @1/Lk

1~p!#
, ~14!

where L j
1(p) is the largest eigenvalue of thej th period-p

orbit. From Eq.~13!, we see that for a system of coupled
chaotic oscillators, as the coupling constante increases from
zero, lT must decrease from its value ate50 ~the largest
Lyapunov exponent of the chaotic attractor in the synchron
zation manifold! because for allp, and particularly for larger
values ofp, the distribution oflT

j (p) is translated towards
the left ~Figs. 3 and 4! as e increases up toe'0.8. This
behavior is shown in Fig. 6, wherelT versuse is plotted for
Eq. ~8!. To obtain Fig. 6, the transverse Lyapunov exponen

FIG. 5. The minimum value of the coupling strength for the
onset of unstable dimension variability for all periodic orbits of
period less than or equal top, emin(p), as a function of thep. This
function is nonincreasing.
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is computed by using a random trajectory of 107 points in the
Hénon attractor~with 105 iterations of transient time!. ~The
immediate decrease inlT as the coupling is turned on is als
seen with larger numbers of coupled He´non maps.! A careful
examination of the plot reveals the presence of a large n
ber of dips occurring at various values ofe; one of these
regions is blown up and displayed in the inset. The origin
these dips can be inferred from the plot oflT

j (p) versuse for
individual periodic orbits such as those in Fig. 2. The dips
lT

j (p) occur whenever the transverse Lyapunov exponent
the periodic orbit become pairwise degenerate due to
appearance of complex eigenvalues in the transverse s
trum. Because of Eq.~13!, a corresponding dip inlT occurs
when the transverse eigenvalues of some dominant peri
orbits in the sum are complex. This is explained in detail
the next section.

We wish to emphasize that, in order for an unstable
mension variability to be felt by a typical trajectory, it isnot
necessary thatlT itself be negative, or even close to zero.
is enough thatlT

p be negative for a nonzero fraction of th
periodic orbits of sufficiently long period. A typical trajec
tory will then visit the neighborhoods of these orbits in
nitely often.

The decrease of the transverse Lyapunov exponent a
coupling parameter is increased from zero appears to b
general phenomenon in systems of coupled chaotic osc
tors as well. To illustrate this, we have studied the followi
system of two coupled Ro¨ssler@16# oscillators:

ẋ1,252y1,22z1,21e~x2,12x1,2!,

ẏ1,25x1,210.165y1,2, ~15!

ż1,250.21z1,2~x1,2210.0!,

FIG. 6. For Eq.~8!, the largest transverse Lyapunov expone
lT of a typical trajectory in the chaotic attractor vs the coupli
parametere. We see that the slope of the curve is negative ae
501, meaning that there is a decrease oflT as the coupling is
turned on. The inset shows a blowup of one portion where we
dips in the plot oflT vs e. These dips are due to the occurrence
complex-conjugate transverse eigenvalues occurring for individ
periodic orbits.
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where in the absence of coupling (e50), the two oscillators
are chaotic@16#. Introducing the coordinate transformation

X5
1

&
~x12x2!, m5

1

&
~x11x2!,

Y5
1

&
~y12y2!, n5

1

&
~y11y2!, ~16!

Z5
1

&
~z12z2!, r5

1

&
~z11z2!,

we obtain orthogonal coordinates inR6 for which the syn-
chronization manifoldM is given byX5Y5Z50. At each
point of the chaotic attractor inM, the vectors

e1
T5

]

]X
, e2

T5
]

]Y
, e3

T5
]

]Z
, ~17!

form an orthonormal basis for the tangent transverse s
spaceTMT. An arbitrarily small vector in the transvers
subspacedTr[dXe1

T1dYe2
T1dZe3

T thus evolves according
to

ddTr

dt
5~22edX2dY2dZ!e1

T1~dX10.165dY!e2
T

1@zdX1~x210.0!dZ#e3
T , ~18!

from which the change in the length of the vectordTr can be
computed, yielding the largest transverse Lyapunov ex
nentlT . Figure 7 showslT versuse for 0<e<1.6. We see
that lT decreases immediately as the couplinge increases, a
behavior also observed for Eq.~8!. Thus, we conclude tha
unstable dimension variability also occurs in Eq.~15! for
small e. Note that there is a range ofe values wherelT is
actually negative, indicating that the synchronization ma
fold is transversely stable. Physically, this means that, in
absence of noise, the two chaotic oscillators are synch
nized @4#.

t

e
f
al

FIG. 7. For the system of two coupled Ro¨ssler chaotic oscilla-
tors Eq.~15!, lT vs e. This plot is similar to that in Fig. 6~a!.
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IV. N COUPLED HÉNON MAPS

We now consider a system ofN coupled He´non maps on
a circle with periodic boundary conditions:

xn11
i 51.42~xn

i !210.3yn
i 1

e

2
~2xn

i 2xn
i 112xn

i 21!,

~19!
yn11

i 5xn
i , i 51, . . . ,N,

where the coupling is assumed to be nearest-neighbor t
For Eq. ~19!, the matricesDF(x), G, andH of Eq. ~4! are
given by

DF~x!5S 22x b

1 0D ,

G5S 22 1 0 ¯ 1

1 22 1 ¯ 0

0 1 22 ¯ 0

¯ ¯ ¯ ¯ ¯

1 0 0 ¯ 22

D
N3N

,

H5S 1 0

0 0D . ~20!

Diagonalization of Eq.~4! in this case gives the followingN
variational equations in the plane:

dyn11
k 5Dk~x!•dyn

k5S 22x2
e

2
gk b

1 0
D •dyn

k ,

~21!
k50,1, . . . ,N21.

The stability of a period-p orbit lying in M is determined by
the eigenvalues of

Dk
p~x!5)

i 51

p S 22xi2
e

2
gk b

1 0
D , k50,1, . . . ,N21.

~22!

We remark on an interesting ‘‘symmetry’’ here: th
Lyapunov exponents for the periodic orbits inM occur in
pairs which are equidistant and on opposite sides of the p
a5 1

2 ln(b). This happens because, for eachk, the product of
the two relevant eigenvalues is equal toudet(Dk

p)u5bp ~inde-
pendent ofx!. So

2a5
1

p
lnudet~Dk

p!u5l1k1l2k . ~23!

In particular, theN smallest Lyapunov exponents can be d
termined by subtracting theN largest from 2a as shown in
Fig. 8. The ‘‘flat’’ regions seen here and in Fig. 2 for whic
l5a result from the occurrence of complex eigenvalues
the spectrum ofDk

p . These appear in complex-conjuga
pairs with equal moduli, so the corresponding~degenerate!
e.

nt

-

n

pairs of Lyapunov exponents are necessarily equal to e
other and hence toa. Note that, generically, the pair of de
generate Lyapunov exponents remains so over a finite in
val.

For illustrative purposes, we have undertaken a serie
numerical computations to demonstrate unstable dimen
variability in Eq. ~19! for N55. The full dynamical system
lies in R10 but the invariant synchronization plane is stillR2.
We first compute all the orbits of period<28. We then vary
the coupling strengthe in the range@0,1.6#, and for each
chosen value ofe in this range we compute the Lyapuno
spectrum in each transverse plane for all the unstable p
odic orbits. SinceN55, whene50, each periodic orbit has
five degenerate unstable directions with equal eigenval
The matrix G has the following set of eigenvalues forN
55: g050, g15g2521.382, andg35g4523.618. So
for e fixed but positive, the He´non periodic orbits can have
five, three, or one unstable directions, corresponding to fo
two, or zero transversely unstable directions. Figures 9~a!
and 9~b! show the histograms of the largest two transve
Lyapunov exponents (lT

15lT
2) for all orbits of period 28 at

e50.4 and 0.8, respectively. It can be seen that fore50.4,
almost all orbits of period 28 have at least two transvers
unstable directions, while fore50.8, a small fraction of
these orbits are transversely stable. Periodic orbits can
have two or four transversely unstable directions. This
shown in Figs. 9~c! and 9~d!, where the histograms of th
third and the fourth largest transverse Lyapunov expone
(lT

35lT
4) of all period-28 orbits are shown fore50.4 and

0.8, respectively. We see that fore50.4, a substantial frac
tion of orbits have negative values oflT

3 andlT
4, indicating

that these orbits can have at most two transversely unst
directions. Fore50.8, a large fraction of the period-28 orbi
have a similar behavior. These results thus clearly indic

FIG. 8. Lyapunov exponents forN54 coupled He´non maps
along a period-6 orbit as a function of the coupling strengthe. Note
the symmetry about the linee5a. There are two smalle intervals
in which this orbit becomes transverselystable ~i.e., all six trans-
verse Lyapunov exponents are negative!.
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unstable dimension variability in Eq.~19! for e.0.
How large must the coupling parameter be for unsta

dimension variability to occur? To address this question,
again compute, for a given periodp, emin(p), the minimum
value of the coupling for which unstable dimension variab
ity occurs forall periodic orbits of period less than or equa
to p, as shown in Fig. 10~a! for p<28. The functionemin(p)
is a nonincreasing, non-negative function ofp, implying that
emin can be small asp→`. This means that unstable dime
sion variability can occur at small values of the coupli
strength. To understand to what extent one encounters
stable dimension variability for periodic orbits of a give
~large! period, we compute the fractions of all period-28 o
bits which have four, two, and zero transversely unsta
directions as functions ofe. The results are plotted in Fig
10~b! for 0<e<1.6. The fraction of orbits with four unstabl
directions decreases linearly ase increased from zero, a
shown in the inset of Fig. 10~b! for 0<e<0.5. The linear
behavior fore*0 can be understood from the histogram
shown in Figs. 9~a!–9~d!. For smalle, almost all period-28
orbits have at least two transversely unstable directions@Fig.
9~a!# and, hence, the fraction of orbits with four transvers
unstable directions is proportional to the area of the his
grams oflT

3 andlT
4 on the positive side. This area decreas

approximately linearly as the mean of the histogram mo
towards the negative side ase increases, and when the cent
of the histogram is far away from zero. However, for largee,
the fraction of orbits with four transversely unstable dire
tions decreases sharply, as the means of the histogramslT

3

andlT
4 become close to zero.

Any generic trajectory, which by definition is ergod
with respect to the invariant measure, necessarily comes
bitrarily close to any given periodic orbit infinitely often
Once we have established that a positive fraction of unst
periodic orbits of different dimensionality exist, it follow

FIG. 9. ForN55, a51.4, andb50.3 in Eq.~19!: ~a! and~b!
histograms oflT

1 andlT
2 (lT

15lT
2) for all periodic orbits of period

28 ate50.4 and 0.8, respectively;~c! and~d! histograms oflT
3 and

lT
4 (lT

35lT
4) for all period-28 orbits fore50.4 and 0.8, respec

tively.
e
e

-

n-

le

-
s
s

-

ar-

le

that a generic trajectory encounters this varying transve
stability as time progresses. For an infinite trajectory, t
happens infinitely often of course. The main point here
that, even for small values of the coupling constant, the
merical simulations indicate that there will be an infini
number of UPO’s with a number of transversely unsta
directions different from the expected number determined
the values of the transverse Lyapunov exponents comp
over the trajectory. The consequence is that shadowin
impossible, even for short time intervals.

V. GENERIC ORBITS

Up to this point, we have concentrated on unstable p
odic orbits embedded in the invariant synchronization ma
fold since~a! these do not change withe, so they only need
to be computed once, and~b! the subject of synchronization
is itself of considerable current interest@4#. However, it is
reasonable to ask whether a generic chaotic orbit embed
in the full attractor will also encounter unstable dimensi
variability. Briefly, the answer is that essentially the sam
reasoning applies.

Consider the case ofn coupled chaotic maps withe50
initially. If A is the single attractor inRm, the attractor for
the uncoupled system inRmn is justA3¯3A ~n times!. If
there areNp orbits of periodp in A, then there are roughly
pn21(Np)n period-p orbits on the attractor inRmn. Now let
Fe(x) be the coupled map onRmn. A standard argumen
using the implicit function theorem shows that ifx0 is an
isolated fixed point ofFe

p ~i.e., a point of periodp! when e
50, then there is an interval of widthdx0

about e50 for

FIG. 10. ~a! For N55, a51.4, andb50.3 in Eq.~19!, emin vs
the periodp. ~b! Fractions of all period-28 orbits with four, two, an
zero transversely unstable directions vse for 0,e,1.6. Blow-up in
the range 0,e<0.5 is shown in the inset, which indicates an a
proximately linear behavior of the fraction neare50.
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which Fe
p has a corresponding isolated fixed pointxe ; more-

over, if x0 is hyperbolic, so isxe .
So, except at nongeneric points where the matrixDFe

p

2I is singular, each periodic orbit persists for some fin
interval aboute50. However, there are infinitely many suc
periodic orbits, and it is again the case that lim inf(dx0

)50.
That is, once again, for a typical orbit on the attractor
would expect to encounter unstable dimension variability
soon as the coupling is turned on. If the global attrac
persists for sufficiently large values ofe, severe modeling
difficulties can be expected.

In fact, a generic orbit on the attractor of the full set
coupled maps will be ergodic with respect to the natu
measure; hence it will approach the synchronization ma
fold arbitrarily closely an infinite number of times, with th
result that unstable dimension variability on the synchro
zation manifold implies its existence on the full attractor.

VI. DISCUSSION

Scientists and engineers rely heavily on quantitative m
els to understand natural phenomena and technological
tems. Usually, for a particular process, data from laborat
experiments or from observations are analyzed and, toge
with physical laws, a model of the process is formulated. T
models are then used to understand the particular proces
make predictions, and to control its dynamics. An import
class of models consists ofdeterministicdynamical systems
in which the relevant physical variables evolve in time a
cording to a set of prescribed rules. A natural question
then to what extent predictions from a deterministic mo
are expected to be valid. This is particularly germane wh
the system is chaotic, that is, when the system has a sens
dependence on initial conditions. Previous work has s
gested@17# that there is a hierarchy of levels of dynamic
ab
of
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difficulties with deterministic modeling.~i! Minor modeling
difficulties: hyperbolic chaotic systems exhibiting a sensiti
dependence on initial conditions. For these systems, tra
tories of a model can always be shadowed by trajectorie
the natural system for an infinite time@18#. ~ii ! Moderate
modeling difficulties: chaotic systems with nonhyperboli
tangencies. For these systems, trajectories of a model
shadowed by trajectories of the natural system for a long
finite amount of time@19#. ~iii ! Severe modeling difficulties:
nonhyperbolic chaotic systems with unstable-dimension v
ability @6–8,20#. For these systems, the model shadow
times are surprisingly short@12#.

The principal result of this paper is that unstable dime
sion variability occurs in systems of coupled chaotic ma
and flows, and that therefore these systems exhibit se
modeling difficulties. We have given theoretical justificatio
and numerical evidence for the occurrence of unstable
mension variability in these systems, and argued that it
occur at small values of the coupling parameters. We exp
these results to be general for coupled systems since the
istence of chaotic dynamics and synchronization manifold
typical in such systems. Finally, it is possible that our resu
may shed some light on the well-known difficulties of o
taining physically realistic simulations from systems of pa
tial differential equations if they are integrated numerica
via a spatial discretization leading to a finite-dimension
dynamical system.
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