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Basin bifurcation in quasiperiodically forced systems
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In this paper we study quasiperiodically forced systems exhibiting fractal and Wada basin boundaries.
Specifically, by utilizing a class of representative systems, we analyze the dynamical origin of such basin
boundaries and we characterize them. Furthermore, we find that basin boundaries in a quasiperiodically driven
system can undergo a unique type of bifurcation in which isolated ‘‘islands’’ of basins of attraction are created
as a system parameter changes. The mechanism for this type of basin boundary bifurcation is elucidated.
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I. INTRODUCTION

Many physical, chemical, biological, and engineering p
cesses are known to possess multiple coexisting final st
Often, these processes can be modeled by eitherN-
dimensional continuous flowsdx/dt5F(x,p) or N-
dimensional discrete mapsxn115F(xn ,p), wherexPRN is
the state variable,F is a nonlinear function that hasN com-
ponents, andp is a system parameter. Multiple coexistin
final states mean that for a given parameter valuep, different
choices of the initial conditionx0 can lead to distinctly dif-
ferent asymptotic attractors, each with its own basin of
traction. The basin of attraction of an attractor is the se
initial conditions in the phase space that asymptote to
attractor. The boundaries that separate different basins o
traction are thebasin boundaries, which can be either
smooth or fractal@1–7#. When the boundary is smooth, i
box dimensionD is one less than that of the phase space,
D5N21. For a fractal basin boundary, its dimensionD is a
fractional number that satisfies (N21),D,N, where the
numbera5N2D,1 is the so-called uncertainty expone
@8#. More recently, common fractal basin boundaries of m
than two basins of attractions, theWada basin boundaries,
have been identified in dynamics and studied@9–11#. It has
been known that fractal and Wada basin boundaries lead
final state sensitivity@1–7,9–11#. That is, for a specific pa
rameter setting and initial condition, no reliable computat
can be made to predict the system’s asymptotic attracto

So far, to our knowledge, the study of fractal and Wa
basin boundaries has been restricted to dynamical sys
with no external driving or periodically driven systems@1–
7,9–11#. A quite important class of dynamical systems a
the quasiperiodically forced systems, systems driven at
or more incommensurate frequencies. These systems a
interest because they can occur in physical situations suc
the dynamics of a quasiperiodically driven superconduct
quantum interference device@12#, or in situations where
some chemical or biological oscillators are driven by two
more periodic signals whose frequencies are incommensu
@13#. In engineering, quasiperiodically driven systems
also of interest@14#.

The purpose of this paper is to address the question
PRE 581063-651X/98/58~3!/3060~7!/$15.00
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how fractal and Wada basins evolve in quasiperiodica
forced systems as the system’s parameters are varied.
approach will be to study a class of representative syste
the quasiperiodically forced maps@15#. We choose to study
maps because they exhibit many fundamental phenomen
the quasiperiodically driven flows such as strange noncha
attractors@16,17,15,18,12#, yet the analyses and comput
tions involved are greatly simplified. We find that multip
coexisting attractors, fractal and Wada basin boundaries
common in the sense that they occur in wide parameter
gions of the systems studied. In particular, we study a ba
boundary bifurcation that characterizes a sudden chang
the basin boundary as a parameter changes. We find th
quasiperiodically forced systems, Wada basin boundaries
undergo a unique type of bifurcation in which isolated a
islandlike basins are created in the originally open bas
We give a detailed analysis to account for this type of bif
cation.

The rest of the paper is organized as follows. In Sec. II
describe our model, show numerical evidence for the pr
ence of fractal and Wada basin boundaries, and quan
these boundaries by using the uncertainty exponent@1,2#. In
Sec. III we present an analysis for the occurrence of W
basins. In Sec. IV we describe and analyze the phenome
of a basin boundary bifurcation in quasiperiodically driv
systems. Discussions are presented in Sec. V.

II. NUMERICAL EVIDENCE

Our model system is the following class of two
dimensional maps:

un115un1v mod 1,
~1!

xn115M ~xn!1F~un!,

whereM (x) is a nonlinear map that can exhibit chaos, a
F(un) models an external driving. We consider the simpl
type of driving:F(un)5a cos(2pun), wherea is the driving
amplitude. The driving is quasiperiodic when the parame
v in the first line of Eq.~1! is chosen to be an irrationa
number. We choosev to be the inverse of the golden mea
3060 © 1998 The American Physical Society
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v5(A521)/2 throughout this paper. In order to study bas
boundaries, it is necessary to choose the mapM (x) so that
Eq. ~1! possesses multiple coexisting attractors. For illus
tive purpose, we chooseM (x) to be the three-times iterate
version of the logistic map, that is,M (x)5 f (3)(x) where
f (x)5rx(12x). For simplicity we choose the parameterr
in the logistic mapf (x) so that it is in a period-3 window
and, hence, the mapM (x) possesses three isolated simp
attractors, each with its own basin of attraction. We cho
the parameterr so that these attractors are fixed-point attr
tors. When the quasiperiodic forcing is present (aÞ0), the
map Eq.~1! possesses then three isolated attractors in
two-dimensional phase space (u,x).

We now present numerical evidence for the existence
fractal and Wada basin boundaries in Eq.~1!. The key ob-
servation is that for the one-dimensional mapM (x), the
boundaries between the basins of attraction of the three
tractors are Cantor sets~fractal! @2,4,19#. Under the quasip-
eriodic forcing at small amplitudes, the three fixed-point
tractors in the one-dimensional phase space ofM (x) are
transformed into three attractors~either quasiperiodic,
strange nonchaotic, or chaotic! @15#. The boundaries betwee
the basins of attraction of these attractors we expect to
topologically the fractal boundary sets that already exis
the mapM (x) cross with a circle~in theu direction!. There-
fore we expect the basin boundaries between the three
siperiodic attractors in Eq.~1! to be fractal too. Figures 1~a!–
1~c! show for r 53.833 and a50.0015, the basins o
attraction at three different scales, where Figs. 1~b! and 1~c!
are successive enlargements of Fig. 1~a!. In Fig. 1~a!, only
one of the three attractors is shown, the one whose bas
denoted by white dots in the figure. The basins of the ot
two attractors are indicated by black and gray dots, resp
tively. Figures 1~a!–1~c! suggest the existence of fractal b
sin boundaries in Eq.~1!.

We now characterize, quantitatively, the fractal Wada
sin boundary in Figs. 1~a!–1~c!. It has been known that frac
tal basin boundaries pose a fundamental difficulty in the p
diction of the asymptotic attractor of the system@1,2#
because of the interwoven fractal structure of the basin
attraction and because of the inevitable error in the spe
cation of initial conditions and system parameters. This
called thefinal state sensitivity@1,2#. Let e be such an error
Then the probability for two initial conditions, ofe distance
apart, to asymptote to different attractors scales withe as

P~e!;ea, ~2!

where the scaling exponent is the uncertainty exponena,
with 0,a<1 @1,2#. SinceP(e) can be regarded as the err
to predict the asymptotic attractor with finite measurem
precisione, we see that a significant improvement in t
precision, or a substantial reduction ine, usually yields only
a modest decrease in the prediction errorP(e) if a is less
than one. In the extreme case wherea'0, many orders of
magnitude of reduction ine would yield essentially no re
duction in P(e), a situation which is common in high
dimensional dynamical systems@20,21# or in systems with
riddled basins@22#.

To compute the uncertainty exponent associated with
boundary between two of the basins, we choose a numbe
-
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values ofe in the range 10214<e<1023. For each value of
e, we choose random initial conditions in the region 0<u
<1 and 0<x<1 in one of the two basins. We perturb ea
one by e, and we then determine if the perturbed initi
condition asymptotes to the same attractor as the unpertu
one. If yes, the pair is called certain with respect to sm

FIG. 1. ~a! The basins of attraction of the three attractors for t
quasiperiodically forced logistic map. The figures show only t
‘‘middle’’ part of the phase space containing one of the attracto
The white region belongs to the basin of the attractor in the figu
while the black and gray regions belong to the basins of the o
two attractors. The parameter setting isr 53.833,a50.0015. The
basin boundaries are apparently fractal.~b! and~c! Two successive
enlargements of the rectangles indicated in white.
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perturbatione. Otherwise it is uncertain. The uncertain pro
ability P(e) is approximately the fraction of, say, 1000 u
certain initial condition pairs among total pairs chosen. F
ure 2 shows, on a log-log scale,P(e) versuse. We see that
the plot can be well fitted by a straight line, indicating t
scaling relation~2!. We obtaina'0.07. The fractal dimen-
sion of the basin boundary between the two basins is t
D522a'1.93, which is close to the phase-space dim
sion. This indicates that the basin boundary separating
two attractors has an arbitrarily fine-scale structure and,
all practical purposes, it is very difficult to predict th
asymptotic attractor for a given initial condition. We get t
same dimension if one looks at the boundary between
other two basins.

For the parameter setting in Figs. 1~a!–1~c!, there are ap-
parently three attractors with fractal basin boundaries se
rating their basins. An interesting question is then whet
there exists acommonfractal boundary among the three b
sins of attraction. Such a common boundary is said to p
sess the Wada property and is hence called aWada basin
boundary@9#. In the following we shall argue that there
indeed a Wada boundary in Figs. 1~a!–1~c!. In order to test
whether the fractal basin boundary is common to the th
basins, we calculate the dimension of the union of the p
wise boundaries. The numerical computation shows that
dimension is the same as the dimensions for the pairw
boundaries.

III. WADA BASIN BOUNDARY

We first review the concept of a Wada basin bounda
Consider three basins of attractionB1 , B2 , and B3 . The
basinB1 is a Wada basin if every point in the boundary
B1 is also in the boundary ofB2 andB3 . The same definition
holds forB2 andB3 . To have the Wada property, the thre
basins must be pairwise disjoint. Such a geometric const
tion of three regions in which every boundary point is
boundary point of all three regions was first conceived by
Dutch mathematician Brouwer in 1910 and independently
the Japanese mathematician Yoneyama in 1917, which
called the ‘‘Lakes of Wada’’ in Ref.@23#. The natural occur-
rence of the Lakes of Wada phenomenon in chaotic dyna

FIG. 2. lnP(e) versus lne for the basin boundary between th
white and black basins in Fig. 1. A linear fit yields the followin
uncertainty exponent:a'0.07, indicating that the dimension of th
particular basin boundary isD522a'1.93.
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cal systems~Wada basins! was first identified and analyze
by Kennedy and Yorke@9#. They found that the exotic
Wada-basin phenomenon occurs quite commonly even
low-dimensional dynamical systems such as thr
dimensional flows and two-dimensional maps. Recen
Nusse and Yorke showed rigorously that Wada basins
occur generally in dynamical systems@10#.

To argue for the existence of a fractal Wada-basin bou
ary, we consider the case wherea*0 so that the basin
boundary is a topological transformation of the Can
boundary setC in the one-dimensional mapM (x) to C
3S1, as shown in Figs. 1~a!–1~c!, whereS1 is the circle in
the u direction. It thus suffices to argue that the Can
boundary set inM (x) possesses the Wada property. Ref
ring to Fig. 3, a plot of the mapM (x), we see there are thre
square regions that correspond to three one-dimensional
intervals in@0,1#, each one with a fixed-point attractor. De
note these subintervals byA1 , A2 , and A3 . The boundary
between the three basins of attraction must then lie in
one-dimensional set which is the complement set in@0,1# of
the subintervalsA1 , A2 , and A3 . Concentrating on one o
the complement intervals, say@a,b#, we see that there ar
three subintervals in@a,b#, denoted by 1, 2, and 3, which ar
the preimages ofA1 , A2 , andA3 , respectively. The interva
@a,b# thus contains all three basins and contains the com
ment set of the joint set of subintervals 1, 2, and 3 in@a,b#.
This complement set consists of four subintervals, deno
by S11, S12, S13, andS14, respectively, as shown in Fig. 3
Now look at one of these four subintervals, sayS12, the one
in between 3 and 2. We see that there are three subinte
in S12, denoted by 18, 28, and 38, respectively, which map
to A1 , A2 , and A3 in two iterations. The subintervalS12,

FIG. 3. Plot of the mapM (x). There are three square region
that correspond to three one-dimensional subintervals in@0,1# in
which the three fixed-point attractors lie. Analysis of the preimag
of these subintervals leads to the conclusion that the basin boun
in Fig. 1 has the Wada property.
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which is smaller than the original interval@a,b#, contains all
three basins. In a similar fashion, it is easy to see that th
are four still smaller subintervalsS21, S22, S23, andS24 in
S12 that contain the basin boundary~see Fig. 3!. Any of
these smaller subintervals must contain all three basins
examining thenth preimages of the subintervalsA1 , A2 , and
A3 in the limit n→`, we see that an arbitrarily small sub
interval Sn j ( j 51,2,3,4) must contain all three basins. T
boundary between the three basins must then be unique,
tal, and Wada. The same must also be true for the ba
shown in Figs. 1~a!–1~c! since the basin boundary is simp
a Cantor set of circles (C3S1). Furthermore, since such
Cantor set has a unique dimension@24#, the dimension of the
basin boundary is also unique.

IV. BASIN BOUNDARY BIFURCATION

Besides the basin boundary consisting of a Cantor se
invariant circles (C3S1), another type of basin boundar
can occur in quasiperiodically forced systems. In this ca
the basins of attraction of one attractor have isolated ‘
lands’’ immersed in the basins of the other attractors. Fig
4 shows an example for such a basin. The formation of th
islands is a result of a sudden change in the structure of
basins of attraction as a system’s parameter is changed.
change can be considered as a basin boundary bifurca
occurring at special values of the parameters.

We address the following questions: How can ba
boundary bifurcations occur in quasiperiodically driven s
tems and what are the unique characteristics of such bifu
tions? To gain insight, we refer to Fig. 3, the plot of th
one-dimensional mapM (x) under no driving. In the figure
there are three square regions in which the three attrac
lie. The one-dimensional subintervalsA1 , A2 , and A3 be-
long entirely to the basins of the three attractors. This is
to the fact that the critical points of the map in the thr
squares are completely in the squares. Now imagine we
on the quasiperiodic forcing. At small forcing amplitude, t
critical points are still in the square so that the subinterv
A1 , A2 , andA3 are still open basins of the three attracto
At different locations ofu, the driving is different. Thus the

FIG. 4. Basin structures after a basin boundary bifurcation. T
parameter setting isr 53.846 anda50.0024. We see that there a
‘‘islands’’ of new basins of other attractors in the originally ope
basin of one attractor.
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lengths of the subintervalsA1 , A2 , andA3 are different for
different u values but, nonetheless, the lengths chan
smoothly due to the smooth driving functiona cos2pu used,
as shown in Fig. 1~a! by the large white region aboutx
50.5. As the forcing amplitude increases, at some locati
of u the driving terma cos2pu is larger so that at thes
locations, the critical points of the mapM (x) are no longer
contained in the squares. When this happens, a subinte
sayA2 , contains part of the basins of the attractors that ar
A1 and A3 . In this sense, the basin of the attractor inA2 ,
which is originally connected, now invades the basins of
other attractors. In the two-dimensional phase space (u,x),
we then expect to see complicated basin structures in
originally open basins. In particular, since the effect of fo
ing is different at differentu values, the newly created basin
in the originally open basins form an ‘‘island’’ structure, a
shown in Fig. 4 forr 53.846 anda50.0024. The uncertainty
exponent for the basin structure in Fig. 4 is estimated to
a'0.05, indicating that the dimension of the fractal Wa
boundary is approximately 1.95, which is also close to
phase-space dimension. This islandlike basin structure
ated after a basin boundary bifurcation is a unique featur
noninvertible systems.

To understand further why basin boundary bifurcatio
occur for Eq.~1!, we employ the concept of critical curve
Critical points and critical curves play an important role
the localization of singularities of the invariant measure
chaotic attractors@25#. Certain phase transitions in nonline
systems such as band merging or interior crisis can also
understood by examining the dynamics of the critical poi
in the map@26#. The concept of critical curves has also be
used to argue the loss of connectedness of the basins o
tractions in two-dimensional noninvertible dissipative ma
@27#. The critical points of a map are the iterations of t
local extrema. In the logistic map, the critical points are t
images ofx50.5. In the period-3 window, the critical point
are located in the three square regions, as shown in Fig
Because of theu dynamics, one has critical curves. Consid
the critical curve defined byx50.5, 0<u,1. A special
property of this curve is that the determinant of the Jacob
matrix of Eq. ~1! evaluated along it is equal to zero. Whe
the quasiperiodic driving is zero, there are critical curv
which are straight lines in theu direction, as shown in Fig
5~a!. They are located in the three basins. When the qua
eriodic forcing is increased from zero, they become wavyl
shaped, as shown in Figs. 5~b! and 5~c!. The curves become
more convoluted as the number of iterations increases.
fore the basin boundary bifurcation, the higher iterates of
curves do not touch the basin boundaries and they rema
the vicinities of the three attractors. At some critical forcin
amplitude, the higher iterates of the critical curves and
basin boundary are tangent, yielding the creation of isla
in the basins of attraction of different attractors. Above th
critical forcing amplitude the island structure becomes m
pronounced, as exemplified by Fig. 4. To better visualize
role played by the critical curves in the basin boundary
furcation, we plot both the curves and the basins of attr
tion. Figures 6~a!–6~d! show four cases at parameter valu
a50.001, 0.001 42, 0.001 424, and 0.0024, respectiv
where Figs. 6~a! and 6~b! are before the basin boundary b
furcation, Fig. 6~c! is very close to the basin boundary bifu

e
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cation, and Fig. 6~d! is after ~cf. Fig. 4!.
The concept of critical curves can also be utilized to m

out the parameter space regions that generate different b
structures. This is done simply by examining a large num
of iterations of the critical curvex50.5, 0<u,1 to see
whether they intersect the basin boundary. Figure 7 show
the two-dimensional parameter space (r ,a), three distinct
regions, whereA corresponds to the parameter region bef
the basin boundary bifurcation where the basin structur
exemplified by Fig. 1,B corresponds to the parameter regi
after the basin boundary bifurcation where the basin struc

FIG. 5. Critical curves at~a! r 53.846 anda50; ~b! r 53.846
anda50.001; and~c! r 53.846 anda50.0015.
p
sin
r

in

e
is

re

is as in Fig. 4, andC denotes the parameter region in whic
there is only one single attractor. The boundary between
gions A andB is thus the curve in the two-dimensional p
rameter space at which basin boundary bifurcation occ
while the boundary between regionsB and C signifies the
critical parameter curve for an interior crisis@15#.

As we discussed above, the basin boundary in regionA is
a Cantor set of invariant circles (C3S1) and thus their box
dimension is the sum of the dimension of the Cantor
obtained from the unforced logistic map and one, the dim
sion of the invariant circles. Moreover, this sum does n
change when the amplitude of the forcinga changes. In fact,
we find that the uncertainty exponenta and, consequently
the box dimension of the boundaryD is independent ofa
~Fig. 8!. Within the accuracy of our computations, which
measured by the standard deviations of the least square
for eacha, we obtaina5a(a)5const1 @curve ~a!# for the
basin boundary which is a Cantor set of invariant circles
in Fig. 1. By contrast, in the caseB, where the basins contai
islands, the dimension of the basin boundary depends on
strength of forcing a. Along the line r 53.846 in the
(r ,a)-parameter space we find againa5a(a)5const2 for
those smalla values for which the basin boundary is still
Cantor set of circles. Beyond the basin boundary bifurcat
which occurs ata;0.001 424 the uncertainty exponenta
appears to depend linearly on the forcing amplitudea @curve
~b! in Fig. 8#. The decrease ina corresponds to an increas
in the dimension of the basin boundary as we approach
interior crisis value for the attractors. This linear dependen
can be understood using the same arguments as in Ref.@28#
where the authors analyze a basin boundary bifurcation
piecewise linear, noninvertible map. This map is similar
our map shown in Fig. 3 but instead of the parabolal
functions in the small rectangles they have considered pie
wise linear functions. The bifurcation occurs as soon as
tips cross the boundary of the rectangle@29#. An analytical
study shows that in general one obtains a power law dep
dence of the dimension of the basin boundary on the bi
cation parametera: (d2d0);(a2a0)g, whered0 stands for
the dimension of the boundary before the basin bound
bifurcation anda0 denotes the forcing amplitude at the bas
boundary bifurcation point. However, for the very sma
forcing amplitudesa applied in our example this dependen
is essentially linear, which is observed in the numerical
periments.

V. DISCUSSION

Fractal and Wada basin boundaries are fundamental
nomena of deterministic chaotic systems with multiple co
isting asymptotic attractors. The basic mechanism for fra
structure to arise involves the existence of chaotic dynam
in the basin boundaries, such as the creation of nonattrac
chaotic saddles in the boundaries@6#. Quasiperiodically
forced systems exhibit fractal and Wada basin bounda
despite the fact that the system in neither expanding
contracting in one direction of the motion, i.e., in the dire
tion of the phase of the forcing. The main contribution of th
paper is the detailed analysis of a unique type of ba
boundary bifurcation. This basin boundary bifurcation whi
is related to the creation of islands in the basins of attrac
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FIG. 6. Critical curves and the basin~white! of the middle attractor forr 53.846 and ~a! a50.001, ~b! a50.001 42, ~c! a
50.001 424, and~d! a50.0024. Cases~a! and ~b! are before the basin boundary bifurcation, case~c! is very close to the basin boundar
bifurcation, and~d! is after.
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is due to the noninvertibility of the map. For this reason o
cannot expect such bifurcations to happen in invertible m
and, therefore, in differential equations. However, chan
in the structure of the basin boundary can also occur in q
siperiodically forced invertible maps. In such maps their a
pearance should be related to tangencies of stable and
stable manifolds similar to the basin boundary me
morphosis known for nonforced dissipative systems. In c

FIG. 7. Regions in the two-dimensional parameter space
generate qualitatively different basin structures.
e
s
s

a-
-
n-

-
-

trast to those, the stable and unstable manifolds involve
the basin boundary bifurcation in quasiperiodically forc
systems are connected with quasiperiodic orbits~invariant
curves!. Furthermore, we note that the basins of attract
are symmetric with respect to the linex50.5. This symme-

at

FIG. 8. The uncertainty exponenta vs the forcing amplitudea
for r 53.833, where there is no basin boundary bifurcation up to
interior crisis value~cf. Fig. 7! ~a! andr 53.846, where we find the
maximum distance~longest scaling region! between the basin
boundary bifurcation and the interior crisis value~cf. Fig. 7! ~b!.
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try, however, is due to the symmetry of our example.
general, all results remain qualitatively the same in the
sence of a specific symmetry.
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