RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 59, NUMBER 4 APRIL 1999

Route to high-dimensional chaos
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We present a route to high-dimensional chaos, that is, chaos with more than one positive Lyapunov expo-
nent. In this route, as a system parameter changes, a subsystem becomes chaotic through, say, a cascade of
period-doubling bifurcations, after which the complementary subsystem becomes chaotic, leading to an addi-
tional positive Lyapunov exponent for the whole system. A characteristic feature of this route, as suggested by
numerical evidence, is that the second largest Lyapunov exponent passes through zero continuously. Three
examples are presented: a discrete-time map, a continuous-time flow, and a population model for species
dispersal in evolutionary ecolog}/S51063-651X99)50704-9

PACS numbes): 05.45-a

Transition to chaos, i.e., how a system becomes chaotic as A:Xﬁ_'_l:f(xﬁ'xrzva)’ B;Xﬁﬂzg(xﬁyxﬁ,pB), )
a system parameter changes, has been a fundamental and
central problem in the study of nonlinear dynamics. In low-whereF=(f,g), and (a,pg) = p. With this setting, the route
dimensional chaotic systems, i.e., systems with only ond&o high—dimensional chaos can be described as follows. Con-
positive Lyapunov exponeiil], this transition often occurs sider a line in the parameter space with two end ponts
via the following four known routesi) the period-doubling andp,, where the system is not chaotic gt and chaotic
cascade routg2], (ii) the intermittency transition rout8],  with two positive Lyapunov exponents p;. Let p be the
(iii) the crisis routd4], and(iv) the route to chaos in quasi- distance fromp; along this line, and lep;; andp., be the
periodically driven systemib]. S _ transition points to low- and high-dimensional chaos, respec-
_There has been growing interest in high-dimensional chatjyely. Forp<p,.;, both subsystema andB are not chaotic,
otic system$6]. Such a system is characterized by more thans g " with stable periodic attractors. Regarding the influence

one positive Lyapunov exponent for typical trajectories ings ihe subsystenA to subsystenB as a driving(or vice

the phase space, although the phase-space dimension cani¢ss e assume thaB is in a state where it can become
arbitrarily high. So far, the route to high-dimensional chaosy,,qtic only when the driving is chaotic. Asincreases to-
i.e., how high-dimensional chaos arises as a system pararﬁl—

: . ards p¢;, the subsysten®, say, undergoes a cascade of
eter changes, remains a less-studied area. The purpose of t Briod-doublin bifurcation$7] and becomes chaotic with
paper is to address this issue. Our main contribution is thé 9

identification of a general route to high-dimensional chaosPne positive Lyapunov exponent fpe>pc; . Subsystents is

one from regular to low-dimensional chaos and then to highoW driven chaotically. Asp increases further passing
dimensional chaos. This route can be observed for systenf@rough some critical valug., B becomes chaotic, after
exhibiting, say, a period-doubling cascade to |0W_Wh|ch.the full sygtem can become high-dimensionally cha-
dimensional chao§7]. We give conditions and investigate Otic with two positive Lyapunov exponents @t p.,, where
the characteristic features for this route to high-dimensionaPc2=Pc -
chaos. Our study is motivated partly by the recent extensive A characteristic feature of this scenario to high-
studies of techniques to contrf8] and to synchroniz¢9]  dimensional chaos, as evidenced by numerical computations,
high-dimensional chaotic systems, which are highly nondis that the second nontrivial Lyapunov exponent passes
trivial and challenging problems. A good understanding ofthrough zerocontinuously Qualitatively, this can be under-
how nonlinear systems develop high-dimensional chaos magtood by realizing that near the transition, the subsy®ém
help us gain insight into devising methods to manipulatedriven chaotically and it can thus be regarded as a randomly
such systems. This may have practical implications. driven dynamical system. It is known that the largest
We consider a general nonlinear system described eitheryapunov exponent of a random dynamical system changes
by an N-dimensional discrete-time mapX,;1=F[X,,p], through zero from the negative side in a continuous fashion
or by an N-dimensional continuous-time flow:dx/dt  [11]. In the following we present numerical examples and a
=F(x,p), wherexe RN andp is a set of bifurcation param- simple analyzable model to illustrate this feature.
eters. For concreteness, we focus on high-dimensional chaos We first consider the following three-dimensional map,
with two positive Lyapunov exponenfd0]. Since the sys- which we have constructed to illustrate the transition and its
tem can exhibitwo positive exponents, we decompose thecharacteristic features:

system intotwo subsystem#\ and B that interact with each 1—e 2
other: x=(x,x?), wherex!e RV, x2e RNz, andN;+ N, Xn+1= | XnF ———Yn|mod 2m),
=N:
Yn+1=€ Yt Ksin(Xn 1+ 272y), 2

. . . Zni1=rz,(1—2z,)+ ,
*Electronic address: harrison@poincare.math.ukans.edu nt+1 n n) €Y

TAlso at Department of Mathematics, University of Kansas,wherea, k, r, ande are parameters. Thgy) dynamics is the
Lawrence, KS 66045. Electronic address: Zaslavsky map when the term#2, in the y equation is
lai@poincare.math.ukans.edu absent, which can exhibit chaotic attractpi®]. The term
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FIG. 1. (Color) Regions in the
o (r@ plane in  which the
asymptotic attractor of Eq2) has
zero(blank), one(green, and two
0.15¢ (red positive Lyapunov expo-
nents.
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27z, represents the coupling from tlzedynamics, which is particle advection on the surface of an incompressible fluid
the logistic map with a termey,,, describing the coupling [11]. In numerical experiments, we fix=0.5 ande=0.01,
from the (x,y) dynamics. Thex,y) equation and the equa- and study the transition in the two-dimensional parameter
tion are thus naturally two interacting subsystems that conspace(r,a).

stitute the full three-dimensional map. Although we have Figure 1 shows the regions in tiiga) plane in which the
constructed Eq.(2) as a simple model to study high- asymptotic attractor of Eq2) has zerdblank), one(greer),
dimensional chaos, a physical consideration is that(By. and two (red positive Lyapunov exponents. The figure is
represents an idealized situation in the context of passivebtained by distributing a grid of 400400 parameter pairs
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0.4 3 Z subsystem, a tangent vector along a typical trajectory in the
(x,y) subspace experiences both time intervals of expansion
and time intervals of contraction. F@g<p., the largest
Lyapunov exponent of théx,y) subsystemj,,, is slightly
negative so that contraction dominates over expansion. For
P=pc, Ayy is slightly positive so that expansion weighs over
contraction. Atp., expansion and contraction are balanced.
The exponent,, thus passes through zero continuously at
igh-qim. chaos p. due to the existence of two competing phase-space re-
0 005 01 p0'15 0.2 025 gions(expansion versus contractiorsincep.,=p., We ex-
pect the second largest Lyapunov exponent of the full system
0.052 to pass through zero in a continuous fashion. To be illustra-
tive, we consider the following simple analyzable two-
highedim chaos dimensional map in the unit square:

- \ 2y,mod1) if x,<a
< 0 /“ Xpr1=2X,mod1), Y11= y/2 if x,=a,

0.3 transition to A

low-dim. chaos L

i transition to

()

where 0<a<1 is the bifurcation parameter. Tlelynamics
is the doubling transformation with a positive Lyapunov ex-
-0.05 ‘ ‘ . ponentA;=In2. In addition, the invariant density of is
' uniform in the unit interval. They dynamics is a simple
FIG. 2. For the model Eq(2): (a) the two largest Lyapunov expansion-contraction map. The probability for expansion is
exponents v (see text for definition op), and(b) a blowup of a and the probability for contraction is (1a). The
part of (a) near the transition to high-dimensional chaos. Lyapunov exponent of they subsystem which, for this
simple model, is the second Lyapunov exponent of the full
in the region defined by 3.55r<3.9 and 0.05a<0.3, and  system, is given by
computing tht_e Lyapunov spectr_u[‘ﬂl({l of Eq. (2) for e_a_c_h Np=aln2+(1-a)ln(})=(2a—1)In2. )
parameter pair by using $0terations from a random initial
condition chosen from the phase-space regiosX& 2, We see that\, passes through zero continuously ass
—2.5<y=2.5, 0=<z=<1) (after disregarding TOinitial itera-  increased through.
tions). We see that there are an infinite number of paths in How general is the above route to high-dimensional
the parameter region where the transition from zero to onehaos? To address this question, we now give two more nu-
and to two positive Lyapunov exponents can occur. For conmerical examples.
creteness, we choose the path fromp;=(ri,a;) (1) A high-dimensional continuous-time flowe con-
=(3.55,0.2) top,=(r,,a,) =(3.75,0.05)(the yellow line in  sider the following system of two coupled &iler oscillators
Fig. 1 passing through all three regignet p be the dis-  [14]: dx; ,/dt=—(y12+2; 0+ €(Xo1— X1 0, dy;/dt=x;,
tance fromp, along the line. We see that the system can be+a; 5y, ,, anddz; ,/dt=by ,+X; 523 »—C1 22 », Where we
nonchaotic, and low- and high-dimensionally chaotic wpen fix the parametera; ,=b; ,=0.2,¢,;= 3.5, ande=0.05, and
is in the white, green, and red regions, respectively. Figurgve choosec, to be the bifurcation parameter. We find the
2(a) shows the first two Lyapunov exponents verpu&s p  following decomposition of this system into two subsystems:
is increased fronp, , the parameter in the logistic equation A—{x,,y,,z,} andB—{x;,Y1,2;}. Figure 3 shows the first
increases so that the subsystem undergoes a series ofthree Lyapunov exponents, among six, of the coupled
period-doubling bifurcations and becomes chaoticrgt  Rossler system. Features similar to those in Figs) and
~3.580, which corresponds tp.;~0.038. Thus, forp 2(b) are observed. In particular, the second nontrivial
<pc1. the full system has no positive Lyapunov exponent.Lyapunov exponent becomes positive in a continuous fash-
For p>p.1, the full system has one positive Lyapunov ex-ion [15].
ponent\;. As p is increased througp.;, the z dynamics (2) A model of species dispersal in evolutionary ecology.
becomes chaotic so that tfey) subsystem is now driven by We consider a realistic model of populations of two species
a chaotic variable. Théx,y) subsystem becomes chaotic at (clones in two patcheg16]. The model was investigated
p.~0.119 and the full system becomes high-dimensionallyrecently by Holt and McPeek to address the important eco-
chaotic with two positive Lyapunov exponents at, logical question: how does dispergapatial movement of
~0.120. The route for thé,y) subsystem to become chaotic species in the environmenaffect the population? The dy-
is similar to the transition to chaos in random dynamicalnamical variable isN;;(t)—the density of population of
systemg 11], which is typically a continuous transition. As clonei in patchj at generatiort, wherei,j=1,2. Clones 1
such, the second Lyapunov exponent of the full system beand 2 differ only in a fixed dispersal rate,, which is de-
comes positive continuously from the negative sidep@s-  fined as the fraction of individuals dispersing from their natal
creases througp.,, as shown in Fig. @), a blowup of a patch at each generation. Assume that the realized fitness in
part of Fig. Za) near the transition point.,. patch j, W;[N;(t)], is identical for individuals of both
The continuous behavior of the second largest Lyapunoelones and depends functionally on the summed abundances,
exponentik, near the transition can be understood moreNy;(t)=Ny;(t)+Ny;(t), in patchj. Without dispersal, the
guantitatively as follows. Under the chaotic driving from the dynamics of clone in patchj are governed by the recursion:
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@ , . , dimensionally chaotic through the route described above for
models Eq(2) and the coupled Rssler system. Figurega)
and 4b) show the bifurcation diagrams of,, andN;, ver-
sus the parameter(r,=r,) at K;=100, K,=50, e;,=0.5
(large dispersal raje e,=0.01 (small dispersal raje and
m=1. Clearly,N,,(t) undergoes a period-doubling cascade
and becomes chaotic, after whith,(t) becomes chaotic,
and the whole system possesses two positive Lyapunov ex-
ponents. The ecological significance of Fig&a)4and 4b) is
that chaotic dynamics in fact favor the evolution of dispersal.
When the dynamics of clone 2 are not chaotic, the population
of clone 1 becomes zero asymptotically, indicating extinc-
tion of the species with high-dispersal rate. However, when
, , ) , X the dynamics of clone 2 becomes chaotic, the dynamics of
1 15 2 25 8 35 4 clone 1 becomes chaotic, too, witlonzeropopulation den-
FIG. 4. Bifurcation diagrams ofa) N,, and (b) N;, vs the  Sities in both patches. _
parameter in the ecological model Eq5). _In summary, we have presented a route to high-
dimensional chaos in nonlinear systems by using models
Nij (t+1)=W,[ N¢;(t) IN;;(t) [16]. With dispersal, a frac- arising |n_d|fferent.conte>.<ts. Numer_lcal evidence suggests
tion m of dispersers survives to enter their non-natal patchthat, in this scenario to high-dimensional chaos, the second

inwhich case the dynamics of clone 1 can be described byiargest Lyapunov exponent passes through zero continu-
ously. Physically, a subset of dynamical variables becomes
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Ny(t+1)=(1—e) W[ Ny1 (1) N1y (1) chaotic via somédperhapg known route to low-dimensional
+me; W, Npo(t) IN1o(1), che_los such as the period-doubling bifurcation route, after
which the complementary subset becomes chaotic. As a con-
Np(t+1)=(1—e1)Wo[ N7o(t) N1A1) sequence, in a bifurcation diagram, the latter subset of dy-

namical variables appears to become chaotic in a relatively
+mMe W[ Nra(D)IN1(D), ® abrupt fashiorsee, for example, Fig.(8)]. The mechanism
where similar equations describe clone 2. The fitness is giveby which the system becomes high-dimensionally chaotic via
by the following relation[17]: W;=exdr;(1—ZiN; /K;)], this route suggests an effective way to control it: by stabiliz-
where K; is the carrying capacity of patch Regarding ing the driving chaotic subsystem around some periodic or-
{N14(1),N1x(t)} and{Ny(t),N,(t)} as two interacting sub- bits, the whole system becomes periodic.

systems, where subsysteiis the low-dispersal clone and This work was supported by the NSF under Grant No.
subsystenB is the high-dispersal clone, we find that the full PHY-9722156, and by the AFOSR under Grant No. F49620-
system, which is a four-dimensional map, becomes high98-1-0400.
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