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Route to high-dimensional chaos
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We present a route to high-dimensional chaos, that is, chaos with more than one positive Lyapunov expo-
nent. In this route, as a system parameter changes, a subsystem becomes chaotic through, say, a cascade of
period-doubling bifurcations, after which the complementary subsystem becomes chaotic, leading to an addi-
tional positive Lyapunov exponent for the whole system. A characteristic feature of this route, as suggested by
numerical evidence, is that the second largest Lyapunov exponent passes through zero continuously. Three
examples are presented: a discrete-time map, a continuous-time flow, and a population model for species
dispersal in evolutionary ecology.@S1063-651X~99!50704-6#
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Transition to chaos, i.e., how a system becomes chaot
a system parameter changes, has been a fundamenta
central problem in the study of nonlinear dynamics. In lo
dimensional chaotic systems, i.e., systems with only
positive Lyapunov exponent@1#, this transition often occurs
via the following four known routes:~i! the period-doubling
cascade route@2#, ~ii ! the intermittency transition route@3#,
~iii ! the crisis route@4#, and~iv! the route to chaos in quas
periodically driven systems@5#.

There has been growing interest in high-dimensional c
otic systems@6#. Such a system is characterized by more th
one positive Lyapunov exponent for typical trajectories
the phase space, although the phase-space dimension c
arbitrarily high. So far, the route to high-dimensional cha
i.e., how high-dimensional chaos arises as a system pa
eter changes, remains a less-studied area. The purpose o
paper is to address this issue. Our main contribution is
identification of a general route to high-dimensional cha
one from regular to low-dimensional chaos and then to hi
dimensional chaos. This route can be observed for syst
exhibiting, say, a period-doubling cascade to lo
dimensional chaos@7#. We give conditions and investigat
the characteristic features for this route to high-dimensio
chaos. Our study is motivated partly by the recent extens
studies of techniques to control@8# and to synchronize@9#
high-dimensional chaotic systems, which are highly no
trivial and challenging problems. A good understanding
how nonlinear systems develop high-dimensional chaos
help us gain insight into devising methods to manipul
such systems. This may have practical implications.

We consider a general nonlinear system described e
by an N-dimensional discrete-time map:xn115F@xn ,p#,
or by an N-dimensional continuous-time flow:dx/dt
5F(x,p), wherexPRN andp is a set of bifurcation param
eters. For concreteness, we focus on high-dimensional c
with two positive Lyapunov exponents@10#. Since the sys-
tem can exhibittwo positive exponents, we decompose t
system intotwo subsystemsA andB that interact with each
other: x5(x1,x2), wherex1PRN1, x2PRN2, and N11N2
5N:
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A:xn11
1 5f~xn

1,xn
2,pA!, B:xn11

2 5g~xn
1,xn

2,pB!, ~1!

whereF5(f,g), and (pA ,pB)5p. With this setting, the route
to high-dimensional chaos can be described as follows. C
sider a line in the parameter space with two end pointsp1
and p2 , where the system is not chaotic atp1 and chaotic
with two positive Lyapunov exponents atp2 . Let p be the
distance fromp1 along this line, and letpc1 and pc2 be the
transition points to low- and high-dimensional chaos, resp
tively. For p,pc1 , both subsystemsA andB are not chaotic,
e.g., with stable periodic attractors. Regarding the influe
of the subsystemA to subsystemB as a driving~or vice
versa!, we assume thatB is in a state where it can becom
chaotic only when the driving is chaotic. Asp increases to-
wards pc1 , the subsystemA, say, undergoes a cascade
period-doubling bifurcations@7# and becomes chaotic with
one positive Lyapunov exponent forp.pc1 . SubsystemB is
now driven chaotically. Asp increases further passin
through some critical valuepc , B becomes chaotic, afte
which the full system can become high-dimensionally ch
otic with two positive Lyapunov exponents atp5pc2 , where
pc2*pc .

A characteristic feature of this scenario to hig
dimensional chaos, as evidenced by numerical computati
is that the second nontrivial Lyapunov exponent pas
through zerocontinuously. Qualitatively, this can be under
stood by realizing that near the transition, the subsystemB is
driven chaotically and it can thus be regarded as a rando
driven dynamical system. It is known that the large
Lyapunov exponent of a random dynamical system chan
through zero from the negative side in a continuous fash
@11#. In the following we present numerical examples and
simple analyzable model to illustrate this feature.

We first consider the following three-dimensional ma
which we have constructed to illustrate the transition and
characteristic features:

xn115Fxn1
12e2a

a
ynGmod~2p!,

yn115e2ayn1k sin~xn1112pzn!, ~2!

zn115rzn~12zn!1eyn ,

wherea, k, r, ande are parameters. The~x,y! dynamics is the
Zaslavsky map when the term 2pzn in the y equation is
absent, which can exhibit chaotic attractors@12#. The term

,
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FIG. 1. ~Color! Regions in the
~r,a! plane in which the
asymptotic attractor of Eq.~2! has
zero~blank!, one~green!, and two
~red! positive Lyapunov expo-
nents.
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2pzn represents the coupling from thez dynamics, which is
the logistic map with a termeyn , describing the coupling
from the ~x,y! dynamics. The~x,y! equation and thez equa-
tion are thus naturally two interacting subsystems that c
stitute the full three-dimensional map. Although we ha
constructed Eq.~2! as a simple model to study high
dimensional chaos, a physical consideration is that Eq.~2!
represents an idealized situation in the context of pas
-

ve

particle advection on the surface of an incompressible fl
@11#. In numerical experiments, we fixk50.5 ande50.01,
and study the transition in the two-dimensional parame
space~r,a!.

Figure 1 shows the regions in the~r,a! plane in which the
asymptotic attractor of Eq.~2! has zero~blank!, one~green!,
and two ~red! positive Lyapunov exponents. The figure
obtained by distributing a grid of 4003400 parameter pairs
FIG. 3. ~Color! First three
Lyapunov exponents of the
coupled Ro¨ssler system.
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in the region defined by 3.55<r<3.9 and 0.05<a<0.3, and
computing the Lyapunov spectrum@13# of Eq. ~2! for each
parameter pair by using 106 iterations from a random initia
condition chosen from the phase-space region (0<x<2p,
22.5<y<2.5, 0<z<1) ~after disregarding 105 initial itera-
tions!. We see that there are an infinite number of paths
the parameter region where the transition from zero to
and to two positive Lyapunov exponents can occur. For c
creteness, we choose the path fromp1[(r 1 ,a1)
5(3.55,0.2) top2[(r 2 ,a2)5(3.75,0.05)~the yellow line in
Fig. 1 passing through all three regions!. Let p be the dis-
tance fromp1 along the line. We see that the system can
nonchaotic, and low- and high-dimensionally chaotic whep
is in the white, green, and red regions, respectively. Fig
2~a! shows the first two Lyapunov exponents versusp. As p
is increased fromp1 , the parameterr in the logistic equation
increases so that thez subsystem undergoes a series
period-doubling bifurcations and becomes chaotic atr c1
'3.580, which corresponds topc1'0.038. Thus, forp
,pc1 , the full system has no positive Lyapunov expone
For p.pc1 , the full system has one positive Lyapunov e
ponentl1 . As p is increased throughpc1 , the z dynamics
becomes chaotic so that the~x,y! subsystem is now driven b
a chaotic variable. The~x,y! subsystem becomes chaotic
pc'0.119 and the full system becomes high-dimensiona
chaotic with two positive Lyapunov exponents atpc2
'0.120. The route for the~x,y! subsystem to become chaot
is similar to the transition to chaos in random dynami
systems@11#, which is typically a continuous transition. A
such, the second Lyapunov exponent of the full system
comes positive continuously from the negative side asp in-
creases throughpc2 , as shown in Fig. 2~b!, a blowup of a
part of Fig. 2~a! near the transition pointpc2 .

The continuous behavior of the second largest Lyapu
exponentl2 near the transition can be understood mo
quantitatively as follows. Under the chaotic driving from th

FIG. 2. For the model Eq.~2!: ~a! the two largest Lyapunov
exponents vsp ~see text for definition ofp!, and ~b! a blowup of
part of ~a! near the transition to high-dimensional chaos.
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z subsystem, a tangent vector along a typical trajectory in
~x,y! subspace experiences both time intervals of expan
and time intervals of contraction. Forp&pc , the largest
Lyapunov exponent of the~x,y! subsystem,lxy , is slightly
negative so that contraction dominates over expansion.
p*pc , lxy is slightly positive so that expansion weighs ov
contraction. Atpc , expansion and contraction are balance
The exponentlxy thus passes through zero continuously
pc due to the existence of two competing phase-space
gions~expansion versus contraction!. Sincepc2*pc , we ex-
pect the second largest Lyapunov exponent of the full sys
to pass through zero in a continuous fashion. To be illus
tive, we consider the following simple analyzable tw
dimensional map in the unit square:

xn1152xn mod~1!, yn115 H2yn mod~1! if xn,a
yn/2 if xn>a, ~3!

where 0,a,1 is the bifurcation parameter. Thex dynamics
is the doubling transformation with a positive Lyapunov e
ponentl15 ln 2. In addition, the invariant density ofx is
uniform in the unit interval. They dynamics is a simple
expansion-contraction map. The probability for expansion
a and the probability for contraction is (12a). The
Lyapunov exponent of they subsystem which, for this
simple model, is the second Lyapunov exponent of the
system, is given by

l25a ln 21~12a!ln~ 1
2 !5~2a21!ln 2. ~4!

We see thatl2 passes through zero continuously asa is
increased through12.

How general is the above route to high-dimension
chaos? To address this question, we now give two more
merical examples.

~1! A high-dimensional continuous-time flow.We con-
sider the following system of two coupled Ro¨ssler oscillators
@14#: dx1,2/dt52(y1,21z1,2)1e(x2,12x1,2), dy1,2/dt5x1,2
1a1,2y1,2, and dz1,2/dt5b1,21x1,2z1,22c1,2z1,2, where we
fix the parametersa1,25b1,250.2,c153.5, ande50.05, and
we choosec2 to be the bifurcation parameter. We find th
following decomposition of this system into two subsystem
A2$x2 ,y2 ,z2% andB2$x1 ,y1 ,z1%. Figure 3 shows the firs
three Lyapunov exponents, among six, of the coup
Rössler system. Features similar to those in Figs. 2~a! and
2~b! are observed. In particular, the second nontriv
Lyapunov exponent becomes positive in a continuous fa
ion @15#.

~2! A model of species dispersal in evolutionary ecolo
We consider a realistic model of populations of two spec
~clones! in two patches@16#. The model was investigate
recently by Holt and McPeek to address the important e
logical question: how does dispersal~spatial movement of
species in the environment! affect the population? The dy
namical variable isNi j (t)—the density of population of
clone i in patch j at generationt, where i , j 51,2. Clones 1
and 2 differ only in a fixed dispersal rate,ei , which is de-
fined as the fraction of individuals dispersing from their na
patch at each generation. Assume that the realized fitnes
patch j, Wj@NT j(t)#, is identical for individuals of both
clones and depends functionally on the summed abundan
NT j(t)5N1 j (t)1N2 j (t), in patch j. Without dispersal, the
dynamics of clonei in patchj are governed by the recursion
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Ni j (t11)5WJ@NT j(t)#Ni j (t) @16#. With dispersal, a frac-
tion m of dispersers survives to enter their non-natal pat
inwhich case the dynamics of clone 1 can be described

N11~ t11!5~12e1!W1@NT1~ t !#N11~ t !

1me1W2@NT2~ t !#N12~ t !,

N12~ t11!5~12e1!W2@NT2~ t !#N12~ t !

1me1W1@NT1~ t !#N11~ t !, ~5!

where similar equations describe clone 2. The fitness is g
by the following relation @17#: Wj5exp@r j(12(iNij /Kj)#,
where K j is the carrying capacity of patchj. Regarding
$N11(t),N12(t)% and$N21(t),N22(t)% as two interacting sub
systems, where subsystemA is the low-dispersal clone an
subsystemB is the high-dispersal clone, we find that the fu
system, which is a four-dimensional map, becomes hi

FIG. 4. Bifurcation diagrams of~a! N22 and ~b! N12 vs the
parameterr in the ecological model Eq.~5!.
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dimensionally chaotic through the route described above
models Eq.~2! and the coupled Ro¨ssler system. Figures 4~a!
and 4~b! show the bifurcation diagrams ofN22 andN12 ver-
sus the parameterr (r 15r 2) at K15100, K2550, e150.5
~large dispersal rate!, e250.01 ~small dispersal rate!, and
m51. Clearly,N22(t) undergoes a period-doubling casca
and becomes chaotic, after whichN12(t) becomes chaotic
and the whole system possesses two positive Lyapunov
ponents. The ecological significance of Figs. 4~a! and 4~b! is
that chaotic dynamics in fact favor the evolution of dispers
When the dynamics of clone 2 are not chaotic, the popula
of clone 1 becomes zero asymptotically, indicating extin
tion of the species with high-dispersal rate. However, wh
the dynamics of clone 2 becomes chaotic, the dynamics
clone 1 becomes chaotic, too, withnonzeropopulation den-
sities in both patches.

In summary, we have presented a route to hig
dimensional chaos in nonlinear systems by using mod
arising in different contexts. Numerical evidence sugge
that, in this scenario to high-dimensional chaos, the sec
largest Lyapunov exponent passes through zero cont
ously. Physically, a subset of dynamical variables becom
chaotic via some~perhaps! known route to low-dimensiona
chaos such as the period-doubling bifurcation route, a
which the complementary subset becomes chaotic. As a
sequence, in a bifurcation diagram, the latter subset of
namical variables appears to become chaotic in a relativ
abrupt fashion@see, for example, Fig. 4~b!#. The mechanism
by which the system becomes high-dimensionally chaotic
this route suggests an effective way to control it: by stabi
ing the driving chaotic subsystem around some periodic
bits, the whole system becomes periodic.

This work was supported by the NSF under Grant N
PHY-9722156, and by the AFOSR under Grant No. F496
98-1-0400.
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versus high-dimensional chaos, here we take the notion
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